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Abstract 
In this project, via using none-mass spatial beam element with random uncertain material parameters 
to simulate the random uncertain elastic joint in complex structure, a high-efficient method, named 
FICMS-RFM, for calculating the natural frequency of complex structure with random uncertain elastic 
joint is proposed according to both Fixed Interface Component Mode Synthesis Method (FICMSM) 
and Random Factor Method (RFM). Firstly, via dividing the elastic joint as an independent 
substructure and using spatial beam element to simulate it, the natural frequency of a structure 
considering elastic joint is deduced based on FICMSM. Secondly, to equal the random uncertainty of 
elastic joint with the random uncertain material parameters of spatial beam element, the natural 
frequency of a structure considering elastic joint with random uncertainty is achieved according to 
RFM. Lastly, an example structure with random uncertain elastic joint is designed to verify the 
proposed FICMS-RFM. The calculation results of the first 10 order natural frequencies of the example 
structure achieved via FICMS-RFM are compared with them obtained by Monte-Carlo simulation 
method. The comparison results show that, the relative calculation error of expectation and standard 
deviation, obtained via FICMS-RFM, is within ±0.033% and ±0.938% respectively.  

1. Introduction 

There are a number of joints existing in modern engineering complex structures, such as aircraft and spacecraft. 
However, in actual engineering, all the joints are just elastic connection with high stiffness, not ideally rigid 
connection [1-2]. The existence of the elasticity of joint has a significant effect on the dynamic properties of the 
complex structure. In addition, many parameters of the elastic joint in actual engineering, for example material 
parameters and geometric dimensions, hold random uncertainty. As a consequence, for precisely researching the 
stiffness of elastic joint, the random uncertainty should be taken into consideration [3-4]. Since the precise prediction 
of the mechanical environment of complex structure with random uncertain elastic joint is the key to carry out both 
structural optimization and anti-vibration design for improving both the vibration environmental adaptability and 
reliability of complex structure, to study the corresponding prediction method has certain engineering meaning. 
Component Mode Synthesis (CMS) is a high-efficiency analytical method for obtaining the dynamical properties of 
large complex structure [5]. By using the low-order reservation main mode and constraint mode (or adherence mode) 
of each substructure to constitute the Ritz basis of the coupled complex structure, CMS is able to substantially reduce 
the calculation scale of the finite element model of the structure, with assuring the calculating accuracy, to improve 
the calculation efficiency [6-7]. The frequently used CMS can be divided into three different methods, namely Fixed 
Interface Component Mode Synthesis Method (FICMSM), Free Interface Component Mode Synthesis Method and 
Hybrid Interface Component Mode Synthesis Method [8]. Among them, FICMSM was initially proposed by Hurty 
in 1965, and then improved by Craig and Bampton [9]. Since high calculation efficiency and easy implementation, 
FICMSM is widely utilized in actual engineering [8]. In reference [10], by using 6-DOF (degree of freedom) scalar 
spring system to simulate the elastic joint in complex structure, the dynamic properties of a structure considering 
elastic joint was investigated on the basis of FICMSM. Since there may be coupling effect between each DOF of 
elastic joint stiffness in actual engineering, 6-DOF scalar spring system is not in a position to simulate elastic joint 
precisely. In reference [11] argued that, since the existence of coupling effect between vertical translation DOF and 
bending DOF, the stiffness of spatial beam element can simulate elastic joint  more precisely. 
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RFM is a probabilistic method for high-efficiency handling uncertain problems [12]. The working principle of RFM 
is to decompose the random uncertain parameter into the product of a random factor and a deterministic parameter, 
in which the random uncertainty of the random parameter is represented via the random factor. Meanwhile, the mean 
value of the random factor is 1 and its coefficient of variation is equal to it of the random uncertain parameter [3]. 
Thus far, lots of achievements, about using RFM to analyze the vibration problems of a structure with random 
uncertain parameters, have been obtained. In reference [13], the vibration frequency properties of plane steel frame 
structure with random parameters were studied based on RFM. In reference [14], the natural frequency, modal shape 
and random vibration response of random truss structure were calculated through RFM. In reference [15], the 
dynamic properties of piezoelectric intelligent truss structure with random parameters were investigated on the basis 
of RFM. Via using RFM, in reference [16], the dynamic response properties of random frame structure under the 
action of an unsteady random excitation were studied. Last but not least, in reference [17], both the natural frequency 
and modal shape of truss structure with random uncertain material parameters and geometric dimensions were 
obtained according to RFM. Additionally, RFM was verified via comparing the calculation results obtained from 
RFM with them form Monte-Carlo simulation method. 
In this project, via using none-mass spatial beam element with random uncertain material parameters to simulate the 
random uncertain elastic joint in complex structure, on the basis of both FICMSM and RFM we propose a high-
efficiency method, named FICMS-RFM, to calculate the natural frequency of complex structure considering random 
uncertain elastic joint. Meanwhile, the proposed FICMS-RFM is verified through numerical simulation. All the 
conclusions derived from this work have certain theoretical research and engineering application value. 

