

Liberté Égalité Fraternité

Cross-disciplinary research for preparing the future

Riad Haidar haidar@onera.fr

What are we talking about?

That is room for cross-disciplinary research:

- ⇒ i.e. combine/align basic single notions (sometimes outside their standard field of application) in order to stimulate new notions or reach new applications
- ... and even return to basic notions to progress.

Cross-disciplinary research

At "medium" TRL, the combination of single disciplines can be an **efficient driver** for research and innovation...

- ... with an ability to generate IP and single-disciplinary results (or even breakthroughs)
- ... with an ability to inspire educational initiatives at graduate degree (eg, Paris-Saclay Institutes)
- ... with an ability to catch investments (eg, european EIC Transition, french ANR PRCI)

the apparent « applications top »

the un-apparent (often un-expected) amount of crossdisciplinary efforts and results.

This often needs heavy investments (skills, manpower and technical means) ... but good news: timescales are in the range of 2 to 4 PhD projects

Fourier-Transform spectro-imager

Quantum Gravimeter with cold atoms

Passive night vision (all year, 5 night-levels)

ONERA, the french Aerospace Research Lab.

ONERA

- 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 - TRL scale

Main facts & figures

- Public sector body established in 1946
- 2120 people on 8 geographical locations
- 350 (16%) PhD students, 30 Post-docs
- Budget: roughly 236 €million (55% of contract work)
- Largest fleet of Wind Tunnels in Europe
- High-level research for the benefit of Civil Aerospace industry and Defence industry

from basic science to applied technology

Fourier-Transform spectro-imager

Basic science:

- FT spectrometry

Application driver:

- Airborne hyperspectral (thermal) imaging

from basic science to applied technology

Fourier-Transform spectro-imager

2 to 3 PhD-duration3 patents, about 15 « core » journal articles

from basic science to applied technology

Fourier-Transform spectro-imager

2 to 3 PhD-duration3 patents, about 15 « core » journal articles

+ Airborne

Fourier-Transform spectro-imager

Quantum Gravimeter with cold atoms

Passive night vision (all year, 5 night-levels)

from basic science to applied technology

Quantum Gravimeter with cold atoms

Basic science:

- Cold atoms interferometry

Application driver:

- Calibration-free, high-precision gravimetry

from basic science to applied technology

Quantum Gravimeter with cold atoms for onboard applications

3 to 4 PhD-duration 6 patents, about 25 « core » journal articles

from basic science to applied technology

Quantum Gravimeter with cold atoms for onboard applications

3 to 4 PhD-duration 6 patents, about 25 « core » journal articles

+ Sea/Air-borne/Space-borne

from basic science to applied technology

Quantum Gravimeter with cold atoms for onboard applications

Back to basic science: measuring gravity for geophysics/geodesy, sub-surface detection...

The constituents of "g"

Fourier-Transform spectro-imager

Quantum Gravimeter with cold atoms

Passive night vision (all year, 5 night-levels)

from basic science to applied technology

Passive night vision (all year, 5 night-levels)

Basic science:

- Night-glow in the NIR

Application driver:

- All/Any night vision

Nightglow phenomenon (moonless night): here 2 clouds in contrast against a background sky, illuminated by the NG emission.

from basic science to applied technology

Passive night vision (all year, 5 night-levels)

2 to 3 PhD-duration7 patents, about 12 « core » journal articles

Nightglow OH phenomenon (84 km) Stray-light for astronomers... ... but light source for night-imaging NIR imaging protocols SC physics, material physics (cut-off wavelength) Nanophotonics technology (spectral/angular filters) TRL scale 2018 2024 ? 2010

from basic science to applied technology

Passive night vision (all year, 5 night-levels)

2 to 3 PhD-duration7 patents, about 12 « core » journal articles

from basic science to applied technology

Passive night vision (all year, 5 night-levels)

Back to basic science: observation and study of gravity waves

© ARISE consortium

SWIR image showing gravity waves propagating in the OH layer. Moon-less night, and cloud-less sky. (area 120km x 160km)

Fourier-Transform spectro-imager

Quantum Gravimeter with cold atoms

Passive night vision (all year, 5 night-levels)

Reduction of aerodynamic drag by riblets

Reduction of aerodynamic drag by riblets

Basic science:

- Using the shark skin principle
 - \Rightarrow reduction of near-wall turbulence
 - \Rightarrow reduction of friction (through turbulence simulations)

Application driver: Reduce aircraft fuel consumption (lower drag)

Reduction of aerodynamic drag by riblets

- Airbus A320 1989 flight tests: 1.5% fuel savings
- Wind tunnel tests 2000-2010 demonstration of up to 10% potential reduction in frictional drag
- Shape and size optimization, and high-fidelity simulations (LES-DNS)
- Ongoing works: controlling erosion / fouling effects industrialisation of the texturing process / large surfaces (textured paint films)

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE

21

A selection of challenges for cross-disciplinary research

Thank you for attention

The ONERA initiative (... and also that of similar research establishments)

	_
 Federative research project (4 FTE x 4 years) Cross-disciplinary, TRL 2/3 to TRL 5/6. 	28
 Federative research actions or networks (1 FTE x 2 to 3 years) Cross-disciplinary actions or networking. 	14
Exploratory research actions (0.5 FTE x 1 year) • High-risk, high-gain, fast-track process	20
and also mono-disciplinary research project (2 FTE x 3 years)	55
Collaborative / Co-funded PhD Fully hired post-docs	175 11
In-kind contribution to collaborative research programs with industry (incl. for PhD and post-docts projects)	63

now running

from basic science to applied technology

Electron

Single

hoton

Hole

Single photons sources

Basic science:

- Artificial atoms

Application driver:

- Quantum computing and telecoms

Senellart's group CNRS/C2N

THE FRENCH AEROSPACE LAB

from basic science to applied technology

