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Abstract
This paper investigates a new H∞ interval filter design methodology and presents an innovative applica-
tion of the filter developed to estimate satellite true attitude state for navigation units in space missions.
The key element of the proposed approach is to use an interval filter structure advantage, rather than an
observer-based structure (relying only on a system dynamics structure). Indeed, the interval filter design
is an emerging research field, the design problem is formulated as an arbitrary order generic state-space
realization. Thus, such state-space realization offers more degrees of freedom in its design, since it relies
on a synthesis which is solved on an order which can be inferior, superior or equal to the system state space
order, improving the interval state estimation performance, in a H∞-gain criterion sense. The H∞ theory
is used to enhance robustness against sensor misalignment errors, noises unknown inputs and disturbances
for satellite missions application.

1. Introduction

For spacecraft and satellite systems, state variable estimation is a key approach for controller implementation and
fault detection. This issue is generally addressed using estimation algorithms integrated in the navigation module.
The interval estimation method, which aims to reliably estimate the upper and lower bounds of system state, has
acquired a significant attention over the last two decades. Based on monotone system theory to obtain the cooperativity
property on the dynamics of observation errors;9, 14 or based on reachable set prediction/correction to build compact
convex sets,19, 21 the interval-based observer or filter can be a potential solution to to estimate state for spacecraft and
satellite systems control.16 Considering the approach based on monotone system theory which is under the scope of
the paper, the interval estimation method relies on a gain-performance criterion of a transfer function from unknown
input, uncertainty, noise or disturbance to estimation error bounds, based on a given norm sense. The challenge is to
obtain the cooperativity property of the estimator to guarantee upper and lower bounds of system state and to satisfy
the performance criterion a priori by solving Linear Matrix Inequalities (LMI) to obtain thin width interval estimation.
Some recent works propose interval estimator design methodologies in that context. In the work,4 the authors consider
an H∞ criterion for interval observer design coupled with D-stability. The solution5 proposed is formulated as a Semi-
Definite Positive (SDP) problem to be solved, which allows joining L2/L∞ performance gain criterion for a Linear
Parameter Varying (LPV) systems. A conservative aspect of the above-mentioned works is related to the observer
structure and state space dimension limitation in which the estimator design problem is solved. Indeed, the design of
the interval observer structure is based on the system state dynamics structure, which limits the ability to satisfy both
estimator cooperativity property and the performance criterion through LMI solving. Filter design approach could be
introduced to overcome such restriction. Indeed, in the literature, robust H∞ and H2 filter design approach has received
considerable attention in estimation and control theory2, 3, 7, 8 for Linear Time Invariant (LTI) systems. Although, at
the best of the author’s knowledge, the filter design in an interval context has not been explored and remains an open
problem.
In this paper, the main contributions are twofold. First, a novel approach to design a state estimation theory inspired by
a state-space realization of an interval filter has been proposed. In comparison with classical filter design approaches
for LTI systems, the interval filter design for uncertain LTI systems needs to solve a non-convex problem (caused by
functions used to guarantee upper and lower bounds of the state), which is NP-hard to solve. The introduction of slack
matrices as described in works1, 11, 12 allowed to reduce the conservatism for the problem to be solved and to linearize
a part of the non-convex problem. Secondly, the application of the robust interval filter technique to the guaranteed
estimation of attitude angles of the satellite for an implementation into the navigation unit of the guidance, navigation,
and control/attitude and orbit control systems of a satellite. The proposed approach exploits the closed-loop system
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augmented by the satellite controller and the introduction of slack matrices for matrix inequalities solving purpose
and approach conservatism reduction. The interval filter problem is formulated as an arbitrary order generic state-
space realization. Thus, such state-space realization offers more degrees of freedom in its design, since it relies on
a synthesis which is solved on a state space order which can be inferior, superior or equal to the system state space
order. The H∞ theory is used to enhance robustness against sensor misalignment errors, noises and other unknown
input or disturbance experienced during satellite missions application. Here, it is shown that the design of the interval
filter can be formulated as an optimization problem under linear and bilinear matrix inequalities (BMI) constraints,
that can be solved using BMI solvers like PENLAB. Results obtained from the functional engineering simulator (FES)
demonstrate the pertinence of the proposed approach.
This paper is structured as follows. In Section 2, some preliminaries including definitions and lemmas are provided.
Section 3 discusses the satellite mission and considers modeling issues. The problem statement is presented in Section
4. The main results of designing the interval filter to a satellite mission is presented in Section 5 and 6. Section 7
is devoted to results obtained from the satellite mission simulator. Finally, some concluding remarks are reported in
Section 8.

2. Preliminaries

The sets of real is denoted as R, In represents the n × n dimension identity matrix and 0p×m denotes a p ×m dimension
matrix with all zero elements. The matrix transpose and the pseudo-inverse of a matrix M are denoted as Mt, M†,
respectively. The comparison operators ≥, >,≤ and < on vectors and matrices are understood elementwise. For a
matrix M, we denote M+ = max(M, 0) and M− = M+ − M (the same notations are adopted for vectors). A diagonal-
block matrix composed of the elements of M is denoted diag(M). For a real-valued matrix P ∈ Rn×n, P ≻ 0 (P ≺ 0)
indicates that P is strictly positive (negative) definite. Ga→b denotes the transfer function from the input a to the output
b. For a linear transfer G, its H∞ norm is denoted ||G||∞ = sup

ω∈R
σ(G( jω)) ≤ ∞ , where σ(.) refers to the maximum

singular value. Given a vector x and two vectors x, x ∈ Rm,
[
x, x

]
denote an interval subset of Rm, where x and x stand

respectively for its lower and upper bounds such as x ≤ x ≤ x.