2. Natural Frequency of Structure Considering Uncertain Elastic Joint 

Assume the coupling structure to be researched is composed of two subsystems, A and B as demonstrated in Fig. 1, 
in which the two substructures are connected via n same elastic joints (namely ai~bi, i=1,2,…,n) with uncertainty. 

Elastic joint

A B

a1 b1

a2 b2

an-1 bn-1

an bn

ai bi

 
Figure 1: Schematic diagram of the coupling structure to be researched 

In general, on the basis of CMS, the coupling structure shown in Fig. 1 can be divided into two substructures 
(namely Substructure-A and Substructure-B). The interface node sets of the two substructures are as follows: 

                                    

{ } { }1,2, , ; 1,2, ,v i v iA a i n B b i n= = = = 

                                                      

(1) 
where Av and Bv represent the interface node set of Substructure-A and Substructure-B, respectively.  
However, for CMS the interface displacement coordination condition of adjacent substructures is required [18]. As 
for the coupling structure illustrated in Fig. 1, the displacement of the corresponding node ai and bi, in Av and Bv 
respectively, is not continuous because of the elasticity of the joint. Thus, to analyze the dynamic properties of the 
coupling structure shown in Fig.1 via using CMS directly may achieve a high-error or even incorrect result. In 
reference [19] argued that, to consider the elastic joint as an independent connection substructure with only interface 
nodes would not only follow the substructure division principle of CMS, but also overcome the displacement 
inconsistency of the interface node of Substructure-A and Substructure-B. In this project, therefore, the coupling 
structure shown in Fig. 1 is divided into three substructures (two primary substructures Substructure-A and 
Substructure-B, and a connecting substructure Substructure-C) for using FICMSM to analyze its dynamic properties 
as demonstrated in Fig. 2. 

A B

a1 b1

a2 b2

an-1 bn-1

an bn

ai bi

ca1

ca2

cai

can-1

can

cb1

cb2

cbi

cbn-1

cbn

Substructure-A Substructure-BSubstructure-C  
Figure 2: Schematic diagram of the divided substructures 
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According to the working principle of FICMSM [18], firstly, both the mass matrix and stiffness matrix of 
Substructure-t (t=A, B) should be arranged as follows: 

;
t t t t

t tuu uv uu uv
t t t t
vu vv vu vv

M M K K
M K

M M K K
   

= =   
                                                              

(2) 

where Mt and Kt represent the mass matrix and stiffness matrix of Substructure-t respectively, u and v denote the 
internal node DOF and interface node DOF respectively. 
For two primary substructures, the normal mode set and constrained mode set of Substructure-t are given by [18]: 
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(3) 

where φn
t and φc

t index the normal mode set and constrained mode set of Substructure-t respectively, ω and I yield 
the angular frequency and unit matrix respectively. According to Eq. (3), therefore, we can obtain the assumed mode 
set of the primary Substructure-t as: 

t t
t t t unk uc

nk c
vnk vc

φ φ
φ φ φ

I
 

 = =   
 0                                                                  

(4)
                                                    

 

where φt is the assumed mode set of Substructure-t that used to participate the mode synthesis, k is the reserved 
normal mode order of Substructure-t. Generally, k is less far than w (the overall normal mode order of substructure-t), 
and this explains why FICMSM is more efficient than traditional Finite Element Method (FEM). 
For connecting substructure Substructure-C, since there is only interface node, we use spatial beam element to 
simulate the stiffness of elastic joint. In addition, the material parameters (both Young’s modulus E and Poisson’s 
ratio γ) with random uncertainty are used to simulate the random uncertainty of the elastic joint. Then according to 
reference [20], the stiffness matrix of the spatial beam element can be redefined as: 

