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Abstract 
For improving the evasion performance of evader, a novel real time maneuver differential game 
guidance law with the time delay of battlefield situation awareness from bearing-only information is 
proposed. Based on the azimuth and elevation rates of the line of sight, a three-dimensional dynamic 
model about the pursuit-evasion is established. For getting situation information containing the pursuit 
games about pursuer and the pursuit-evasion relative states via bearings-only information, a pseudo-
measurement gain Kalman filter is designed. A new differential game guidance law with correcting 
first order response dynamics of evader and the time delay of the pseudo-measurement gain Kalman 
filter information is proposed. Finally, the superior maneuver evasion performance and practicability 
in engineering besides adequately utilizing the battlefield situation awareness of the new differential 
game guidance law is verified by computer simulations.  

1. Introduction 

To enhance the evasive performance of all kinds of aircrafts is highly important with the development of the 
antimissile and aerial defense. The modern interceptors are of high maneuverability and over loading, so that aircraft 
as an evader has to aware the battlefield situation information and has a superior evasive guidance law. Otherwise, 
the one-sided optimization game is only considered to give the evasive guidance law. However, the problem in this 
paper, interceptor and aircraft with the battlefield situation awareness, is best modeled to use two players, that is, it 
becomes a two-sided optimization problem. The aircrafts interception game is a zero-sum two-player game, 
furthermore of a type referred to as a pursuit-evasion game. This dynamic problem can be described by zero-sum 
pursuit-evasion differential game theory [1], [2]. As a real time maneuver game, the differential game guidance law 
(DGL) can adequately consider the relative state information about pursuer and evader, which is deserved to research 
on evasive game. 
Optimal guidance law (OGL) on evasive maneuver strategy has traditionally been developed with one-sided 
optimization game. Optimal control theory is usually applied, assuming perfect information [3]. Knowing the pursuit 
strategy of the incoming pursuer, the evader can acquire the optimal maneuver evasive guidance law. Shinar and 
Steinberg [4] analyzed the optimal evasion strategy with two-dimensional linear kinematics, first-order dynamics and 
limited value of pursuer and evader acceleration, where the pursuer is foregone to the classical proportional 
navigation (PN) guidance law. The optimal evasive maneuver guidance law was almost always of the bang-bang 
structure, which derived from the closed-form solution for first-order dynamic models and effective navigation ratio. 
Ben-Asher et al. [5] also obtained the bang-bang type evasion guidance law for evader with a path-angle constraint 
and against more than one pursuer. Forte et al. [6] investigated the same model as the Ref. [4], but with nonlinear 
kinematics. The optimal evasive maneuver guidance law was almost also of the bang-bang type. These one-sided 
optimal evasive maneuver strategies via optimal control theory need to know the pursuit guidance laws of the 
incoming pursuer, which is usually impossibility in actual engagement. Nevertheless, DGL considering two-sided 
optimization in this paper does not need to know the pursuit strategy, being excellent to the one-sided OGL. 
Differential game theory is more used to interception of highly maneuvering targets [2], [7]-[10]. Shima et al. [7] and 
Chen et al. [8] transformed pursuit-evasion problem into a linear differential game. The engagement between two 
objects with first-order dynamics, constant bounds on the lateral accelerations, and time varying with compensation 
of the estimation delay was investigated by Shima et al. [7]. Considering about a prespecified impact angle, a 
nonlinear zero-sum differential game framework is posed by Bardhan and Ghose [9]. The impact-angle-constrained 
guidance law is projected terminal impact angle error and effective to two-dimensional engagement. Pontani and 
Conway [2] presented a direct numerical method to find the saddle-point trajectories for a zero-sum pursuit-evasion 
differential game about the interception of ballistic missile warheads. Then the effect and robustness of their method 
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for solution of that game is validated. The solution of saddle-point trajectories for differential game is valuable to 
analysis all the pursuit and evasion, but only interception strategy is their attention all the same in Ref. [2]. In 
addition, the DGL above is analyzed on the premise that two players in engagement can obtain the entire battlefield 
situation. In Ref. [10], the pursuit DGL is generated by the different estimation error of evader’s acceleration. But the 
estimation error is directly calculated by the estimated and actual acceleration of evader, which is obvious 
impossibility in actual pursuit-evasion engagement, and the performance of DGL directly using the actual 
acceleration is obviously better than that in Ref. [10].  
In recent work [11], [12], a three-player cooperative differential game was investigated in solving the target-missile-
defender interception problem. The target and defender shared noisy measurements on the interception missile, and 
attacker obtained his optimal strategy to minimize the miss distance between itself and the missile. However, zero-
sum differential game with battlefield situation awareness information on one-on-one evasion guidance law in two-
sided optimization problem application is few in the present literature. A novel real time maneuver evasive DGL 
with the time delay of battlefield situation awareness from bearing-only information is proposed in this work. 
The paper is organized as follows. Section 2 builds three dimensional engagement dynamic models based on light of 
sight (LOS). Next, in Section 3, a pseudo-measurement gain Kalman filter (PMGKF) is devised by pseudo-linear 
measurement formula using trigonometric function. All the information needed about the relative distance, approach 
velocity and pursuer’s acceleration can be obtained via this filter, and the first order response dynamics is becoming 
to describe the filter result. Then, in Section 4, the optimal evasive strategy is derived from game solution with the 
time dalay from PMGKF. The numerical simulation is given in Section 5, and Section 6 comcludes the paper with a 
summary of the main results. 