Definition 1 17 Let be a square matrix W whose elements satisfy wi j ≤ 0,∀i , j and wi j > 0,∀i = j then W is said to
be an M-matrix if W−1 exists and W−1 ≥ 0.

Lemma 1 5 Consider a matrix A ∈ Rn×n, an invertible M-matrix W ∈ Rm×n and a real scalar µ ≥ 0. Then A is a
Metzler matrix if WA + µW ≥ 0.

Lemma 2 1 Consider a transfer function G with the state space realization (A, B,C,D). Then ||G||∞ ≤ γ, if there exist
auxiliary matrices W,Z, J,M and symmetric matrix P = Pt of adequate dimensions, satisfying the following LMIs

P = Pt ≻ 0, (1)
0 P 0 0
P 0 0 C

t

0 0 −I D
t

0 C D −γI

︸                  ︷︷                  ︸
Ω

+


−W WA WB 0
−Z ZA ZB 0
−J JA JB 0
−M MA MB 0

︸                      ︷︷                      ︸
Υ

+Υt ≺ 0. (2)

Lemma 3 Given matrices A ∈ Rm×n and B ∈ Rr×m, let define some matrices Bk ∈ Rr×m, k ∈ {a, b} such that B = Ba−Bb,
with Ba, Bb ≥ 0 and a vector x ∈ [x, x] ∈ Rn. Since matrices A and B are constant, then

(BaA+ + BbA−)x − (BaA− + BbA+)x ≤ BAx ≤ (BaA+ + BbA−)x − (BaA− + BbA+)x (3)

Proof 1 Note that

BAx = (Ba − Bb)(A+ − A−)x = (BaA+ − BaA− − BbA+ + BbA−)x, (4)

which for x ≤ x ≤ x gives

BaA+x − BaA−x − BbA+x + BbA−x ≤ BAx ≤ BaA+x − BaA−x − BbA+x + BbA−x (5)

equivalent to the required inequalities (3).

2

DOI: 10.13009/EUCASS2023-309



AN ARBITRARY ORDER H∞ INTERVAL FILTER

3. The satellite mission

For reasons of brevity, we will attempt to avoid repeating the technical background presented in the work.10 To this
end, the focus of this section will lie wholly with the model given by Eqs. (6a)-(6b) and we invite the reader to refer to
previous mentioned work10 for further details.
The application support is inspired by the Microscope satellite mission.13 The satellite combines simultaneously a
rotational motion ωo around the Earth on a sun-synchronous, quasi-circular dawn-dusk orbit, while performing simul-
taneously a rotation around its y-axis ωs, see Figure 1 and the works.10, 13, 18 The tracking of the trajectory is ensured
by a AACS (Attitude and Acceleration Control System), whose schematic structure is illustrated in Figure 1. The
references are set to ’0’, which means that the satellite is enforced to ensure its rotation around Earth at velocity ωo

while spinning at ωs around its y-axis. The avionics is assumed to be composed of a µASC (micro Advanced Stellar
Compass) and the SAGE (Space Accelerometer for Gravitation Experimentation) system, that provide noisy measure-
ments of the attitude Θ = [ϕ θ ψ]t ∈ R3 and both the angular accelerations ω̇ = [ ṗ q̇ ṙ]t ∈ R3 and linear acceleration
Γ = [Γx Γy Γz]t ∈ R3. We also denote Θm, ω̇m and Γm respectively with the index "m" associated for the measured
variables. The navigation unit is in charge of providing an estimate of the linear acceleration Γ (role of the hybridation
filter), the lower and upper bounds Θ,Θ ∈ R3 of the true attitude Θ (role of the H∞ interval filter), and an estimate Θ̂
of the attitude, derived by means of a l1-optimal fusion rule (role of the fusion algorithm). The control is ensured by a
6DOF controller that delivers the 3-dimension force Fc ∈ R3 and torque Cc ∈ R3, that are then converted to thrusters
firing TC ∈ R12 by means of the thrusters management unit.

Figure 1: AACS and avionics architecture

The satellite mission is implemented into a functional engineering simulator (FES), which includes highly represen-
tative models of sensors (misalignment errors, non Gaussian noises...) and actuators (including dead-zone, Minimum
Impulse Bit effect...), and Dynamics Kinematics and Environment models. The environment modules contain the spa-
tial disturbances such as the magnetic field, the aerodynamic drag, the gravitational disturbances, the solar and the
albedo radiations. The interested reader can refer to the work10 to get a complete description of all models described
in Figure 1.

4. Problem statement

The satellite attitude dynamics can be modelled as the following linear time invariant model:
ẋ(t) = Ax(t) + Bu(t) + Ew(t) (6a)
y(t) = Cx(t) + Fw(t) (6b)
z(t) = T x(t) (6c)

where A ∈ Rn×n, B ∈ Rn×nu , E ∈ Rn×nw , C ∈ Rny×n, F ∈ Rny×nw and T ∈ Rnz×n, with n = 6, nu = 3 and ny = 3.
x = (ϕ θ ψ p q r)t, u = Cc, y = Θm and z = (ϕ θ ψ)t are the state vector, the torque command delivered by the control
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unit, the attitude angles delivered by the µASC sensor, and the signals to be estimated, respectively. w ∈ Rnw with
nw = 6, refer to the spatial disturbances given in torques, and the sensor misalignment errors and noises. The initial
condition x(0) and the unknown input w(t) are bounded with a priori known bounds i.e. for w(t),w(t) ∈ Rnw and
x(0), x(0) ∈ Rn, we have w(t) ∈

[
w(t),w(t)

]
, ∀t ∈ R+ and x(0) ∈

[
x(0), x(0)

]
.

