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Abstract

Multidisciplinary Design Analysis and Optimization (MDAQO) problems can involve system architecture
choices, represented by design variables (called conditional variables) modifying the optimization prob-
lem’s structure (e.g., number of design variables and constraints). The associated problem is called Condi-
tional Search-Space Problem (CSSP). This paper proposes a MDAO formulation of the CSSP, and presents
a relaxation methodology to solve a certain class of problems. The method is compared to the classical
approach consisting in optimizing every possible architecture and illustrated on a liquid rocket engine
application. Two MDAO formulations are compared on the relaxed problem: Multidisciplinary Feasible
(MDF) and Individual Discipline Feasible (IDF).

1. Introduction

The performances of a launcher are a key driver regarding the success of a space mission. The overall architecture of
the launch vehicle and in particular its propulsion system are important elements to be optimized in order to reach an
acceptable level of performance, reliability and profitability. The growing complexity of the design process brings the
need of novel numerical methods to deal with this highly constrained non-linear optimization problem. For example,
the propulsion system design is a typical multidisciplinary problem involving several disciplines (or subsystems) such
as the thrust chamber, the feedsystem and the cooling system.

The Multidisciplinary Design Analysis and Optimization (MDAO) framework is a powerful set of tools for the
preliminary design of engineering systems®’ because it allows to solve large, highly coupled and multidisciplinary
problems. Numerous problem decompositions (MDAO architectures) and optimization algorithms have been devel-
oped in the last decades to solve increasingly complex design problems.3® For instance, MDAO has been used to study
the propulsion system design problem: Cai et al.'> used MDAO to optimize a Liquid Rocket Engine (LRE) equipped
with a gas-generator cycle propelled by liquid oxygen (LOX) and hydrogen (LH2). Okninski et al.** also performed
MDAQO to optimize an upper-stage engine for in-orbit use.

Besides, in the preliminary design phases, architectural and technological choices need to be made for the propul-
sion system. These choices strongly impact the overall system behavior. Within the mathematical formulation of the
design problem, they can be embedded in a particular type of design variables which, depending on their values, mod-
ify the structure of the optimization problem (in particular, the number of design variables and constraints can be
impacted). When designing the first stage of a launcher, the propulsion type, solid or liquid, is an example of such a
variable. In the first case, variables relative to the dimensions of the solid propellant grain geometry must be optimized,
and the system is typically constrained by the maximum stress on the booster case. In the second one, the regenerative
cooling system and its parameters (e.g., number and geometry of the cooling channels) must be selected in order to
keep the thrust chamber wall temperature under a maximum allowable value. As the value of the variable *propulsion
type’ conditions which variables and constraints act on the problem, it is called a conditional variable in this paper.
The associated optimization problem is called Conditional Search-Space Problem (CSSP). Other terminologies can be
found both for this type of variables (dimensional variables,***?> meta variables®) and for the resulting optimization
problem (Variable Size Design Space Problem!#?). Complex design problems may include other types of variables:
continuous, integer and categorical variables. Continuous variables are the most used in design processes and refer to
standard quantities such as pressure, mass, length, efc. Integer variables are related to discrete, quantitative choices
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that can be ordered (e.g., number of engines). On the contrary, categorical variables are related to discrete choices
with an unordered structure (e.g., material choice, for instance composite or aluminum alloy). Note that a conditional
variable can be either integer or categorical (cases where conditional variables are continuous exist but they are not
treated here).

Several contributions to the field of CSSP!-3+42:46 have been published, especially in the machine learning com-
munity.%>3 MDAO brings additional challenges (different disciplines may involve different models and codes, inter-
disciplinary couplings, efc). This has been for instance considered in recent works'3 1442 that have analyzed the impact
of conditional technological choices in the context of MDAO. In addition, another important challenge is that the pres-
ence of conditional variables may importantly impact the interdisciplinary coupling relationships, that may cause a
reformulation of the design problem.

This paper aims to connect both topics by investigating how classical MDAO architectures can be adapted to deal
with CSSP. Two MDAO architectures are under focus: Multidisciplinary Feasible (MDF) and Individual Discipline
Feasible’® (IDF). They belong to the monolithic architecture category that solves the design problem by formulating
it as a single optimization problem. The main contributions of this work are to formulate both MDAO architectures in
a CSSP context, to propose a relaxation-based methodology to solve a certain class of the resulting problems and to
analyze the outcomes. To evaluate their abilities to deal with CSSP, the performances of the MDAO architectures are
compared to the classical approach that consists in optimizing all the possible combinatorial choices. The parameters
of merit are: computational efficiency, optimality, robustness, convergence properties and number of variables and
constraints to handle.

The developed method is implemented for a LRE design problem with three disciplines: thrust chamber, feedsys-
tem and cooling. The engine optimized in this study is a LOX-LH2 LRE where the cycle’s choice (expander bleed or
gas generator) and the number of turbines (1 or 2) are conditional variables.

In Section 2, a brief review about CSSP and the main existing solving strategies are presented. In Section 3,
an extension of the CSSP formulation to MDAO problems is proposed. Moreover, a relaxation-based methodology
to solve CSSP within the MDAO framework is developed and the associated mathematical formulation is given. The
additional challenges when dealing with CSSP in the MDAO context are also described. In Section 4, the LRE design
problem is presented (the main models are introduced and validated in Appendix). Numerical simulations are per-
formed in Section 5 to compare the different techniques and assess the performances of the relaxation-based method.
Finally, the results are discussed, as well as the advantages and drawbacks of the relaxation-based methodology.

2. Conditional Search Space Problem

2.1 Introduction to CSSP

Modern engineering design problems require several types of variables to account for different quantities in their
mathematical formulation. The classical mixed-variable optimization problem deals for instance with continuous and
integer variables. Lucidi et al.’* formalized a more general class of problems by introducing two other types of
variables: the categorical variables and the dimensional variables. Dimensional variables are integer variables which
induce a structural change in the optimization problem by, depending on their values, modifying the number of design
variables or the number of constraints.

In the field of space engineering, similar problems have been treated. In those works, the problem is called
Variable-Size Design Space Problem (VSDSP) instead of CSSP to refer to the changing number of variables and
constraints. This terminology can be misleading and will be discussed in the following. Abdelkhalik! and Nyew et
al.3® solved the multiple gravity assist trajectory optimization problem in which the variable structure of the problem
comes from the number of the swing-by maneuvers performed. The multi-stage launch vehicle design has also been
dealt with by Pelamatti et al.*? in a MDAO context, where the dimensional variables impact the number of stages (2
or 3), the type of propulsion (solid or liquid) for each stage as well as the acting constraints. This last example extends
the definition of dimensional variables first proposed by Lucidi et al.3* by allowing them to be categorical.