2. Engagement Formulation Based on LOS 

For using the information about LOS to build the three dimensional dynamic model of the pursuit-evasion, three 
coordinate system is defined in this paper. 
(1) Inertial coordinate system O-XYZ: the origin O is collocated with the initial evader position. The X-axis is 
aligned with the initial LOS direction and the Y-axis is constrained in the direction of the evader velocity vector. The 
Z-axis is defined by right-handed Cartesian coordinate. 
(2) Translational coordinate system OT-XTYTZT: the origin OT is collocated with the evader position all the time. 
Each axis is always parallel to the corresponding axis of inertial coordinate system. 
(3) LOS coordinate system OL-XLYLZL: the origin OL is the same as OT. The XL-axis is aligned with the LOS 
direction and the ZL-axis is orthogonal to the XL-axis in the XTOTZT plane. The XL, YL and ZL-axis compose right-
handed Cartesian coordinate. 
Figure 1 shows the transformation from translational coordinate system to LOS coordinate system; ψL is the LOS 
azimuth angle, ϕL is the LOS elevation angle. Its coordinate transformation can be described as follows: 
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Note the pursuer position in translational coordinate system as x = (x, y, z)T, so the pursuer velocity and acceleration 
relative to evasion in inertial coordinate can be express as: 
Relative velocity ( ), , Tx y z=v    ; 

Relative acceleration ( ), , Tx y z=a    . 

Note that R and R are the pursuer and evader relative range and approach velocity; R13 and 13R are the projections of R 
and R in the XTOTZT plane; the engagement geometry can be expressed as the differential formula follows. 
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where [ ]sin cos T
L L L L Lψ ϕ ψ ϕ ϕ=ω    denotes the vector of LOS-translational coordinate system relative angle rate. 

After differential and linearization on Eq. (3) and Eq. (4), the corresponding equation becomes 
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Figure 1  Coordinate transformation from translational coordinate system to LOS coordinate system 

 
Note that the actual accelerations of pursuer and evader in LOS coordinate system are aP = [vx, vy, vz]T and aE = [ux, uy, 
uz]T, respectively, hence, 
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Substituting Eq. (6) into Eq. (5) yields the expression 
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Consider the evader with first order response dynamics: 

 E
E

E

c

τ
−

=
u aa  (8) 

where τE is the evader’s time constant, uc = [ , ]c c T
y zu u denotes the vector of the evader’s command acceleration. From 

Eq. (7), relative distance, approach velocity and pursuer’s acceleration are requirement. 

3. Gaining Information Needed via Pseudo- measurement Gain Kalman Filter 

The bearing-only information can be mathematically described by a linear state equation and a nonlinear 
measurement model, which is a nonlinearities filter problem in fact. Non-recursive representations of the traditional 
extended Kalman Filter are often more tractable, despite their computational inefficiency [13]. To improve algorithm 
stability, a pseudo-measurement gain Kalman filter (PMGKF) is built in this section by pseudo-linear measurement 
formula using trigonometric function. 