The 3DOF controller that delivers the three-dimensional torque Cc, admits the following state space representation

{
ẋk(t) = AK xk(t) − BKy(t) (7a)
u(t) = CK xk(t) − DKy(t) (7b)

where xk ∈ Rnk .
Therefore, the closed-loop system augmented by the controller is governed by


ẋ(t) = (A − BDKC)x(t) + BCK xk(t) + (E − BDK F)w(t) (8a)
ẋk(t) = AK xk(t) − BKCx(t) − BK Fw(t) (8b)
y(t) = Cx(t) + Fw(t) (8c)
z(t) = T x(t) (8d)

Let now consider the interval filter for the system (8a)-(8d)



ṡ f (t) = AF s f (t) + (BF1 − BF)y(t) + ϵ1(z, z,w,w) (9a)
ṡ f (t) = AF s f (t) + (BF − BF2 )y(t) + ϵ2(z, z,w,w) (9b)
ẋ f (t) = AF x f (t) + MFu(t) + BFy(t) (9c)
x f (t) = s f (t) + x f (t) (9d)
x f (t) = x f (t) − s f (t) (9e)
z(t) = CF1 x f (t) + DFy(t) + η1(x f , x f ,w,w) (9f)
z(t) = CF2 x f (t) + DFy(t) + η

2
(x f , x f ,w,w) (9g)

Here, the dynamics of the filter states s f (t), s f (t) ∈ R
n f are supposed to satisfy the cooperativity property, i.e s f (t), s f (t) ≥

0,∀t ≥ 0, under initial conditions given by s f (0), s f (0) ≥ 0. Then x f (t), x f (t) ∈ Rn f denote the upper and lower
bounds of the state x f (t) satisfying the inequality x f (t) ≤ x f (t) ≤ x f (t), ∀t ≥ 0, under initial conditions given by
x f (0) ≤ x f (0) ≤ x f (0). Vectors z(t), z(t) ∈ Rnz are the filter outputs that theoretically guarantee that the true vector Θ(t)
belongs to the interval [z(t), z(t)]. The objective is to determine the matrices AF , BF ,MF , BFi ,CFi and DF of adequate di-
mensions, with i ∈ {1, 2}, and the functions ϵ1, ϵ2 : Rnz×Rnz×Rnw×Rnw → Rn f and η1, η2

: Rn f ×Rn f ×Rnw×Rnw → Rnz ,
so that the propagation effect of the vectors w(t),w(t) and w(t) on the estimation error length defined as ẽz(t) = z(t)−z(t)
is minimized, in the H∞ norm criterion sense.

Assumption 1 The dimension of the interval filter state, here s f (t) and s f (t) ∈ Rn f , is arbitrary such as n f , n or
n f = n.

Assumption 2 The matrix T ∈ Rnz×n, with the dimension nz ≤ n, has linearly independent rows such that right
pseudo-inverse of matrix T exists and satisfies DFCT † = Inz .

Remark 1 In the case where nz = n, the matrix T is supposed to be invertible and satisfies DFCT−1 = Inz .

5. Design of an H∞ interval filter

5.1 Necessary and sufficient conditions

The following theorem gives the existence conditions for interval filter (9a)-(9g). Hereafter, the time dependence of
signals is omitted to improve the presentation clarity, when it is possible.
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Theorem 1 Under assumptions 1-2, the state z(t) of the stable system (8a)-(8d) is bounded by z, z defined in Eqs.
(9f)-(9g) of interval filter (9a)-(9g) such that

z(t) ≤ z(t) ≤ z(t), ∀t ≥ 0 (10)

iff the following conditions hold

1. There exists a matrix AF such that
AF is Metzler. (11)

2. There exists some matrices CFi , i ∈ {1, 2} and DF such that

CFi ≥ 0, (12a)

DFCT † = Inz . (12b)

3. Some functions ϵ1, ϵ2, η1, η2
exist satisfying

ϵ1(z, z,w,w) − ϵ1(z,w) ≥ 0, (13a)

ϵ2(z,w) − ϵ2(z, z,w,w) ≥ 0, (13b)

η1(x f , x f ,w,w) − η1(x f ,w) ≥ 0, (13c)

η2(x f ,w) − η
2
(x f , x f ,w,w) ≥ 0, (13d)

where

ϵi(z,w) = RiYz + RiS w, (14a)
ηi(x f ,w) = CFi (−In f )x f + DF(−F)w, (14b)

with Ri =
[

BFi BF

]
, Y =

[
−CT † CT †

]t
, S =

[
−F F

]t
and i ∈ {1, 2}.

