

9th European Conference for Aeronautics and Space Sciences 27th June - 1st July 2022 | Lille | FRANCE

Sustainability of Orbital Operations: status of Space Pollution and proposed actions

Christophe BONNAL - CNES - Strategy Directorate - Paris - France

French delegate to IADC – ISO – ECSS Chair – IAA Space Debris Ctee – IAF Space Traffic Management Ctee

EUCASS-3AF-2022, Lille, July 1st, 2022

Content

- . Current orbital population
- Kessler syndrome
- Critical LEO debris clusters
- Potential solutions
- Priorities
- Conclusions

The number of cataloged objects has drastically increased these last years

- Number of debris has doubled in 15 years _
 - Number of active satellites:
- 999 on Jan. 4th, 2012

5,902 on June 30th, 2022

Very scattered space objects sources

Beware: all satellites, including dead

USA + Russia + China = 87% of orbital population. 95% of orbital debris. 97.5% of orbital debris in LEO

30.06.22	In Orbit				Decayed				Total		
Country	Satellite	Rocket-Body	Debris	Total	Satellite	Rocket-Body	Debris	Total	per country		
Total	8936	2290	14393	25619	3891	4047	19103	27041	52660		
USA	4618	725	4479	9822	1447	736	4821	7004	16826		
CIS (ex USSR)	1555	1048	5444	8047	2079	2895	11429	16403	24450		
China	553	199	3741	4493	98	217	1264	1579	6072		
France	82	166	353	95% <u>601</u>	8 / % 11	82	667	760	1361		
United Kingdom	480	1	0	481	15	0	5	20	501		
Japan	205	62	47	314	72	69	275	416	730		
India	108	40	73	221	13	25	448	486	707		
ESA	96	7	52	155	12	7	22	41	196		
Intelsat	91	0	1	92	1	C	Debris + Rocket bodies - LEO only				
Globalstar	84	0	1	85	0	C					
Germany	86	0	1	87	17	C					
Canada	76	0	5	81	3	C					
Globalstar Orb	58	0	17	75	1	C		2%			
SES	62	0	0	62	1	C	31%	34	196	Russia	
Eutelsat	57	0	0	57	0	C				USA 📕	
Argentina	44	0	1	45	2	C	1	BERNEN AND A		China	
Spain	42	0	0	42	4	C	K	33%		Rest of the world	
Italy	36	2	0	38	13	C				- nest of the world	
Spain	32	0	0	32	3	C					
South Korea	26	1	0	27	l 5	C					

www.space-track.org

2011

2022

M. Stevenson, D. Mc Knight, H. Lewis, C. Kunstadter, R. Bhatia, AMOS conference 2021

Distribution of large debris in Low Earth Orbits

D. McKnight

Critical LEO debris clusters

Some large clusters are particularly critical:

- 2 Zenit SL-16 second stages pass by less than 100 m from each other once per month
- 205 Cosmos-3M SL-8 upper stages en 3 Clusters
- According to our models, a front collision of two SL-16 would generate +18,000 new catalogued debris

Cluster	Cluster Member	Mass (kg)	Number	Apogee (km)	Perigee (km)	Inclination (deg)
C775	SL8 RB	1,434	44	793	733	74
	SL8 PL	850	44	802	742	74
C850	SL16 RB	8,300	18	860	814	71
	SL16 PL	3,250	18	868	823	71
C975	SL8 RB	1,434	144	1020	935	83
	SL8 PL	800	142	1024	934	83
	Other PL	1500	15	997	905	64
C1500	SL8 RB	1,434	17	1660	1330	74
	SL14 RB	1,407	24	1530	1363	83
	SL14 PL	2477	24	1507	1381	83
TOTAL		~756k	490			27

SL-16 Zenit Upper stage Russian SpaceWeb Co.

SL-8 Cosmos 3M Upper stage V. Trushlyakov

(11) © cnes

(12) © cnes

What can be done?

- Wait, simply applying current mitigation rules
- Avoid collision with maneuvering satellites
- Avoid collisions among large debris
- Retrieve most dangerous debris to avoid generation of smaller

- Wait, simply applying current mitigation rules \Rightarrow Not sufficient. Not adapted to today Diverging
 - Update the 25-year rule \rightarrow 10, 5, 2, 1...? Under discussion
 - Update the probability of success of Post Mission Disposal 90% \rightarrow 95, 99%...? Under discussion
 - Check the effective application of rules

eucass

- Avoid collision with maneuvering satellites ⇒ Space Traffic Coordination CNES COO, EU SST...
 - Fundamental, but not enough to ensure space operations sustainability
 40+% of collisions are between non-maneuvering objects
- Avoid collisions among large debris \Rightarrow « Just-in-time Collision Avoidance » JCA = Tactical
 - Theoretical solutions exist, but no Market, so hard to finance
 - Numerous associated problems, legal, insurance, dual use...

- No major technical problem, but complex
- Problem of financing: no credible business plan, except synergy with In-Orbit Servicing

♥ It is easy not to do anything

© MDA

© CNES-CTF

14 © cnes

Deal with today's situation

Consolidation of the international set of rules

① It is necessary to share the current rules at international level

② It is fundamental to consolidate our actions at international level ECSS, IADC, ISO, COPUOS, IAA, IAF, IAASS

Specificities of New-Space. A very high reactivity is mandatory

③ It is fundamental to improve our the currents rules to cope with current situation

Attenuate the effects of yesterday

Kessler syndrome between 700 and 1,100 km altitude mainly linked to operations from the 70-90's Necessity to go and retrieve the largest and most dangerous debris ¹

No serious action today, anywhere, at worldwide level

④ It is fundamental to start at soon as possible Active Debris Removal operations

Prepare tomorrow

Establish all the new rues aimed at guaranteeing sustainability of space operations, despite large constellations Drastic improvement of the collision avoidance process

(5) It is fundamental to coordinate at international level to share the same rules Improvement of the knowledge of orbital environment

(b) It is fundamental to improve detectability threshold and accuracy of orbital parameters Preserve the in-habitable zone

⑦ It is fundamental to define a preserved zone for the inhabited space operations

Thank you for your attention

Christophe.bonnal@cnes.fr