The Machine Learning (ML) community has faced equivalent problems. The process of choosing a learning
algorithm and tuning its associated hyperparameters (e.g. number of layers and nodes in a neural network) to better
fit a given set of data is usually solved by hand. Therefore, numerous works in the literature proposed automated
approaches to perform this task. For instance, once a learning algorithm is chosen, its hyperparameters must be tuned
to get an optimal model. Such a process is called hyperparameters optimization (HPO) and reviews exist to summarize
the topic.’> An analogy is made by Yang et al.>* showing that HPO is not different from traditional optimization: the
error rate or the root mean squared error are classical objective functions to be minimized in HPO. Usual constraints
are also presented. HPO is a typical CSSP because sometimes, hyperparameters are set to a value that activates other
hyperparameters which need to be tuned, as illustrated by Audet et al.® In that example, the optimization algorithm of
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a neural network is a hyperparameter that can take two distinct values, activating or not two mutually exclusive sets
of three hyperparameters. In that work, the algorithm choice is called a meta variable. The HPO literature also refers
to conditional variables (or conditional hyperparameters)>® because they condition the action of other variables and
constraints on the problem. Those two terms are analog to what has been called dimensional variable earlier.

Following the previous example, it can be seen that a conditional variable can modify the structure of the problem
by changing the acting variables without modifying its size. Thus, Variable-Size Design Space Problem can be a
misleading term because the size might not vary while the structure does.

When the choice of the learning algorithm (model selection problem™®®) is itself a hyperparameter, a new class of
problems arises where the goal is to select the algorithm and tune at the same time its hyperparameters. The problem
is called Combined Algorithm Selection and Hyperparameter optimization (CASH) and has been reviewed by Elshawi
et al.'” The algorithm Auto-WEKA?® is an example of CASH solver. The challenges associated with CSSP are well
illustrated in this field in the sense that hierarchical choices have to be made: choices about some hyperparameters are
nonsense if the algorithm they are associated with has not been selected previously. The CSSP covers more general
problems as well. For instance, general algorithm configuration*® keeps the same principle as HPO or CASH but
extends the methods to any algorithm (mixed-integer solvers for instance?*).

Finally, Audet ez al.® proposed a general formulation of the CSSP with a classification of the variables depending
on their types, their roles and their conditional dependencies. Their problem statement is based on one hypothesis: the
conditional variables are always active. In other words, a high-level conditional variable can not activate or deactivate
another one at a lower level in the decision tree. The limits of this hypothesis will be discussed in the next section.

2.2 State-of-the-art of the solution strategies

In the previous subsection, the main aspects of the CSSP have been discussed. This paragraph gives an overview of
existing solution strategies gathered in categories. More complete reviews, to which the reader is referred, have been
published in the literature.% 4633

2.2.1 Model-free methods

The grid search? and random search!® model-free techniques are commonly used and easy to implement. The first one
uses factorial design of experiments to target interesting regions of the search space and then refines the grid around
those. It becomes less efficient as the number of optimization variables grows. The second one may perform better but
there is no process that drives the method to evaluate the most interesting regions, wasting time in the poor performing
areas of the search space.’® Besides, Lucidi et al.>* developed a procedure to solve the problem without derivatives
by alternating a local search for the continuous variables and a local search for the discrete ones. The derivative-free
continuous search can be performed by a direct-search as proposed by Audet et al.® The MADS algorithm? is a suitable
option to tackle this step.

2.2.2 Model-based methods

To improve efficiency, model-based techniques are available to focus on interesting regions of the design space accord-
ing to the model responses. Probabilistic and deterministic methods have been studied.

Bayesian optimisation (BO): BO is the one of the most used probabilistic techniques to solve CSSP. Its principle
is to build a surrogate model of the objective function and of the constraints based on an initial Design of Experiment
(DoE). Then, an active learning function is optimized within an auxiliary optimization problem (involving the surrogate
models) to identify the most promising solution regarding the CSSP. This solution is evaluated afterward on the exact
functions (objective and constraints). The DoE and the surrogate model are finally updated with the exact values and
a new iteration is started. BO strategies are well suited to the ML community as the training of a ML model can
be computationally intensive: with this approach, only interesting ML model configurations are trained. Several BO
approaches exist and their differences come from the surrogate model used. Bayesian optimization employing Gaussian
processes (BO-GP)* is a well performing method to solve continuous optimization problem with expensive black-box
functions. However, adjustments have been made to also deal with integer and categorical variables*'*> as well as
conditional variables for HPO,*® CASH?? and engineering problems, especially launchers design.*> Nevertheless,
such approaches become less efficient when dealing with high-dimensional search space (curse of dimensionality)
which arise when facing CSSP or when the combinatorial induced by the conditional variables grows. Hence, several
works improved this aspect by exploiting the tree-like dependency structure of the CSSP.?>:3% While BO-GP needed
adaptations to fit mixed-integer and CSSPs’ frameworks, BO with other types of surrogate models have been designed
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purposely such as random forests>* and tree-structured parzen estimator,” which are particularly adapted to handle
conditional variables.

Evolutionary algorithms: In the category of metaheuristics, evolutionary algorithms have been abundantly used to
solve CSSPs because they are adapted to deal with discrete variables. Particle Swarm Optimization'® (PSO) have for
instance been implemented for HPO.'® However, a proper initialization is required and limits the performances of PSO.
Genetic Algorithms*? (GA) are a popular choice and several versions have been developed to allow the exploration of
a conditional search space. The hidden-gene GA' considers all the possible combinations of optimization variables
to build a problem where the conditional dependencies have been removed to use the classical operations in evolu-
tionary programming. Variables are either active or inactive (part of the hidden gene) during the optimization process.
The structured chromosome algorithm?®® proposes a framework where the hierarchical dependencies are kept in the
evolution process. Finally, the gender-based algorithm® implements the nature-inspired concept of genders to adapt
the classical evolutionary operations to conditional dependencies. However, evolutionary algorithms require a large
number of function evaluations (objective and constraints). Hence, their applicability to computationally expensive
problems is limited.

Gradient-descent algorithms: Deterministic model-based methods are also available. Lucidi et al.** developed a
procedure to solve the problem with a gradient-based approach to perform the local search for the continuous vari-
ables and applied it to a large-scale unconstrained problem. The discrete ones are tackled by the same process as the
derivative-free version.>* The main limitations of gradient-based approaches are that differentiability and continuity
properties are needed. Furthermore, gradient-based approaches provide local optima. These reasons explain the lim-
ited applicability of gradient-based approaches to the field of CSSP. One contribution of this paper is to provide a
relaxation-based method to use gradient-descent algorithm for solving a certain class of CSSPs in a MDAO context.