4. The initial conditions for s f , s f , x f , x f and x f are given by

s f (0), s f (0) ≥ 0, (15)

x f (0) ≤ x f (0) ≤ x f (0), (16)

such that

s f (t), s f (t) ≥ 0, (17)

x f (t) ≤ x f (t) ≤ x f (t), ∀t ≥ 0. (18)

Proof 2 Consider the relation x = T †z and the functions ϵi(z,w) , ηi(x f ,w) in Eqs. (14a)-(14b). The dynamics of states
s f (t) and s f (t) are given by

ṡ f (t) = AF s f (t) + ϵ1(z, z,w,w) − ϵ1(z,w), (19a)

ṡ f (t) = AF s f (t) + ϵ2(z,w) − ϵ2(z, z,w,w). (19b)

Under the Metzler property (11), the condition (13a)-(13b), and the initial conditions (15), it can be ensured that
(19a)-(19b) satisfies the cooperativity property and consequently

s f (t), s f (t) ≥ 0,∀t ≥ 0. (20)

From the Eqs. (9d)-(9e), the initial conditions (16), and considering that the cooperativity property (20) is satisfied, it
can be directly deduced that x f (t) and x f (t) satisfy

x f (t) ≤ x f (t) ≤ x f (t), ∀t ≥ 0. (21)
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By combining x(t) = T †z(t), (8c) and (9d)-(9e), it can be inferred that

z = CF1 s f +CF1 x f + DFCT †z + DF Fw + η1(·) (22a)

z = CF2 x f −CF2 s f + DFCT †z + DF Fw + η
2
(·). (22b)

Under the constraint of equality (12b), then

z − z = CF1 s f + η1(·) − (−CF1 x f − DF Fw) (23a)
z − z = CF2 s f + (−CF2 x f − DF Fw) − η

2
(·). (23b)

Finally, under the matrix constraints (12a), the conditions (13c)-(13d), (14b), and if (17) and (18) are satisfied, the
existence of an interval filter for the system (8a)-(8d) is fulfilled. This implies that the bounds z, z defined in (9f)-(9g)
satisfy the inequality z(t) ≤ z(t) ≤ z(t), ∀t ≥ 0, concluding the proof.

5.2 Determination of functions ϵ1, ϵ2, η1 and η
2

The upper and lower bounds for functions (14a) and (14b), satisfying (13a)-(13d) are now addressed. Let each unknown
filter matrix BF , BFi ,CFi and DF , i ∈ {1, 2} in (9a)-(9g) be decomposed into two positive (non unique) matrices such
that

KFi = KFia − KFib , (24a)
XF = XFa − XFb , (24b)

where KFia ,KFib ≥ 0 with KFi ∈ {BFi ,CFi }, and XFa ,XFb ≥ 0 with XF ∈ {BF ,DF}. Then the following decomposition
for the matrix Ri for (14a) is also considered

Ri = Ria − Rib, (25)

where Ria =
[

BFi a BF a

]
and Rib =

[
BFi b BF b

]
, such that BFi a, BFi b, BF a, BF b ≥ 0.

On the obtained expression, the functions ϵ1, ϵ2 : Rnz ×Rnz ×Rnw ×Rnw → Rn f and η1, η2
: Rn f ×Rn f ×Rnw ×Rnw → Rnz

are given by the following Lemma.

Lemma 4 Let consider decompositions (24a)-(25) for (14a) and (24a)-(24b) for (14b). Then, for x f ∈
[
x f , x f

]
and

z ∈
[
z, z

]
, the inequalities (13a)-(13d) of Theorem 1 holds with

ϵ1(z, z,w,w) = Σ11z − Σ12z + Ψ11w − Ψ12w, (26a)

ϵ2(z, z,w,w) = Σ21z − Σ22z + Ψ21w − Ψ22w, (26b)

η1(x f , x f ,w,w) = Ξ11x f − Ξ12x f + Π11w − Π12w, (26c)

η
2
(x f , x f ,w,w) = Ξ21x f − Ξ22x f + Π11w − Π12w, (26d)

where

Σi1 = RiaY+ + RibY−, Ξi1 = CF ib(−In f )
−,

Σi2 = RiaY− + RibY+, Ξi2 = CF ia(−In f )
−,

Ψi1 = RiaS + + RibS −, Π11 = DF a(−F)+ + DF b(−F)−,
Ψi2 = RiaS − + RibS +, Π12 = DF a(−F)− + DF b(−F)+,

with i ∈ {1, 2}.

Proof 3 A direct application of Lemma 3 and decompositions (24a) - (25) on the different parts of the equations (14a)-
(14b), leads to upper bounds ϵ1, η1 of the elements ϵ1, η1 and the lower bounds ϵ2, η2

of the elements ϵ2, η2 defined in
Eqs. (26a)-(26d).
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6. Synthesis of the H∞ interval filter

This section presents the SDP formulation based on the H∞-norm criterion to design the interval filter for its application
to the problem of interval estimation of satellite attitude angles.

Based on Lemma 4, the interval filter introduced in Eqs (9a)-(9g) can be rewritten as follows

ṡ f (t) = AF s f (t) + (BF1 − BF)y(t) + Σ11z f − Σ12z f + Ψ11w − Ψ12w, (27)

ṡ f (t) = AF s f (t) + (BF − BF2 )y(t) + Σ21z f − Σ22z f + Ψ21w − Ψ22w, (28)

ẋ f (t) = AF x f (t) + MFu(t) + BFy(t), (29)
z f (t) = CF1 (s f (t) + x f (t)) + DFy(t) + Ξ11x f − Ξ12x f + Π11w − Π12w, (30)

z f (t) = CF2 (x f (t) − s f (t)) + DFy(t) + Ξ21x f − Ξ22x f + Π11w − Π12w. (31)

Now, by replacing the expressions of u(t), y(t), x f (t), x f (t), z f (t), z f (t) from (7b), (8c),(9d)-(9g) in (27)-(29), and consid-

ering the augmented state and input vector x̂ =
(
xt xt

k xt
f s f

t s f
t
)t

, ω =
(
wt wt wt

)t
respectively, the following

extended state model is proposed ( ˙̂x
ẽz

)
=

[
A B
C D

] (
x̂
ω

)
, (32)

where A, B,C and D are given by

A =


(A − BDKC) BCK 0
−BKC AK 0

(BF − MF DK)C MFCK AF

(BF1 − BF + Σ11DF − Σ12DF)C 0 Σ11(CF1 + Ξ11 − Ξ12) − Σ12(CF2 + Ξ21 − Ξ22)
(BF − BF2 + Σ21DF − Σ22DF)C 0 Σ21(CF2 + Ξ21 − Ξ22) − Σ22(CF1 + Ξ11 − Ξ12)

...