1b b bK K KEE
γ

= +
+1 2

                                                                       
(5) 

where Kb indexes the stiffness matrix of spatial beam element, both Kb1 and Kb2 are matrices without uncertainty and 
the corresponding expressions are as follows: 
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(6) 

where S and L denote sectional area and element length of spatial beam element, respectively, Ix indicates the second 
polar moment of area of the spatial beam element, Iy and Iz index the second Y-axial and Z-axial moment of area of 
spatial beam element, respectively. As a consequence, the stiffness matrix of the connecting substructure 
Substructure-C can be obtained as: 

( )

( ) ( )
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(7) 

where G is a transformation matrix whose expression can be found in reference [21]. Meanwhile, G, K1
C and K2

C are 
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all matrices without uncertainty. 
Regarding to the mass of Substructure-C, since it is so trivial, comparing with the overall coupling structure, that can 
be ignored [10, 21]. Then we can define the corresponding mass matrix MC as: 

CM = 0                                                                                   (8) 
Additionally, as spatial beam element possesses only interface nodes, there is only constrained mode set in the 
assumed mode set of Substructure-C on the basis of Eq. (3). The assumed mode set of Substructure-C is given by: 

C C
cφ φ I= =                                                                                (9) 

where φC and φc
C are the assumed mode set and constrained mode set of Substructure-C, respectively. 

Based on what have been discussed above, the mass matrix M, stiffness matrix K and mode set φ of the coupling 
structure are as follows: 

; ;

A A A A

C C C

B B B B
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              
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(10) 

Assume that the displacement vector corresponding to Eq. (10) is U, which is given by: 
TT T T T T T

Au Av CAv CBv Bu BvU U U U U U U =                                                      
(11) 

where Utu and Utv yield the internal node and interface node displacement of Substructure-t respectively, UCtv is the 
interface node displacement of Substructure-C corresponding to the primary substructure Substructure-t. Then 
according to Eq. (10), modal coordinate transformation is performed on U, which is indexed as: 

U φP=                                                                                  (12) 
where P is the modal coordinate corresponding to mode set φ, and the expression is as: 

TT T T T T T
An Ac CAc CBc Bn BcP P P P P P P =                                                        

(13) 
where Ptn and Ptc are the modal coordinates corresponding to the reserved normal mode set and constrained mode set 
of Substructure-t respectively, PCtc is the modal coordinate corresponding to the constrained mode set of 
Substructure-C. Meanwhile, the modal mass matrix MP and modal stiffness matrix KP of the coupling structure 
corresponding to the modal coordinate P are as follows: 

T T;P PM φ Mφ K φ Kφ= =                                                                   (14) 
The interface displacement coordination condition is given by: 

;CAv A Av CBv B BvU L U U L U= =                                                                 (15) 
where LA and LB are both coordinate rotation transformation matrices. From Eqs. (4), (9) to (13) and (15) we can 
obtain that: 

;CAc A Ac CBc B BcP L P P L P= =                                                                  (16) 
Via observing Eq. (16) we can learn that the element of modal coordinate P is not independent of each other. 
Therefore, independent transformation must be acted on the modal coordinate P through introducing the 
transformation matrix E. The transformation process is as follows: 

; ;
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(17) 

In Eq. (17), Q is the independent modal coordinate of the coupling structure. In addition, the modal mass matrix MQ 
and modal stiffness matrix KQ of the coupling structure corresponding to the modal coordinate Q are as follows: 

T T T T;Q QM S φ MφS K S φ KφS= =                                                             (18) 
From what have been discussed above, therefore, we can define the undamped free vibration equation of the 
coupling structure as: 

Q QM Q K Q+ = 0

                                                                         (19) 
Assume that the mode set of Eq. (19) is ψ, which can be calculated via: 

( ) [ ]2 ;Q Q iK M ψ ψ ψ ψω− = = 10  

                                                    
(20) 

where ψi is the i-th order modal shape corresponding to Eq. (19). Therefore, according to Rayleigh quotient formula, 
we can obtain the natural frequency of the coupling structure considering uncertain elastic joint demonstrated in Fig. 
1 as: 
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(21) 

where Kab, Kc1 and Kc2 are all deterministic matrices, and the corresponding expressions are as follows: 
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                                     (22) 