3. Conditional Search-Space Problem within the MDAO framework

3.1 Problem description and formulation

The first contribution of this paper is to adapt the MDAO framework to deal with CSSP. This subsection proposes
a formulation linking both topics. MDAO shares similarities with classical optimization problems. The goal is to
minimize an objective function f(-) by iteratively modifying a vector of n design variables x € X, while respecting a
set of m design constraints ¢(-). Note that in this paper, the design constraints are written as inequalities for conciseness,
but they can also represent equalities. In a multidisciplinary framework, several disciplines (or subsystems) are involved
in the problem. The design variables and constraints can thus be sorted according to the impacted discipline(s). In the
classical MDAO notation,>® a quantity shared by several disciplines is noted (-)o, whereas (-); (i € {1,..., N}, where
N is the number of disciplines) refers to a quantity attached to a single discipline. Mathematically, a discipline is a
mapping between inputs and outputs. The latter are called coupling variables y because they model interdisciplinary
relationships and are continuous by definition (see Fig. 1a). Indeed, sometimes, a discipline j needs the output y; of
a discipline i to perform its disciplinary analysis (meaning to compute its own outputs). One way of providing y; to
discipline j is via a variable called target variable y!, handled by the optimizer. However, to make sure that y! and y;
are equal (in other words, to satisfy the couplings), an additional consistency constraint is imposed ¢{(-). This MDAO
architecture is called Individual Discipline Feasible’® (IDF) and yields:

minimize: f(x, y(x, y"))
with respect to: x, y’
subject to: ¢o(x, y(x, y)) <0 (1)
¢i(Xo, Xi, Yi(Xo, Xi, ¥iu)) <0, i, je{l,..., N}

¢ =y —yi(Xo, Xi, y;#) =0, i,je{l,...,N}

Another way of satisfying the couplings is to estimate them for each value of the design variables (hence, at each
iteration of the optimization process) via an auxiliary analysis called multidisciplinary analysis (MDA). MDA consists
in solving a non-linear system of equations using dedicated algorithms (e.g., Gauss-Seidel or Newton-Raphson) to
determine the value of the coupling variables that ensure the multidisciplinary feasibility. The associated MDAO
architecture is called Multidisciplinary Feasible®® (MDF). With respect to the IDF formulation, some simplifications
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can be made:
minimize: f(x, y(x))
with respect to: x

. . 2
subject to: ¢op(x, y(x)) <0

ci(XO, Xi, y(XO’ Xi, y1¢1)) < 07 l&.] € {1’ e ’N}

Indeed, as at each iteration of the optimizer, the coupling variables satisfying the interdisciplinary system of
equations are determined (denoted by y(x) in the formulation), thus the consistency constraints ¢{ and the target vari-
ables y’ are removed from the IDF formulation. The system-level optimizer only controls the design variables. Thus,
IDF has a greater dimensionality in terms of optimization variables and constraints to handle, whereas MDF has to
solve an iterative process at each optimization step.

Inspired from the general single-discipline CSSP formulation,® the aforementioned architectures can be adapted
to the multidisciplinary CSSP by highlighting the conditional dependencies of the problem. The conditional variables
are written x* = [x“,..., x“], where [ is the number of hierarchy levels. Indeed, engineering problems often require
to model several levels of hierarchy, expressing technological decisions. For instance, in the LRE design problem,
let the choice of the feed system type (pressure-fed or turbopump-fed) be a scalar conditional variable x*'. Let x*2
be another scalar conditional variable modeling the number of turbines (relevant in case of a turbopump-fed system
exclusively). Thus, the variable x“' is higher in the hierarchy because if X' = pressure-fed, x> does not act on the
problem. Mathematically, the conditional variable vector at the i level x € X* depends on all the higher-levels
x“, je{l,...,i — 1}. In that sense, the adopted formulation differs from the one proposed by Audet et al.® When
defining the conditional variables (called meta variables in their work), the assumption that conditional variables are
always active has been made: a high-level conditional variable can not activate or deactivate another one at a lower
level in the hierarchy. Nevertheless, the standard design variables x* € X* (x¥) in Eq. (3) are analog to the ones defined
by Audet et al.% : they gather the continuous design variables x° € R"*"), the integer variables x* € Z"=*", but also
include the categorical ones x¢ € Z"*") (this notation® is possible because a bijection exists between the possible
categories of x? and Z"«*)). Their respective numbers are n.(x), n.(x*) and nqy(x“). The design variables definition set
is:

X={xx] : x"eX";, Vie {2,...,0}, X" e X" (x,...,x""); x'e X’} 3)

Let ny; and n’,,i be the numbers of coupling and target variables for a discipline i. The conditional dependencies
for the coupling and target variables are formalized as:

Vie(l,...,N}, yi€Yi(x) CR™*) and y' e ¥'(x) c R )

This is a novelty brought by the multidisciplinarity of the problem with respect to the single-discipline CSSP: the
interdisciplinary couplings structure is a new challenge to handle because, for instance, two disciplines can be coupled
in different ways depending on conditional variables. Figs. 1b and 1c illustrate a case where x* € {a;, a,}.

Discipline 1 y1(x* = ap) Discipline 1 /yl(x“' = ap) / /yl(x"' = ap) /

Discipline 1 Y1/ v/
[y2} Discipline 2 /v2] Discipline 2 Discipline 2 =/ yo(x" = a5)
[ys } /s } Discipline 3 Discipline 3 y3(x* = a,) fm| Discipline 3

(a) Generic couplings structure (b) x“ =ay (c) x“=a

Figure 1: Generic coupling structure and illustration of conditional dependencies (generated with pyXDSM>°)

Let m.; be the number of consistency constraints for a discipline i (in a IDF formulation). The following rela-
tionship yields: m,; = n;l. < ny,;. Finally, the objective function and the constraints are:

[ XXY X)X x Yy () —R (5)
€0t X XY (X)X - X Yy (x) —> R ©)
¢ X XY (x) — R™ e (l,... N N
¢ Y(X) X Y (X) — R™ G je{l,...,N) @)
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The IDF formulation with conditional dependencies is:

minimize: f(x¥, x°, y(x*, x*, ¥))
with respect to: x5, x°, y'
subject to: eo(x¥, x*, y(x¥, x*, y)) <0 9)
ci(xg, X5, x5, X!, yi(x(, X5, x5, X7, y;¢i)) <0, i,je{l,...,N}