...

0 0
0 0
0 0

AF + Σ11(CF1 + Ξ11) + Σ12Ξ22 Σ11Ξ12 + Σ12(CF2 + Ξ21)
−(Σ21Ξ22 + Σ22CF1 + Σ22Ξ11) AF − Σ21CF2 − Σ21Ξ21 − Σ22Ξ12

 , (33)

B =


(E − BDK F) 0 0
−BK F 0 0

(BF − MF DK)F 0 0
(BF1 − BF + Σ11DF − Σ12DF)F (Σ11Π11 + Σ12Π12 + Ψ11) −(Σ11Π12 + Σ12Π11 + Ψ12)
(BF − BF2 + Σ21DF − Σ22DF)F −(Σ21Π12 + Σ22Π11 + Ψ22) (Σ21Π11 + Σ22Π12 + Ψ21)

 , (34)

C =
[

0 0 (CF1 − Ξ12 + Ξ11 −CF2 − Ξ21 + Ξ22) (CF1 + Ξ11 + Ξ22) (Ξ12 + Ξ21 +CF2 )
]
, (35)

D =
[

0 (Π11 + Π12) −(Π12 + Π11)
]
. (36)

Here, the objective of the contribution is to minimize the influence of input ω on interval width ẽz in the sense of a
H∞-norm criterion and in such a way that filter error state space (32) is asymptotically stable. Lemma 2 fulfills this
specification, however, due to the multiplicative relationships between the slack matrices and the filter matrices, this
lemma is not directly applicable to the filter design. The filter design is therefore a non-convex problem of infinite
dimensions, i.e NP-hard problem to solve. The Lyapunov function V(x̂) = x̂tPx̂ guarantees the asymptotic stability of
the system (32). As outlined in the work,1 the Lyapunov matrix P has no multiplication relation with the state space
matrices (32) and auxiliary matrices, so it can be easily considered as a decision variable. However, by imposing a
special structure on the auxiliary variables, we can formulate the design problem in an LMI and BMI to solve. Let
consider slacks matrices W,Z ∈ R(n+nk+3n f )×(n+nk+3n f ), J ∈ R3nw×(n+nk+3n f ),M ∈ Rnz×(n+nk+3n f ) be partitioned with the
following structure
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W = diag{W1,W2,W3,W3,W3}, (37)
Z = diag{Z1,Z2,W3,W3,W3}, (38)

J =
[
J1 J2 0 0 0

]
, (39)

M =
[
M1 M2 0 0 0

]
, (40)

where W1,Z1 ∈ Rn×n, W2,Z2 ∈ Rnk×nk , J1 ∈ R3nw×n, J2 ∈ R3nw×nk , M1 ∈ Rnz×n, M2 ∈ Rnz×nk , W3 ∈ Rn f×n f and the
following change of variables

[
B̃F1 j B̃F2 j

C̃F1 j C̃F2 j

]
=

[
W3BF1 j W3BF2 j

CF1 j CF2 j

]
, (41)[

ÃF B̃F j

M̃F D̃F j

]
=

[
W3AF W3BF j
W3MF DF j

]
, (42)

with j ∈ {a, b}.
The following theorem gives the solutions to the design of the interval filter matrices such that the inequality z(t) ≤
z(t) ≤ z(t), ∀t ≥ 0 is satisfied and such that the effect of ω on the estimation error interval ẽz is minimized in the
H∞-norm criterion sense.

Theorem 2 Consider the system (8a)-(8d) and assumptions 1-2, if there exist some real matrices P,W,Z, J,M, Σ̃11, Σ̃12,
Σ̃21, Σ̃22, Ψ̃11, Ψ̃12, Ψ̃21, Ψ̃22, Ξ̃11, Ξ̃12, Ξ̃21, Ξ̃22, Π̃11, Π̃12, ÃF , M̃F , B̃Fa , B̃Fb , B̃F1a , B̃F1b , B̃F2a , B̃F2b , C̃F1a , C̃F1b , C̃F2a , C̃F2b ,
D̃Fa , D̃Fb of adequate dimensions, some real scalars κ, γ > 0 and a M-matrix W3 such that the following linear and
bilinear constraints hold

P = Pt ≻ 0, (43)
0 P 0 0
P 0 0 C̃t

0 0 −I D̃t

0 C̃ D̃ −γI

︸                  ︷︷                  ︸
Ω̃

+


−W ÃW B̃W 0
−Z ÃZ B̃Z 0
−J ÃJ B̃J 0
−M ÃM B̃M 0

︸                     ︷︷                     ︸
Υ̃

+Υ̃t ≺ 0, (44)

B̃Fia , B̃Fib , C̃Fia , C̃Fib ≥ 0, (45)
B̃Fa , B̃Fb , D̃Fa , D̃Fb ≥ 0, (46)
C̃Fia − C̃Fib ≥ 0, (47)
ÃF + κW3 ≥ 0, (48)