3. Fixed Interface Component Mode Synthesis-Random Factor Method 

As mentioned above, we set both Young’s modulus E and Poisson’s ratio γ of Substructure-C to random parameters 
to simulate the random uncertainty of the elastic joint. In addition, another random parameter β is introduced, of 
which the expression is β=1+γ. Then based on RFM, the three random parameters can be redefined as [13]: 

( ); ; 1m r m r m r m rE E E γ γ γ β β β γ β= = = = +                                                      (23) 
where the subscript m and r yield the mean value and the random factor of the random parameter, respectively. 
Meanwhile, in reference [13] the expectation μ and standard deviation σ of the random factor were given by: 

( ) ( ) ( ) ( ) ( ) ( )1; ; ;r r r r E r rE E γ βµ µ β µ γ σ υ σ γ υ σ β υ= = = = = =                                     (24) 
where υ denotes the coefficient of variation of the random parameter. The coefficients of variation of the three 
random parameters can be calculated via: 

( )
( )

( )
( )

( )
( )

; ;E

E
E γ β

σ σ γ σ β
υ υ υ

µ µ γ µ β
= = =

                                                           
(25) 

Substituting β=1+γ into Eq. (25) we can achieve that: 
( )
( )
1
1 1

m

m

γ
β

υ γσ γ
υ

m γ γ
+

= =
+ +                                                                       

(26) 

Meanwhile, in the right part of Eq. (21), besides of random parameters E and γ, ψi holds random uncertainty as well 
and can be redefined as: 

i imψ ψ irψ=                                                                               (27) 
where ψim and ψir yield the mean value and random factor of ψi. Of them, ψim can be obtained via substituting both 
Em and γm into Eq. (20). Consequently, by substituting Eqs. (23) and (27) into Eq. (21) we can get that: 

2 2 2 2
1 2

r
i iab r ic ic

r

EEω ω ω ω
b

= + +
                                                                  

(28) 

In Eq. (28), ωiab
2, ωic1

2 and ωic2
2 are all deterministic parameters, whose expressions are as follows: 

T T T T T T T T T
2 2 2

1 2T T T T T T T T T; ;im ab im im c im im c im
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m
iab ic m ic

m

EEω ω ω
b

= = =1 2

                   
(29) 

Meanwhile, the expectation and standard deviation of ωi
2 as demonstrated in Eq. (28) can be achieved on the basis of 

algebraic synthesis method [12]. The results are as follows: 
( )

( ) ( ) ( )

2 2 2 2
1 2

22 2 2 2 2 4 2 2 2 2 2 2 2 2
2 1 2 1 2 2
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1 1 2 1

i iab ic E ic
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c c
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bbbb  

µ ω ω υ υ υ ω

σ υ υ υ ω υ ω υ ω υ υ ω υ ω ω

 = + + + −


   = + + + + + − + +                      

(30) 

where c is the correlation coefficient between random parameters E and γ.  
As a result, on the basis of Eq. (30), we can achieve the expectation and standard deviation of the i-th order natural 
frequency fi of the coupling structure considering random uncertain elastic joint demonstrated in Fig. 1 as: 

         

( ) ( )
2 2

2 24
1 1;

2 2 2 2
i i

i i i i if fσ σµ µ σ µ µ
π π

= − = − −

                                             

(31) 

What have been discussed above can be defined as the derivation process of FICMS-RFM. 

4. Numerical Simulation 

An example structure with random uncertain elastic joint, as illustrated in Fig. 3, is designed to verify the proposed 
FICMS-RFM via using both FICMS-RFM and Monte-Carlo simulation method to calculate the natural frequency of 
the designed structure. 

 5 

DOI: 10.13009/EUCASS2019-35



Jiangpan Chen, Dong Wang, Yan Liu, Weiwen Zhang, Yi Liu, Limin Sun 
     

A

BC
 

Figure 3: Schematic diagram of the example structure 
In Fig. 3, A and B are the exactly same two rectangular cross-section beams (0.02×0.04 m2 in cross-section area and 
0.5 m in length); C is the elastic joint with random uncertainty which is simulated by two same circular cross-section 
short beams (0.005 m in cross-section diameter and 0.05 m in length) with random uncertain Young’s modulus E and 
Poisson’s ratio γ. Spatial beam element is used to mesh A, B, C and the whole example structure. The element 
properties of the deterministic structures A and B and the random uncertain structure C are listed in Tab. 1 and Tab. 2, 
respectively. 