¢ =y - yilx(, X{5 X, X}, ¥i) =0, i,jefl,...,N}
The MDF is analog:

minimize: f(x*, x°, y(x*, x°))

with respect to: x*, x° (10)
subject to: ¢o(x*, x*, y(x, x*)) <0

ci(ng X:'(’ XS’ X;‘Y’ Yi(XS, X;‘(3 X53 Xf’ yjil)) <0, 13] € {13 cee 3N}
3.2 Relaxation-based solution strategy

The second contribution of this paper is to propose a relaxation-based framework to convert a certain class of multidis-
ciplinary CSSP into a regular MDAO problem which can be formulated with classical methods such as MDF and IDF
and solved with gradient-based algorithms. In order to use such algorithms, several conditions are necessary. First,
design variables must be continuous. Then, the disciplinary models shall have continuity and differentiabilty properties
because the aim is to use the partial derivatives of their outputs with respect to their inputs to compute the necessary
gradients for the optimization algorithm. Several methods exist to build those gradients from the partial derivatives®®
(the chain rule is one of the most used). The idea that is presented in this subsection is to relax the discrete conditional
variables with continuous ones ranging from O to 1. After relaxation, if the standards variables x* are all continuous
(and the necessary conditions are met), gradient-based optimizers are usable. If discrete standard variables are present
(integer or categorical), mixed-integer programming techniques®” must be employed (this case is not treated here).

In this subsection, the non-hierarchical case where conditional variables are always active is treated. In the
following paragraphs, the consequences of the relaxation for the optimization variables, the constraint functions, the
coupling variables and the objective function are introduced. Note that * means that a quantity defined in the previous
subsection has been modified to fit the relaxation-based method.

Conditional variables: To relax a scalar conditional variable x* with p possible values a;, i € {1,..., p}, a method
to convert one discrete variable with a finite number of values into several binary ones®’ can be adapted: p continuous
scalar variables w,, varying in [0, 1] are defined (instead of p binary ones). They will play the role of the conditional
variable x* in the relaxed problem. At the convergence, to retrieve a solution with a physical meaning, they shall verify:

Viell,...,pl, wg = 041 11

where 6, is the Kronecker’s symbol (6, = 1 if X = a;, and is null otherwise). To verify this relationship at
convergence, the following constraints are imposed:

@)=Y wy—1=0 and w = [wal,...,wap] (12)

p
i=1

Vie{l,...,p}, ¢’(wg) =14+ cos(mRuw, + 1)) =0 (13)

The constraint (12) prevents the method to select several values of the same conditional variable. The constraint (13)
allows to retrieve binary values for the w,, to get a physical solution. The advantage of formulating constraint (13) with
a cosine is to stay in the continuous domain where an analytic gradient can be defined. The main drawback is that the
sinusoidal behavior makes it difficult to satisfy and can lead to numerical instabilities.

The case where x* has two possible values a; and a; is a particular case where the constraint (12) is imposed in
the definition of the relaxation variable: w = 0 if x* = a; and w = 1 if x* = a, (one variable and one constraint (13) are
added to the problem instead of two variables w,,, w,,, one constraint (12) and two constraints (13)).

This continuous encoding of the conditional variables can be applied to all the component of x* and allows to
deal with continuous quantities instead of discrete ones. Hence, the vector x* is removed from the problem and is
replaced by a vector w that gathers all the variables w defined before. The size of w is fixed and is named n,,. Let
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m, and m,, be the numbers of additional constraints (12) and (13) that have to be imposed. Thus, m, is the number of
conditional variables with strictly more than two possible values and m,, = n,, is the number of relaxed variables w that
are added to the problem to replace conditional variables. It can be seen that the relaxed problem will become quickly
over-constrained as the number of conditional variables grows.

Standard variables and targets: The new standard variables vector X° is the concatenated vector of all the possible
standard design variables. For example, assume that x* is one-dimensional (and x* € {aj,a»,a3}). Consider the
following situation:

(X =ay) = [x1, %], ng(x*=a)) =2

XX = az) = [x2, x4], ng(x* =az) =2 (14)

X(xX = a3) = [x3, x4, x5], n(xX*=az)=3

where n,(x*) = n.(x*) + n(x*) + ny(x*) is the number of standard variables. By applying the aforementioned method:
%= [xl’ X2, X3, X4, xS] > ﬁs =5 and w= [wap Wa,, wa3] > Ny = 3. (15)

In the case of the IDF architecture, the same process is applied to target coupling variables that may depend on
conditional variables in case the couplings are different from one architecture to another (see Figs. 1 and 3).

Constraints: Let ¢ : C — R be a generic scalar constraint function. Note that C can be any input sets defined
in Egs. (6) to (8). For conciseness, the potential dependencies on the standard design variables, the target and the
coupling variables are not shown. Let ¢(-) depend on a conditional variable x“. Assuming again that x is scalar (and
x“efa;, i € {1,..., p}}), the new constraint is defined as the weighted average of all the possible constraints c(-) with
respect to the weights w,:

P
é(w) = Zw“f c(xX=a)<0 and w = [a)al, e, wap] (16)
i=1
Several particular cases have to be discussed. In the case where a constraint c(-) is not impacted by any condi-
tional variable (in the work of Audet et al.,® those constraints are called "global"), the previous process is not necessary,
the constraint ¢(-) can be left unmodified. Furthermore, the constraint ¢(-) may not be active for certain values of x.
If this is the case, for instance for x“ = a,, the new constraint is constructed to be always satisfied when x* = a, by
imposing c(x“ = a,) = 0:
p-1
5(“))220% c(x*=a;) <0 and w:[a)al,..., wap] 17
i=1

Then, if x* has only two possible values a; or a;, the constraint becomes:

tw=(-wcx=a)+wc(x =ay) <0 (18)
Let c(-) depends a two-dimensional conditional variable x* = (x|, x5), where x| and xj have p; and p, possible
values noted {a;, i € {1,...,p1}}and {b;, i € {1,..., po}} respectively. The process is repeated:
&) = w{ Cw, (19)
where: w1 = [Wgy5 -5 Wa, 1, @2 = [Wp,, ..., wp, Jand Vi€ {1,...,pihVje{l,...,pa}, Cij = (X = [a;, b;]).

Finally, the method can be generalized to x* with any dimension.