(D̃Fa − D̃Fb )CT † = Inz , (49)

where ÃW = WA, ÃZ = ZA, ÃJ = JA, ÃM = MA, B̃W = WB, B̃Z = ZB, B̃J = JB, B̃M = MB, C̃ and D̃ are defined in
(52)-(57), with K ∈ {W,Z} and H ∈ {J,M}. Here, K̃Fi = K̃Fi a − K̃Fi b with K̃Fi ∈ {B̃Fi , C̃Fi } and X̃F = X̃F a − X̃Fb with
X̃F ∈ {B̃F , D̃F} and

Σ̃i1 = W3Σi1 = R̃ia Y+ + R̃ib Y−, Ξ̃i1 = C̃Fib (−In f )
−,

Σ̃i2 = W3Σi2 = R̃ia Y− + R̃ib Y+, Ξ̃i2 = C̃Fia (−In f )
−,

Ψ̃i1 = W3Ψi1 = R̃ia S + + R̃ib S −, Π̃11 = D̃Fa (−F)+ + D̃Fb (−F)−,

Ψ̃i2 = W3Ψi2 = R̃ia S − + R̃ib S +, Π̃12 = D̃Fa (−F)− + D̃Fb (−F)+,

with R̃ia =
[

B̃Fia B̃F a

]
, R̃ib =

[
B̃Fib B̃F b

]
and i ∈ {1, 2}. Then, with an admissible realization of the state

space of the filter, given by

[
BF1 j BF2 j
CF1 j CF2 j

]
=

[
W−1

3 B̃F1 j W−1
3 B̃F2 j

C̃F1 j C̃F2 j

]
, (50)[

AF BF j
DF j

]
=

[
W−1

3 ÃF W−1
3 B̃F j

D̃F j

]
, (51)
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with j ∈ {a, b}, the state space (32) is asymptotically stable with a performance criterion ||Gω→ẽz ||∞ ≤ γ.

ÃK = KA =


K1(A − BDKC) K1BCK 0
−K2BKC K2AK 0

(B̃F − M̃F DK)C M̃FCK ÃF

(B̃F1 − B̃F + Σ̃11D̃F − Σ̃12D̃F)C 0 Σ̃11(C̃F1 + Ξ̃11 − Ξ̃12) − Σ̃12(C̃F2 + Ξ̃21 − Ξ̃22)
(B̃F − B̃F2 + Σ̃21D̃F − Σ̃22D̃F)C 0 Σ̃21(C̃F2 + Ξ̃21 − Ξ̃22) − Σ̃22(C̃F1 + Ξ̃11 − Ξ̃12)

...

...

0 0
0 0
0 0

ÃF + Σ̃11(C̃F1 + Ξ̃11) + Σ̃12Ξ̃22 Σ̃11Ξ̃12 + Σ̃12(C̃F2 + Ξ̃21)
−(Σ̃21Ξ̃22 + Σ̃22C̃F1 + Σ̃22Ξ̃11) ÃF − Σ̃21C̃F2 − Σ̃21Ξ̃21 − Σ̃22Ξ̃12

 , (52)

B̃K = KB =


K1(E − BDK F) 0 0
−K2BK F 0 0

(B̃F − M̃F DK)F 0 0
(B̃F1 − B̃F + Σ̃11D̃F − Σ̃12D̃F)F (Σ̃11Π̃11 + Σ̃12Π̃12 + Ψ̃11) −(Σ̃11Π̃12 + Σ̃12Π̃11 + Ψ̃12)
(B̃F − B̃F2 + Σ̃21D̃F − Σ̃22D̃F)F −(Σ̃21Π̃12 + Σ̃22Π̃11 + Ψ̃22) (Σ̃21Π̃11 + Σ̃22Π̃12 + Ψ̃21)

 , (53)

ÃH = HA =
[
H1(A − BDKC) −H2BKC H1BCK +H2AK 0 0 0

]
, (54)

B̃H = HB =
[
H1(E − BDK F) −H2BK F 0 0

]
, (55)

C̃ =
[

0 (C̃F1 − Ξ̃12 + Ξ̃11 − C̃F2 − Ξ̃21 + Ξ̃22) (C̃F1 + Ξ̃11 + Ξ̃22) (Ξ̃12 + Ξ̃21 + C̃F2 )
]
, (56)

D̃ =
[

0 (Π̃11 + Π̃12) −(Π̃12 + Π̃11)
]
. (57)

Proof 4 Since the Theorem 2 has the linear variable changes defined in (41)-(42), then it follows that the set of
constraints (43)-(49) implies that

P = Pt ≻ 0, (58)
Ω + Υ + Υt ≺ 0, (59)
W3BFia ,W3BFib ,CFia ,CFib ≥ 0, (60)
W3BFa ,W3BFb ,DFa ,DFb ≥ 0, (61)
CFia −CFib ≥ 0, (62)
W3AF + κW3 ≥ 0, (63)

(DFa − DFb )CT † = Inz . (64)

Based on Lemma 1, the matrix AF satisfies the Metzler condition (63) since W−1
3 ≥ 0. The matrices BF j , BFi j ,CFi j ,DF j .

satisfy the decompositions (24a)-(24b) into two positive (non-unique) matrices thanks to the conditions (60)-(61).
Based on these decompositions, it becomes clear that (62) and (64) are the constraints mentioned in Section 5. By im-
posing the decomposition (24a)-(24b) of the filter matrices (i.e. AF , BF , BFi ,CFi and DF), the LMI and BMI constraints
(59) guarantee a H∞ performance criterion for the closed-loop state space (32) such that V̇(x̂) − γ||ω||2 + 1

γ
||ẽz||

2 < 0.
Then, substituting the auxiliary variables W,Z, J,M by the partitioned structure defined in (37)-(40) and replacing the
state space matrices (33)-(36) in (2), we get finally (44). Then the assertion ||Gω→ẽz ||∞ ≤ γ is proved.