3.1 Building PMGKF 

The pursuer’s acceleration in translational coordinate system can be described by Singer model: 
 P PT Tα= − +a a ω  (9) 
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where aPT = [aPx, aPy, aPz]T denotes pursuer’s acceleration in translational coordinate system, α is pursuer’s maneuver 
frequency, reciprocal of its time constant; ω is the zero-mean white noise sequence with variance 2ασ2, σ2 is 
variance of pursuer’s acceleration. 
Hence linear system state model is given as follows: 
 ET= + +X FX Gα Kω  (10) 

where P P P[ , , , , , , , , ]T
x y zx y z x y z a a a=X     denotes the state vector, 
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is a matrix with three rows and three columns with all elements equal to zero, and I3 is an identity matrix with three 
dimensions, aET is the evader’s acceleration in translational coordinate system. 
Accordingly the discrete-time state estimation is 
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TS is sampling interval. 
For gaining PMGKF with bearing-only information, pseudo-measurement gain Kalman observation (PMGKO) is 
built firstly. The nonlinear measurement equation with bearing-only information is 
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where η  is observation noise. Single observation error is little with precision observation; hence Eq. (13) can be 
described as pseudo-linear form below: 
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O2×6 is a matrix with two rows and six columns with all elements equal to zero. In PMGKO, pseudo-measurement 
matrix V(k) is 
 ( ) ( ) ( ) ( ) ( )T T Tk E k E k= =V υυ D ηη D  (15) 
where relative distance matrix D(k) is 
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From Eq. (15) and Eq. (16), pseudo-measurement noise variance is time varying in PMGKO, but the actual relative 
distance between purser and evader cannot be gained, while the one-step-ahead prediction value is used to calculate 
its approximation: 
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As stated previously, PMGKF can be accomplished with the following steps. 
1) The one-step-ahead prediction of state and error matrix is 
 ˆ ˆ ˆ( | 1) ( | 1) ( 1 | 1) ( | 1) ( 1 | 1)mk k k k k k k k k k− = − − − + − − −X Φ X G α  (18) 

 ( | 1) ( | 1) ( 1 | 1) ( | 1) ( )Tk k k k k k k k k− = − − − − +M Φ M Φ Q  (19) 
2) The pseudo-measurement noise variance is 
 ( ) ( ) ( ) ( )T Tk k E k=V D ηη D   (20) 
3) The filter plus matrix is  
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4) The update of state and error matrix is 
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 ( )ˆ ˆ ˆ( | ) ( | 1) ( ) ( ) ( | 1)k k k k k k k k= − + − −X X K H X  (22) 

 [ ]9( | ) ( ) ( ) ( | 1)k k k k k k= − −M I K H M  (23) 

3.2 Numerical estimation result 

In this simulation, sampling interval is 0.01s, observation variance E(ηηΤ) = 0.001rad2. Hypothetically purser can get 
the needed information about evader, using proportional navigation with effective navigation ratio N’ = 4. Evader 
captures purser in 60km relative distance, and begins maneuvering with sine law as follows: 
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where g = 9.8 m·s-2 denotes the acceleration of gravity, t is time. 
Initial parameter of the simulation is shown in Table 1, the vectors of location and velocity is the value in inertial 
coordinate system. 

Table 1  Initial parameter of the simulation 
 Pursuer Evader 

Position/m (60000, 0, 0) (0, 0, 0) 
Volicity/(m·s-1) (-1616.8, 674.22, -413.81) (3347.8, 1020.8, 0) 

Acceleration/(m·s-2) (0, 0, 0) (0, 0, 0) 
Time constant/s 0.5 1.5 

Maximum acceleration/(m·s-2) 196 68.6 

 
From Table 1, the actual initial state X = [60000, 0, 0, -4964.6, -346.58, -413.81, 0, 0, 0]T while the filter initial 
state X̂ = [59000, -100, 100, -5000, -350, -410, 0, 0, 0]T and the initial variance matrix Q = diag([10000, 10000, 
10000, 100, 100, 100, 0.1, 0.1, 0.1]).  
Figure 2 shows the estimation of the pursuer’s elevation acceleration that is the projection in YL-axis using the 
PMGKF, and Figure 3 shows the result of azimuth acceleration that is the projection in ZL-axis. Estimated error of 
acceleration is given in Figure 4. 
Notice that the estimation delays when the pursuer’s acceleration changes from Figure 2 and Figure 3. The inherent 
delay is used to estimate a maneuver from the time [7]. Here, the time delay is about 0.5s that is the same as the time 
constant of pursuer, so the estimated acceleration on pursuer can be described by the first order response dynamics: 
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where τP is the pursuer’s time constant, [ , ]p p p T
y zv v=v , is the estimated acceleration on pursuer. Figure 5 shows the 

comparisons about calculate value using the pursuer actual acceleration based on Eq. (25) and the estimated result by 
PMGKF. 
Notice that the first order response dynamics is becoming to describe the filter result. 