Objective function and coupling variables: The coupling variables are treated exactly the same way as the con-
straints: all their possible values (with respect to the conditional variables) are averaged and weighted by the corre-
sponding relaxed variables w to define §. However, this part of the method might be problematic in a MDF frame on
particular applications. Indeed, in the case where a discipline uses a specific code (a computational fluid dynamics
solver for instance), the latter might be unable to deal with averaged coupling variables coming from the other disci-
plines, causing the MDA to fail. If this is the case, one MDA per conditional variable combination has to be performed,
limiting greatly the applicability of the method.

Concerning the objective function f(-), two cases are possible. If f(-) depends only on coupling variables y,
no further transformations are needed: the conditional dependencies have already been relaxed by definition of §.
If conditional dependencies remain, meaning that f(-) still depends on x* even after the relaxation of the coupling
variables, the same process explained earlier can be applied.
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Final formulation: The relaxed IDF formulation becomes:

minimize: f(w, %°, §(w, X, §))
with respect to: w, &°, §'
subject to: &(w, ¥’, J(w, X°, §)) <0
&i(wo, w;, X5, X, §wo, w;, X, X, §3.)) <0, i, je{l,....N} (20)
& = 9 - Vilwo, wi, K, X, §.) =0, i, je{l,....N}
¢ =0, kell,....mp)

=0, kefl,...,m,)

The relaxed MDF formulation is not reported here but is analog to the IDF, where the target variables and
the consistency constraints are removed. Using this method, the CSSP is relaxed into a mixed-variable nonlinear
programming problem. If the standard variables x® are continuous, the CSSP becomes a nonlinear programming
problem that can be solved by a gradient descent algorithm (if the models are differentiable), as illustrated in the
following sections.

4. Application case: optimization of a liquid rocket engine

To evaluate the method previously described, a LRE optimization with two conditional variables and three disci-
plines/subsystems (1: thrust chamber, 2: feed system and 3: regenerative cooling) is presented. The design problem is
the following: maximizing the specific impulse of an upper-stage turbopump-fed engine in vacuum for a given thrust
(the LE-5B engine?® is selected as baseline: T, = 137.3 kN). Two open cycles are considered: Expander Bleed (EB)
and Gas Generator (GG). The objective function is the specific impulse Iy, which, for an open cycle system, yields:

f(Y1,Y2) = Isp =1- X)Isp,main + Xlsp,sec 2D

where I, ;yqin and I, s are respectively the specific impulses of the main thrust chamber and of the secondary system
(the flow that goes through the turbines and is expanded in a secondary nozzle). X is the ratio between the secondary
mass flow rate and the total one.

The engine can have 4 different architectures that are illustrated on Fig. 2. Those engine configurations differ by
their cycle, EB or GG, and their number of turbines, 1 or 2. Hence, two conditional variables x* = [x{, x5] encapsulate
the choice of architecture among the four available. The first one x{ is the cycle’s choice and can take two values: GG
or EB. The second one xj is the number of turbines and also have two possible values: 1 or 2. Additionally three
physical constraints are considered: a 2000 kg maximum engine mass, a 1500 K maximum nozzle wall temperature at
the throat and a 800 K maximum temperature at the turbine inlet. This last constraint concerns only the GG because the
typical temperatures T reached at the turbine inlet for those cycles can be problematic for the turbine material. The
engine mass M,, is defined as the sum of the following masses: combustion chamber M¢¢, nozzle My, turbopump(s)
M,,, fuel tank M, ; and oxidizer tank M, ,. In the case of a GG architecture, the gas generator mass Mg is added. To
test efficiently the method, simplified models are considered (see appendix). In particular, in the regenerative cooling
system model, only the behavior at the throat (where the heat flux is the highest) is modeled. This is the reason why
the constraint on the nozzle wall temperature 7, is imposed at the throat. Furthermore, a friction model has not been
developed for the flow in the cooling channels: a constraint of 100 m/s on the coolant flow speed u; is added considering
that in realistic configurations, the speed of the coolant will be constrained by pressure losses in the channels. All the
constraints are gathered in Table 1. The problem also counts eight standard design variables x° (that are continuous),
and eight target variables (hence eight consistency constraints) in case of an IDF formulation. All the variables are
described in Table 1. One of the coupling variable (that becomes a target in IDF) is the fuel total temperature at the
turbine inlet 7 s computed by the cooling discipline. This coupling is only active when an EB is selected. In the case
of a GG, the turbine inlet temperature is the combustion temperature in the gas generator 7¢ and is directly computed
within the discipline feed system.

By applying the method described in the last section, the problem can be relaxed and two relaxation variables
are added: w relaxes the cycle choice x| (w; = 1 if an Expander Bleed is selected, w; = 0 otherwise), w, relaxes
the number of turbines x5 (w, = 1 if 2 turbines are selected, w, = 0 otherwise). Note that the constraint Eq. (12) is
already applied in the definition of the relaxation variables because both conditional variables have two possible values.
However, two additional constraints Eq. (13) are imposed:

¢ =1+ cos(muw; + 1)) = 0, ke{l,2} (22)
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Figure 2: Engine architectures depending on the 4 possible combinations of conditional variables
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T: Turbine
Fu: Fuel
© Ox: Oxidizer
TC: Thrust Chamber
SN: Secondary Nozzle

(b) Gas generator, 2 turbines (c) Expander bleed, 1 turbine

(d) Expander bleed, 2 turbines

Table 1: Composition of the standard design variables, target variables and design constraints vectors, their conditional
dependencies (the engine architecture on which they act) and their related discipline (1: thrust chamber, 2: feed system,

3: cooling) are highlighted

Design variables Description GG1' | GG2' | EB1' | EB2!
x5 = ( Pcc ) pressure in the combustion chamber O O O O
0~ OF¢c oxidizer/fuel ratio in the combustion chamber O O O O
OF ;o oxidizer/fuel ratio in the gas generator O O X X
X5 (x4) = PR pressure ratio in the turbine O X O X
2 PRy pressure ratio in the fuel turbine X O X O
PR, pressure ratio in the oxidizer turbine X O X O
< = ( h; ) height of the cooling channels at the throat O O O O
3 w; width of the cooling channels at the throat O O O O
Target variables’ Description GG1 | GG2 | EB1 | EB2
I;p‘main specific impulse of the main thrust chamber O O O O
T’C c combustion chamber temperature O O O O
Y, = D! throat diameter O O O O
e area ratio O O O O
ot characteristic velocity O O O O
. r'n'CC mass flow rate in the combustion chamber O O O O
Y2 = ( n, ) total fuel mass flow rate O O O O
¥y = T(’)’ ; fuel total temperature at the turbine inlet X X O O
Design constraints Description GG1 | GG2 | EB1 | EB2
co(x)) = M., — M maximum engine mass’ O O O O
o (xf) = T — TEE maximum temperature at the turbine inlet O O X X
o = ( Togr — Ty ) maximum nozzle wall temperature at the throat O O O O
3T U — Ul max maximum flow speed in the cooling channels O O O O

"' GGn: gas generator with n turbines, EBn: expander bleed with n turbines, O: acting, X: non-acting
2 relevant for the IDF formulation exclusively, one consistency constraint is associated to each target variable

3 the conditional dependency here shows that Mg has to be added or not to M,,, depending on Xy

5. Numerical results

This section presents the numerical results obtained for the LRE design problem with the four possible engine archi-
tectures (without conditional variables) in MDF, gas generator with one and two turbines (GG1 and GG2), expander
bleed with one and two turbines (EB1 and EB2) and the Relaxed CSSP (RCSSP) with MDF and IDF formulations.
The number of variables and constraints for each problem are summarised in Table 2.