7. Simulation results for the satellite FES

As a reminder, Microscope is a scientific satellite that was launched in 2016 with the primary goal of verifying the weak
equivalence principle proposed by A. Einstein with unparalleled precision. To achieve this, a sophisticated control
system, described by equations (7a)-(7b) and of dimension nk = 18, has been meticulously designed. The objective of
this controller is to maintain both the attitude and linear acceleration of the satellite at zero, ensuring optimal conditions
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for testing the equivalence principle.10 The control law incorporates compensation for disturbances, which are vital for
accurate experimental results. The linear model, expressed by equations (6a)-(6c), and given by

A =



0 0 0.0039 1.0000 0 0
0 0 0 1.0000 0 0

−0.0039 0 0 0 0 1.0000
0 0 0 0.0001 −0.000 −0.0020
0 0 0 −0.0000 0.0000 0.0001
0 0 0 0.0015 −0.0003 0.0001


, B =



0 0 0
0 0 0
0 0 0

0.0349 −0.0007 0.0000
−0.0007 0.0264 −0.0009
−0.0012 0.0000 0.0433


,

E =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.0349 −0.0007 0.0000 0 0 0
−0.0007 0.0264 −0.0009 0 0 0
−0.0012 0.0000 0.0433 0 0 0


, C =

[
I3 03

]
, F =

[
03 I3

]
, T =

[
I3 03

]
,

is obtained by means of a first order approximation of the nonlinear equations presented in10 around its equilibrium
point x⋆ =

(
0 0 0 0 −ωs 0

)t
. For simulation purpose, the initial condition for the dynamics (8a) is considered

as x(0) = x⋆. An extensive analysis of the disturbance term w(t), conducted through intensive simulations using the
Functional Engineering Simulator, reveals the following bounds: w = −10−5

(
3 5.5 5 5.583 7.289 3.620

)t
and

w = 10−5
(
3.5 5 4.5 0.899 2.943 3.142

)t
.

As shown on Figure 1, the H∞ interval filter is implemented in the Microscope mission navigation unit. It is followed
by a data fusion algorithm to provide the estimate Θ̂ =

[
ϕ̂ θ̂ ψ̂

]t
to the control unit. The fusion algorithm is given

by

Θ̂(t) =

Rϕ 0 0 1 − Rϕ 0 0
0 Rθ 0 0 1 − Rθ 0
0 0 Rψ 0 0 1 − Rψ


[
Θ(t)
Θ(t)

]
(65)

where Rϕ,Rθ,Rψ are determined so that Θ̂(t) is an optimal estimate of Θ(t), in the l1-norm sense.

In this section, the H∞-filter design methodology previously described is applied to the satellite model to estimate the
upper and lower bounds of the true attitude of satellite, i.e z(t) ≤ Θ(t) ≤ z(t). The interval filter is synthesized by
solving the following optimization problem

min γ s.t. (43) − (49). (66)

By using the Nonlinear SDP solver PENLAB6 with the YALMIP toolbox for Matlab, optimization problem (66) can be
applied to the LTI system closed-loop system augmented (8a)-(8d), with D̃Fa = I3 and D̃Fb = 03 such that (49) holds.
By solving the optimization problem (66) with the dimension n f ∈ {1...8}, we obtain different results for the paramater
κ and the H∞ performance γ, with all the constraints (43)-(49) satisfied. These results are presented in Table 1.

order n f 3 4 5 6 7 8
performance γ 1.4142152 1.4142150 1.4142156 1.4142157 1.4142156 1.4142155

parameter κ 75.3 64.4 51.7 97.1 99.6 43.0
LMI variables 1904 2056 2221 2399 2590 2794
ϕ − ϕ

[
deg

]
0.0742 10−3 0.0710 10−3 0.0741 10−3 0.0741 10−3 0.0741 10−3 0.0742 10−3

θ − θ
[
deg

]
0.1174 10−3 0.1150 10−3 0.1173 10−3 0.1173 10−3 0.1173 10−3 0.1174 10−3

ψ − ψ
[
deg

]
0.0706 10−3 0.0700 10−3 0.0705 10−3 0.0705 10−3 0.0705 10−3 0.0705 10−3

Table 1: Results for different dimensions of n f

No feasible solution has been found by the PENLAB solver for a filter of order n f = 1 and n f = 2. However, starting
from the third order, the PENLAB solver successfully converges to an optimal solution for the optimization problem
(66). Within the range of orders n f ∈ {3...8}, the performance criterion γ shows slight variation, with differences on the
order of a thousandth. The lowest H∞ performance, indicated by the smallest value of γ, is obtained for the filter of
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order n f = 4. The convergence values of the envelope ẽz(t) = Θ(t)−Θ(t) associated with each order n f are also presented
in Table 1, where it can be observed that the smallest envelope is obtained for the filter of order n f = 4. Considering
the above analysis and taking into account the number of variables involved in the Linear Matrix Inequalities (LMIs),
it is decided to implement the interval filter of order n f = 4 within the navigation unit, to estimate the upper and lower
bounds of the true attitude of satellite. From this order and from the admissible realization (50)-(51), we obtain the
following matrices

W3 =


7.53007 −0.73606 −0.73606 −0.73606
−0.73606 7.53007 −0.73606 −0.73606
−0.73606 −0.73606 7.53007 −0.73606
−0.73606 −0.73606 −0.73606 7.53007