4. Game Solution with the Time Delay from PMGKF 

Based on Eq. (7), (8) and (25), a linear state model is built as follows: 
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A differential game is formulated for Eq. (26) with the performance index 
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D ; Q, C1, C2 are all the 2×2 positive definite diagonal matrix; t0 and tf are the initial 

and final time of the game, respectively. The evader aims to maximize the performance index J by controlling uc, 
while the pursuer wishes to minimize it using strategy aP. Both evader’s and pursuer’s strategies are bounded: 
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Figure 2  Comparison of elevation acceleration 

0 2 4 6 8 10 12 14
-200

-150

-100

-50

0

50

100

150

200

a Pz
 /(

m
/s

2 )

t/s

 Command value
 Actual value
 Estimated value

 
Figure 3  Comparison of azimuth acceleration 
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Figure 5  Comparisons about filter and calculate results 

 
For sampling the system, a new state vector is defined: 
 ( ) ( , ) ( )ft t t t=Z DΦ x  (29) 

where Φ(tf, t) is the state translation matrix, it can be calculated from =x Ax . 

 ( ) ( ), f gt t t
ft t e e−= =A AΦ  (30) 

where tg is estimated by the formula: 

 g
Rt
R

= −


 (31) 

Hence Z(t) is satisfied the differential equation: 
 c c= +Z DΦBu DΦCv  (32) 
and the cost function changes into: 
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1 2
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Based on the Eq. (32) and (33), the Hamiltonian is 

 ( )1 2
1 ( )
2

cT c pT p T c pH = − + + +u C u a C a λ DΦBu DΦCa  (34) 

where λ is the co-state variable, and it is satisfied the following co-state equation 
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The solution of co-state variable Eq. (35) is 
 ( ) ( )ft t= −λ QZ  (36) 
By the optimal conditions 
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the optimal games are 

 
( )

( )

1
1

1
2

c T T T
f

p T T T
f

t

t

−

−

 =


= −

u C B Φ D QDx

a C C Φ D QDx
 (38) 

From Eq. (38), the optimal games are determined by the final state x(tf), while the different games about pursuer and 
evader lead to different final state. 

4.1 Evasion game in pursuer using DGL 

Substituting the optimal games (Eq.(38)) into Eq.(26): 
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T T T T T T

f ft t− −= + −x Ax BC B Φ D QDx CC C Φ D QDx  (39) 
Hence, the optimal games become: 

 ( )
( )

1 1
1

1 1
P 2

c T T T

T T T

t
t

− −

− −

 =


= −

u C B Φ D QDP Φx
a C C Φ D QDP Φx

 (40) 

 ( ) ( )1 1
6 1 20 0

g gt tT T T T T T
g gdt dt− −= + −∫ ∫P I ΦBC B Φ D QD ΦCC C Φ D QD  (41) 

where I6 is a 6×6 identity matrix, uc is evasion DGL in pursuer using DGL (DGL/D). 

4.2 Evasion game in pursuer using any other pursuit guidance law 

In fact, evader cannot understand pursuit guidance law, so consider it to be a constant value and substitute the first 
equation of Eq. (38) into Eq. (26): 
 ( )1

1 P
T T T

ft−= + +x Ax BC B Φ D QDx Ca  (42) 
Hence, evasion DGL in pursuer using any other guidance law (DGL/A) is 

 ( )1 1
1 1 P0

gtc T T T
gdt− −  = − 

 ∫u C B Φ D QDP Φx Φ Ca  (43) 

 ( )1
1 6 10

gt T T T
gdt−= + ∫P Ι ΦBC B Φ D QD  (44) 

DGL/A is mature to the battlefield situation information, furthermore considering pursuit guidance law to be a 
constant value, so that DGL/A does not need to know the pursuer’s game and need the pursuer acceleration from 
PMGKF only. This makes DGL excellent to other one-sided optimal evasion game. 
aP in Eq. (43) can be calculated from Eq. (25): 
 P P

p pτ= +a v v  (45) 

where pv can be estimated by difference about continued two filter results , but the result swings seriously. For 
decreasing this swing, difference filters results every 0.5s is substituted into Eq. (45). The equalized result error of 
pursuit acceleration is shown in Figure 6, and Figure 7 shows fractional error of approach velocity and relative 
distance by equalized result of pursuit acceleration. 
Compare and contrast Figure 6 with Figure 4, estimated error decreases obviously after equalize the result error. But 
in less than two seconds after the beginning of game and in less than two seconds before the finish of confrontation, 
the equalized error is higher. Figure 7 shows the fractional error of approach and relative velocity is enough small to 
import of DGL coefficient matrix. 
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4.3 Evasion game with the time delay of battlefield situation information 