The optimization algorithm used is the gradient-based algorithm PSQP from pyOptSparse.>> The models have
been built using the framework openMDAO?' which has been purposely designed to support gradient-based optimiza-
tion by efficiently computing the total derivatives of a multidisciplinary system. As gradient-descent methods provide
local optima, a multi-start method is employed to generate initial guesses that cover the design space. The initial points
are generated by performing a Design of Experiments (DoE) on the search domain defined by the design, the target



DOI: 10.13009/EUCASS2023-834

COMPARATIVE REVIEW OF MDAO ARCHITECTURES

)
o T D e T { Ty o] T Dy, ] Ty, M
s S

Functions Functions

f, co[c]es f,c,c3

(@) ¥ =GG (b) X =EB

Figure 3: Variable structure of the problem with two possible values of the cycle’s choice, the impacted component are
highlighted with the blue boxes (generated with pyXDSM>°)

Table 2: Number of optimization variables (standard, target, relaxation) and constraints (coupling, relaxation, design)

Number of design | Number of equality | Number of inequality

Problem variables (ns/n;/nw) constraints (m./my) constraints (i)
EB1 MDF 5 (5/0/0) 0 (0/0) 3
EB2 MDF 6 (6/0/0) 0 (0/0) 3
GGl1 MDF 6 (6/0/0) 0 (0/0) 4
GG2 MDF 7 (7/0/0) 0 (0/0) 4
MDF 10 (8/0/2) 2 (0/2) 4

RCSSP IDF 18 (8/8/2) 10 (8/2) 4

and the relaxation variables (18 parameters in total, see Table 2). In order to compare between the methods, the same
starting points are taken for each problem. The DoE is done with the latin hypercube sampling method, from the
toolbox SMT.'? Sometimes, a combination of initial values for the set of design variables leads to non-physical values
for some coupling variables y, crashing the numerical models. To ensure that the starting points are adapted to the
models, a Multidisciplinary Analysis (MDA) is performed on each start for the RCSSP. If the MDA fails to converge,
the associated point is removed from the batch of initial guesses.

The tolerance on the design and relaxation constraints’ satisfaction is set to 107> for all cases. The couplings’
satisfaction absolute tolerance is set to 10~® for the MDF cases because in that formulation, the couplings are supposed
to be satisfied at each optimization step to apply the chain rule.’ However, the consistency constraint tolerance
is set to 1073 for IDF because the number of optimization variables and constraints is higher, resulting in a more
complex optimization problem and thus is prone to a lower probability to find feasible points than MDF. Note that those
tolerances are not ideal to fairly compare MDF and IDF, the aim is rather to show that both coupled and decoupled
monolithic MDAO formulations can be employed.

Note that in the following, an iteration is an optimization step, and a disciplinary call is a step where the disci-
plines are given a set of inputs and return a set of outputs. Those two notions are equivalent in IDF because no MDA
is performed. In Table 3, the average performances of the six cases over 100 initial guesses are presented, as well as
their standard deviation. Solving the RCSSP requires more computational effort on average in terms of running time,
iterations (and disciplinary calls for the MDF case) with respect to each non-conditional problem. However, using the
relaxation method allows to solve them all at once instead of handling the four problems sequentially, saving compu-
tational resources. Furthermore, Tables 4 and 5 show that solving the RCSSP allows to retrieve an interesting solution
in terms of specific impulse, and more importantly, the best engine architecture is obtained: a gas generator with two
turbines (w; = 0, w, = 1, the additional constraints Eq. (22) are hence respected). Table 3 also presents the feasibility
rate of each problem. A feasible point is defined as a point where the optimizer converges locally and satisfies the
constraints. The feasibility rate shows that a GG architecture is better suited for the given mission whereas the EB has
difficulties verifying the constraints (especially in the one turbine case).

Table 5 also shows that a slightly better solution could have been found (representing a gain of 0.1 s of specific
impulse). This is confirmed by Table 4: GG2 and RCSSP in MDF and IDF do not converge on the same optimum.
Indeed, both MDAO formulations of the RCSSP have more optimization variables and constraints to handle (see Ta-
ble 2). Therefore, the design space of both RCSSPs are more complex to explore than GG2. Besides, the two sinusoidal
relaxation equality constraints (22) may generate numerous local optima. Increasing the number of initial guesses (and
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thus the computational effort) to better explore the design space could have solved this issue, but considering the slight
difference between the optimal values of the objectives, this solution has been discarded.

Table 3: Average algorithmic performances and standard deviations over 100 initial guesses

Problem Running time [s] Iterations [-] Disciplinary calls [-] Feasibility rate* [%]
EB1 MDF 54.78 (£ 25.70) 139 (= 76) 987 (+477) 20
EB2 MDF 67.84 (£ 28.64) 173 (= 89) 1074 (£ 484) 38
GG1 MDF 55.94 (£ 21.32) 157 (£ 55) 888 (= 299) 80
GG2 MDF 69.82 (« 31.15) 200 (+ 85) 1101 (« 449) 81
RCSSP MDF 93.91 (£ 90.76) 221 (= 196) 1380 (£ 1261) 47

IDF 75.95 (£ 58.59) 452 (= 377) 452 (£ 377) 25

“The feasibility rate expresses the convergence rate towards feasible points

Table 4: Optimal solution in terms of design and relaxation variables among 100 initial guesses

pcc OFcc OFgg PR PRy PR, h; \ wi wy

Problem [bar] [-] [-] [-] [-] [(] [mm] [mm] [-] [-]
EB1 MDF | 15.000 4.097 x  50.000 X X 60.000 1.000 X X
EB2 MDF | 17.106 4.090 X X 50.000 49.187 60.000 1.148 X X
GG1 MDF | 51.685 3908 0.811 50.000 X X 33.080 1.000 X X
GG2 MDF | 56.599 3.882 0.811 X 50.000 44.748 31.270 1.000 X X
RCSSP MDF | 54542 3.891 0.811 19.690 50.000 48.756 31.947 1.000 0.000 1.000
IDF 52.893 3.897 0.811 18342 50.000 50.000 32.500 1.000 0.000 1.000