Table 1: Element properties of the deterministic structures A and B 

 E γ ρ L Element Number 

Value [Unit] 7×1010 [Pa] 0.3 2700 [kg/m3] 0.05 [m] 10 

Table 2: Element properties of the random uncertain elastic joint C 

 Em υE γm υγ c ρ L Element Number 

Value [Unit] 2.1×1011 [Pa] 0.05 0.3 0.1 0 0 [kg/m3] 0.05 [m] 2 

According to the data listed in Tab. 2 we can learn that: 

 1.3; 0.023m ββ υ= =                                                                        (32) 
Via using FICMS-RFM to calculate the natural frequency, the example structure is divided into three substructures 
(namely Substructure-A, Substructure-B and Substructure-C), and the former 30 order normal modes of both 
substructure-A and substructure-B are taken as the reserved normal mode set of corresponding substructure.  
For using Monte-Carlo simulation method to calculate the natural frequency, firstly, assume that both the random 
parameters E and γ obey normal distribution; secondly, randomly generating 20000 samples based on the digital 
characteristics of the normal distribution; thirdly, substituting the 20000 samples into the finite element model of the 
whole example structure respectively and then calculating the natural frequency 20000 times; lastly, using the 20000 
calculation results to calculate the expectation μ and standard deviation σ of the natural frequency. Meanwhile, the 
expectation μ and standard deviation σ of the two parameters obeying normal distribution are as follows [22]: 

( )
( )

( )
( )

; MM

ME M

E E

E E γ

µ γ γµ

σ γ υ γσ υ

== 
 

==                                                                 
(33) 

The calculation results of the former 10 order natural frequencies achieved via both FICMS-RFM and Monte-Carlo 
simulation method are demonstrated in Tab. 3. In Tab. 3, μMC, σMC and μFR, σFR yield the calculation results of the 
expectation and standard deviation of the natural frequency obtained via Monte-Carlo simulation method and 
FICMS-RFM, respectively. Assume the calculation results achieved by Monte-Carlo simulation method are the 
reference value, εμ and εσ index the relative calculation error of the expectation and standard deviation obtained via 
FICMS-RFM respectively. 
From Tab. 3 we can learn that, the relative calculation error of expectation and standard deviation, obtained via 
FICMS-RFM, is within ±0.033% and ±0.938% respectively. As a consequence, via using none-mass spatial beam 
element with random uncertain material parameters to simulate the random uncertain elastic joint in complex 
structure, FICMS-RFM holds the ability to predict the mechanical environment of complex structure with random 
uncertain elastic joint correctly and efficiently. 

5. Conclusions 

Via using none-mass spatial beam element with random uncertain material parameters to simulate the random 
uncertain elastic joint in complex structure, the natural frequency of a structure considering uncertain elastic joint is 
deduced on the basis of FICMSM. Based on the deduction results, a high-efficiency method FICMS-RFM for 
calculating the natural frequency of a structure considering random uncertain elastic joint is proposed according to 
RFM. Simulation results indicate that, while greatly improving calculation efficiency, FICMS-RFM can still 
guarantee high calculation accuracy. As a consequence, via using none-mass spatial beam element with random 

 6 

DOI: 10.13009/EUCASS2019-35



INSTRUCTIONS FOR THE PREPARATION OF PAPERS 
     

uncertain material parameters to simulate the random uncertain elastic joint in complex structure, FICMS-RFM holds 
the ability to predict the mechanical environment of a complex structure with random uncertain elastic joint correctly 
and efficiently. All the conclusions obtained from this project are meaningful for theoretical investigation and 
engineering application. 

Table 3: Calculation results of the natural frequency 

 μMC[Hz] μFR[Hz] εμ[%] σMC[Hz] σFR[Hz] εσ[%] 

1st order 15.860 15.863 0.019 0.320 0.323 0.938 

2nd order 17.934 17.934 0.000 0.004 0.004 0.000 

3rd order 89.862 89.882 0.022 0.834 0.838 0.480 

4th order 108.355 108.361 0.006 0.122 0.122 0.000 

5th order 161.981 162.003 0.014 3.520 3.546 0.739 

6th order 183.161 183.171 0.005 2.915 2.939 0.823 

7th order 329.341 329.334 -0.002 0.640 0.646 0.938 

8th order 544.409 544.591 0.033 8.196 8.236 0.488 

9th order 597.231 597.264 0.006 0.740 0.739 -0.135 

10th order 840.116 840.119 0.000 0.482 0.486 0.830 
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