When the equalized error is enough little, evasion game is DGL/A by making the most of the equalized acceleration. 
When the equalized error is large, DGL/D is used to evader. In fact, the evader cannot understand the acceleration 
error, so that a differential game with adaptive weighted with the estimated error is impossible. Based on error laws 
on time estimated by simulation result, choosing different games is one of possible ways. In this paper, the 
acceleration error is enough small when t>2s and tg<2s, evasion game is DGL/A, and other time DGL/D is used to 
evasion. That composes the differential game based on time list (DGL/T). 

5. Numerical Simulation 

Simulation import condition is the same as chapter 3.2, the parameter initialization is as Table 1. The evader can only 
aware the bearing-only information about pursuer and the other battlefield situation are all estimated by PMGKF. 
Simulation results are presented in Figures 8~13. Figures 8~10 show the evader actual accelerations under the three 
DGL. And pursuer games are estimated by PMGKF in Figures 11~13. The final miss distances under the three DGL 
and sine guidance law are shown in Table 2. 
Initial elevation zero effort miss is little in Figure 2 while azimuth is large in Figure 3, which means initial elevation 
pursuit overload is larger than azimuth. Then evader takes the maximum azimuth acceleration (Figures 8~10), so that 
the zero effort miss is zoomed in to ensure successful evasion. But evasion game approaching the end of antagonism 
is not optimum under DGL/A because of the larger equalized error in tg<2s (Figure 12). In elevation direction, evader 
all adopts changing maneuver acceleration value frequently game (Figures 8~10) for using the first order response 
dynamics of pursuer to evasion under the three DGL. The evader acceleration capability is so much lower than 
pursuer that the same game as azimuth direction is not effective under little initial zero effort miss. 
Equalized result error time lists of pursuit acceleration under the three DGL are the same as that under sine law 
(Figure 6), namely the acceleration error is enough small when t>2s and tg>2s in Figures 11~13. Then DGL/T based 
on time list is predicated correctly, and it is one of effective evasion games under bearing-only information in reality 
pursuit-evasion condition.  
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Figure 12  Equalized result of pursuit acceleration with 
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Figure 13  Equalized result of pursuit acceleration with 

DGL/T 
Table 2  Comparison result of final miss distance 

Guidance law Miss distance/m 
DGL/T 14.2639 
DGL/D 9.4870 
DGL/A 9.1377 

Sine 2.8401 
 
In normal circumstances, the maximum warhead lethal radius of air-to-air missile is 9 m. Then compared with the 
results of the final miss distance in Table 2, evader with sine guidance law ends up with unacceptable little miss 
distance, while using three DGL succeed in escaping pursuer. For further compared and contrasted evasion 
performance with three DGL, sine guidance law was tested with 1000 Monte Carlo simulation with different initial 
rate of LOS. The 813 final successful evasion situations is chosen to tested on three different DGL, statistical result 
of final evasion is shown in Figure 14.  
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Figure 14  Statistical result of miss distance 

Figure 14 shows that the probability of all three DGL is beyond 90%. DGL/A utilized the equalized information 
directly is the same as using the false information because of the larger equalized error in t<2s and tg<2s. So the 
evasion result is the worst in three DGL. Pursuit game considered to DGL, DGL/D is a conservative game and a 
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hypo-optimal game in differential game. So that evasion result is better than DGL/A, but is not the optimal game all 
the same. The off-line simulation results are fully used in DGL/T, in this game, the different games are chosen with 
different equalized errors, so that the evasion result is the best in three different DGL. But the proportion of evasion 
cannot be 100% with any one of three DGL because the most overload and maneuver performance of evader are all 
lower than pursuer. Therefore, with the zero initial error, the other more effective game is needed to consider. 
The superior evasion performance and practicability in engineering is improved within utilizing the bearing-only 
situation awareness adequately of DGL/T. 

6. Conclusion 

1) A pseudo-measurement gain Kalman filter is built in bearing-only information application, and a new differential 
game is designed based on the equalized error of pursuer’s acceleration.  
2) This filter can aware the entire situation between pursuer and evader, and this DGL can fully use the time law of 
equalized error of pursuer’s acceleration to improve the evasion performance. The effectiveness is verified by 
simulation.  
3) This DGL provides a self-contained real time maneuver game for evader. The evader’s survivability can be 
increased by the DGL. 
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