Table 5: Optimal objective and constraints among 100 initial guesses

Problem ‘ Isp [S] Men [kg] ng,z [K] TGG [K] Uchan [HI/S]
EB1 MDF | 432.636 1646.863 1499.898 X 99.997
EB2 MDF | 439.754 1587.192 1499.997 X 99.987

GGl1 MDF | 461.284 1385.414 1499.683  800.000 99.983
GG2 MDF | 462443 1361.211 1498.564 800.000 99.998
RCSSP MDF | 462.356 1364.327 1499.999  799.999 99.999

IDF | 462263 1367.022 1499.636  799.999 99.998

On Fig. 4 and Fig. 5, the best solution of MDF for the RCSSP is taken, and IDF is ran on the same initial
point. The relaxed variables with respect to the iterations are represented on Fig. 4, showing that they need few
iterations to reach a integer value, hence confirming that the constraints (22) are satisfied. The objective function
I, is represented with respect to the disciplinary calls on Fig. 5. These figures (in parallel with Table 3) illustrate
the advantages and drawbacks of both MDAO formulations: in terms of disciplinary evaluations and running time, and
considering the tolerances on the coupling satisfaction, IDF is more efficient than MDF. Indeed, the MDA needs several
disciplinary calls before each iteration, which is not the case for IDF. Advanced techniques exist to increase the MDA’s
performances (for instance the Aitken’s relaxation?’ for a Gauss-Seidel algorithm or the recycling of the previous
coupling variables’ values to start the new MDA iterations), but have not been used in this study. However, IDF needs
more iterations because the method must satisfy eight additional equality constraints (the consistency constraints).
Those additional constraints explain as well the lower feasibility rate in IDF.

On that case study, the relaxation-based approach performs well. Indeed, instead of solving four combinatorial
problems, the MDF formulation of the method allows to retrieve the best architecture with a smaller computational
cost: on average, a total of 669 iterations (and 4050 disciplinary calls) per starting point are required in the first case,
whereas 221 iterations (and 1380 calls) per starting point are required for the second one. The performances of IDF
show that a decoupled approach is also suitable to solve the design problem efficiently.
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Figure 4: Relaxed variables with respect to the iterations, MDF and IDF starting from the same point

o0 . "'" -
460 1 | e
S B AN ey

455 4 -# *'s,,,,,‘\h\_,
@ as0{ | | ‘
= |
&

445 A v ‘

[ « feasible points
4401 ‘ ~—— MDF
435 t — IDF
0 200 400 600 800

Disciplinary calls

Figure 5: Specific impulse with respect to the disciplinary calls, MDF and IDF starting from the same point

6. Conclusion

In this paper, a mathematical formulation which links Multidisciplinary Design Analysis and Optimization (MDAO)
framework to Conditional Search-Space Problems (CSSP) is proposed. Moreover, a relaxation-based method has been
presented. It allows to convert a certain class of CSSP into a classical MDAO problem.

The relaxation-based method has several advantages. If the standard variables are continuous, the problem can
be solved with gradient-based algorithms under the necessary hypotheses of continuity and differentiability, as shown
by the application case in Section 5. If discrete standard variables (integer or categorical) are also part of the problem,
the method relaxes the CSSP into a mixed-integer nonlinear programming problem (MINLP). To push the analysis
further, it would be interesting to evaluate the performances of classical MINLP techniques on the relaxed problem.
The combinatorial of the problem has also been reduced: in the presented application case, a single problem is solved
instead of one per engine architecture, resulting in an increased computational efficiency.

However, the main drawback of the method is its scalability. Indeed, adding additional constraints to ensure the
consistency of the solution at convergence and handling all the possible variables and constraints at once is a burden.
Firstly, if the number of conditional variables increases (or their number of possible values), the relaxed version of the
problem may quickly become over-constrained, complexifying the solution process. Secondly, the additional equality
constraints may generates a high-number of local minima: finding a global solution becomes hence more difficult.
Then, the method might be inapplicable to particular cases where the codes are not flexible enough to handle averaged
coupling variables. Another potential drawback that has not been studied in this paper is the impact of introducing a
metric and an order over the values of the conditional variables. Indeed, the two categories Expander Bleed (EB) and
Gas Generator (GG) of the cycle’s choice variable are not ordered, and no distance between the two can be defined. The
choice has been made to associate w; = 0 to GG and w; = 1 to EB, imposing implicitly that EB > GG and making the
definition of a relative distance possible, but the impact of this choice has not been evaluated. Finally, the method does
not allow to eliminate the poorly-performing combinations of conditional variables. For instance, an expander bleed
engine is not physically adapted to provide a high thrust at sea level. Running the same method on this application

12
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case leads to numerical issues. Indeed, the expander bleed models are still used to compute outputs even if they are not
selected by the relaxed variables, causing, for instance, the multidisciplinary analysis algorithm to crash in the MDF
formulation.

Finally, both the coupled MDAO formulation (Multidisciplinary Feasible or MDF) and the decoupled one (Indi-
vidual Discipline Feasible or IDF) have advantages and drawbacks with respect to each other, which does not allow to
highlight a better suited formulation for CSSP in the frame of the analysis performed in this paper.

In following works, alternative approaches will be investigated. The most promising option is to build a de-
composition based methodology, where the optimization effort is partitioned among several coordinated optimization
subproblems. It already exists in the field of MDAO: those formulations are called distributed architectures®® and the
subproblems are generally defined by the disciplines (or subsystems) of the global design problem. The goal would be
to adapt it to a CSSP framework to understand if a disciplinary-based decomposition is the most suitable choice, or if
another decomposition shall be considered (for instance with respect to conditional variables).
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Appendix: component modeling and validation

7.1 Component modeling

This subsection briefly presents the key details of the models used for the engine’s numerical simulation. The majority
of them have been built based on Sutton and Biblarz’s book.*’

Several components of the model are surrogate models built using kriging models from the toolbox SMT.!2 The
advantage of kriging models is the availability of their analytical gradient in order to use gradient-based optimizers.