 , MF = 10−5


0.72382 0.56248 0.92487
0.72382 0.56248 0.92487
0.72382 0.56248 0.92487
0.72382 0.56248 0.92487

 ,

AF =


−55.8967 1.20821 1.20821 1.20821
1.20821 −55.8967 1.20821 1.20821
1.20821 1.20821 −55.8967 1.20821
1.20821 1.20821 1.20821 −55.8967

 ,

BF =10−4



0.74682 0.74683 0.74683
0.74682 0.74683 0.74683
0.74682 0.74683 0.74683
0.74682 0.74683 0.74683

 −

0.74793 0.74793 0.74793
0.74793 0.74793 0.74793
0.74793 0.74793 0.74793
0.74793 0.74793 0.74793


 ,

BF1 =10−4



0.69168 0.69168 0.69168
0.69168 0.69168 0.69168
0.69168 0.69168 0.69168
0.69168 0.69168 0.69168

 −

0.69169 0.69169 0.69169
0.69169 0.69169 0.69169
0.69169 0.69169 0.69169
0.69169 0.69169 0.69169


 ,

BF2 =10−4



0.89524 0.89525 0.89525
0.89524 0.89525 0.89525
0.89524 0.89525 0.89525
0.89524 0.89525 0.89525

 −

0.89936 0.89935 0.89935
0.89936 0.89935 0.89935
0.89936 0.89935 0.89935
0.89936 0.89935 0.89935


 ,

CF1 =

0.005681 0.005681 0.005681 0.005681
0.005681 0.005681 0.005681 0.005681
0.005681 0.005681 0.005681 0.005681

 −
0.002840 0.002840 0.002840 0.002840
0.002840 0.002840 0.002840 0.002840
0.002840 0.002840 0.002840 0.002840

 ,
CF2 =

0.005680 0.005680 0.005680 0.005680
0.005680 0.005680 0.005680 0.005680
0.005680 0.005680 0.005680 0.005680

 −
0.002841 0.002841 0.002841 0.002841
0.002841 0.002841 0.002841 0.002841
0.002841 0.002841 0.002841 0.002841

 .
Simulations are next performed to appreciate the performance of the designed interval filter. Figures 2 illustrates
the results for a simulation corresponding to an orbital period of 8000s. For a better assessment of the simulation
results, zooms are also plotted. As expected, we note that the attitude angles ϕ(t), θ(t), ψ(t) of the satellite belong to
its associated interval z(t) and z(t), ∀t ≥ 0. With the initial conditions of the filter given as s f (0) = 10−2 (4 4 4 4)t,
s f (0) = 10−2 (1 1 1 1)t and x f (0) = 04×1, x f (0) = s f (0), x f (0) = −s f (0) , the distance ẽz converges to a value

c = 10−3
(
0.0710 0.1150 0.0700

)t
with a reasonable transient behaviour.

Finally, thanks to the arbitrary dimension of the interval filter, the introduced slack matrices and degrees of freedom, and
the H∞ performance criterion, a significantly tighter interval estimation can be achieved compared to the approaches
presented in the works15,20 as applied in our previous work16 a tighter interval compared to the approaches15,20 as
applied in our previous work,16 can be observed on the attitude states. Furthermore, the fusion algorithm (65), which
combines the upper and lower bounds Θ,Θ, delivered by the H∞ interval filter, plays a crucial role in providing an
optimal estimation of the attitude angles (as shown in Figure 2, indicated by the red line). The effectiveness of this
algorithm, along with the proof of stability of the closed-loop system, encompassing the satellite dynamics, controllers,
sensors, and interval filter, as rigorously established in Theorem 2, ensures accurate trajectory tracking. As a result, the
true attitude angles of the satellite closely follow their desired references, approaching the ideal value of ’0’. With the
interval filter design proposed in this paper, the satellite is capable of maintaining its desired rotation around the Earth
at a velocity of ω0, while simultaneously spinning at a rate of ωs around its y-axis. These capabilities are crucial for
various space applications that require precise navigation and orientation control. Based on the above arguments and
the evidence presented in Figure 2, we assert that the interval filter design represents a highly promising and practical
solution for enhancing the performance of navigation units in space applications. The combination of tighter interval
estimation, robust fusion algorithms, and proven stability ensures improved accuracy and reliability in satellite attitude
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determination, contributing to the advancement of space exploration and satellite missions.

Figure 2: Interval estimation of the satellite attitude angles by applying the proposed method

8. Conclusion

This proposed paper deals with the development of a novel H∞ interval filter and its application for accurate attitude
estimation in satellite navigation units during space missions. The proposed approach offers several notable advan-
tages compared to existing theories on interval observer design. One key advantage of the interval filter is its departure
from the traditional interval observer structure. By introducing slack matrices and enabling the realization of a state
space with arbitrary order, the filter allows for increased degrees of freedom in the estimation process. This increased
flexibility enhances the interval filter’s ability to handle uncertainties and disturbances more effectively. Another note-
worthy feature is that this approach eliminates the need for explicit knowledge of a state transformation, which is
typically required in other interval observer designs to satisfy the Meztler property for estimation error. By removing
this requirement, the proposed interval filter achieves a significant reduction in conservatism, leading to more accurate
and reliable estimates. The effectiveness of the proposed approach is validated through extensive simulations using
a Functional Engineering Simulator (FES) of the satellite mission. The results demonstrate compelling performance
metrics, including a notably reduced estimation interval for attitude angles and superior trajectory tracking capabilities
for the attitude and acceleration control system.
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