Thrust chamber and combustion properties: The combustion properties in the combustion chamber and in the
gas generator are evaluated by a surrogate model of NASA’s software CEA.!” The characteristic length of those two
chambers is taken as L* = 1m. The characteristic velocity and thrust coefficient efficiencies are defined as: 7. = 0.97
and 1., = 0.98. In case of a GG, the pressure inside the gas generator pgg is considered equal to the main combustion
chamber pressure pcc.

Cooling system: The regenerative cooling model is based on a thermal equilibrium at the throat between the burnt
gases and the coolant (which is the LH2 in this problem). If the contrary is not mentioned, all the quantities discussed
here are computed at the throat. The gas and the coolant properties (heat capacity, viscosity, efc) are estimated with
surrogate models built on data from CEA' and from the library CoolProp® respectively. The convective coefficients
are computed using Bartz’s correlation*” for the gas side and the Dittus-Boelter correlation®! for the coolant side. The
wall temperature can then be retrieved by computing successively the total convective coefficient in the wall and the
heat flux. The latter is integrated on the nozzle surface and on the full thrust chamber surface (nozzle and combustion
chamber) to obtain the coolant total temperatures at the throat and at the exit of the cooling system respectively,
assuming a temperature of 20 K in the tank. As the maximum heat flux on the engine is found at the throat, the wall
temperature constraint 7,/ mqx = 1500K is considered there. The coolant total temperature can be fed back to the
computation of the wall temperature and the estimation of the coolant properties using the CoolProp surrogate model.
Hence, an iterative process (Gauss-Seidel in this work) is necessary to perform the disciplinary analysis. In terms of
dimensions, the inter-channel thickness is 1mm and the wall thickness is 0.5mm.

Feed system: The feed system model is inspired from the work of Leonardi et al.® (even if the engine architectures
are different). The central point of the models are the balance equations for 1 (Eq. (23)) and 2 turbines (Eq. (24)).

Ap A
mtot,f ! + mtot,oﬁ = mturbCpTinnt[] - PR((]_y)/y)] (23)
Np.fPf NMp.oPo
. Ap . - . Ap ) _
itgor,f——— = ity g, Tontie 11 — PRI] and sitoro——— = tityoCp Tuiol1 = PRG 7] (24)
Mp.fPf Mp.0Po

o, p and 1, , are the total oxidizer and fuel mass flow rates. 7, is the mass flow rate derived in the turbine(s).
In the two-turbines case: 7, = iy r + Wb, Which are the mass flow rates in the fuel and oxidizer turbines.
Note that c,, Ti, and y (heat capacity at constant pressure, inlet temperature, heat capacity ratio) are dependent on the
cycle choice. In the GG case, they are computed by evaluating the properties of the burnt gases by the feed system
discipline. In the EB case, they are the coolant properties at the cooling system exit and are computed by the cooling
discipline. The losses are assumed proportional to the chamber pressure: Ap = apcc, with a a real number depending
on the propellant path from the pump outlet to the chamber. On the fuel side, ay = 1.45 is considered, on the oxidizer
side, a, = 1.3. The pump and turbine efficiencies are assumed constant: 1,, = 1, = 0.7, 5, = 0.4, n,, = 0.4 and
Ny = 0.6. The densities in the tank for the fuel (H,) and the oxidizer (O,) are respectively p; = 70.99kg/m? and
po = 1143kg/m>. Finally, the shaft rotational speeds are assumed constant and equal to the LE-5B design point.2® If
their are two turbines: N,y = 52120rpm and N,, = 17630rpm. If there is only one turbine the rotational speed is:
N, = 17630rpm. Fractions of mass flow rates can be defined X = 71,1,/ (i + 1i1,,) and X, = i, , /7,3, The second one
is exclusive to the two-turbines case and is useful to compute the secondary specific impulse /), .. Finally, X and X;
can be derived analytically from those equations.

Mass models: The mass models have been taken from the literature.2*° The nozzle is considered as conical and
1cm thick. The thrust chamber is made of steel and the tanks are made of aluminum.
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7.2 Validation

The models earlier described are validated in this subsection on the design point of the Vulcain 2 engine* at sea level.
The design variables’ value are given on Table 6 and Table 7 shows the computed quantities of interest with respect to
data. The quantities of interests are chosen to be representative of the three disciplines (thrust chamber, feed system
and cooling) and are added to Table 7 if trustworthy data are available. All the data are taken from the literature, the
associated reference is given for each value that is presented. Additional data that are not reported here for conciseness
were required to run the models (the turbines efficiencies for instance). They can be found in the references given in
this subsection.

Table 6: Validation point

Quantity pcc® [bar]  OFcc'' [ OFg™ [ PRSIl PR [-L A2 [mm] w,™ [mm]
Value 116 6.1 0.9 15.5 12 11 1.3

Table 7: Computed quantities versus data for the Vulcain 2 engine

Quantity | Unit | Description | Computed value | Data | Relative error [%]
General performances
Lp s> | [s1 | specific impulse at sea level \ 329 | 320 | 2.8
Thrust chamber
D/* [m] throat diameter 0.265 0.274 3.3
€2 [-] area ratio 59 60 1.7
T K] combustion chamber temperature 3555 3500 1.6
Feed system
g2 [kg/s] | mass flow rate in the GG 10.5 9.7 8.2
Tilgor, f“ [kg/s] | fuel mass flow rate 45 45 0
rhm,j [kg/s] | oxidizer mass flow rate 246 274 10.2
Toc? K] temperature in the GG 884 845 4.6
X712 (%] see subsection 7.1 3.6 3.0 20
x, 122 [%] see subsection 7.1 33.1 37.1 10.8
Cooling

Neranneis® | [-] number of cooling channels 364.97 350 4.3
AT(),MO,SO [-] coolant temperature rise 155 88 76.1

Table 7 shows that the models are estimating the quantities of interest with a fair precision. The highest error is
made on the total temperature rise in the cooling channels. Two factors are responsible. First, the heat flux computed
by the cooling system discipline is evaluated at the throat, where the maximum occurs. As it is assumed constant on
the whole engine, the temperatures at the throat and at the exit of the system are over estimated. Moreover, in those
models, the cooling channels are assumed to cover the full nozzle: it is not the case for the Vulcain 2, for which only
a portion of the nozzle is cooled. Then, the number of cooling channels is not an integer in our models. It has been
relaxed into a continuous variable to simplify the design problem.

Two main improvements can be made regarding those models. The first one is a better regenerative cooling
model, implementing for instance equations to model the flow inside the cooling channels. The second one is an accu-
rate model of the feed system where pressure losses are accounted for, as well as the turbines and pumps efficiencies.
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