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Abstract 
Within the scope of a GSTP project, a Belgian-German research team performed experiments and 

simulations to characterise the behaviour of a liquid cooling film and to provide benchmark data for 

simulation models.  

The experiments were performed at DLR's M11.1 air vitiator test facility in Lampoldshausen, 

Germany. Ethanol was used as film coolant. Apart from being a potential renewable hydrocarbon fuel, 

ethanol is a suitable substitute fluid for monomethyl-hydrazine, which it is currently being used as 

propellant and film coolant in small liquid rocket engines. Compared to the situation in a real rocket 

engine, the experiment was designed to simplify the boundary conditions for the simulations by 

avoiding chemical reactions of the film with the hot gases as far as possible and to limit the 

phenomena subject to investigation to heat and mass transfer effects of a liquid cooling film subjected 

to heating and shear forces.   

The experimental setup used a planar film injector in a rectangular hot gas duct. Additionally to 

measurements of the pressure and temperature of the fluids at inlet and outlet of the test section, 

thermocouples were installed in the film cooled channel wall to provide information on the axial 

evolution of the film cooling efficiency. Furthermore, the channel provides optical access for non-

intrusive measurement techniques. The von-Karman-Institute used this access to apply laser-based 

measurements of the temperature of the liquid film. DLR used a dedicated Background-Oriented 

Schlieren (BOS) technique to provide additional information on the evolution of the film thickness. 

Several tests have been performed in spring 2019. The test data have been analysed and are currently 

being used to benchmark simple engineering models as well as high-fidelity CFD models to predict the 

behaviour of liquid cooling films in rocket engines. 

 

 

Abbreviations, Acronyms & Symbols 
 

 Ramp angle   𝑚̇ Mass flow rate [g/s], [kg/s] 

BOS Background-Oriented Schlieren  M Blowing ratio [-] 

CAD Computer Aided Design  MMH Monomethylhydrazine 

CFD Computational Fluid Dynamics  p Pressure [bar] 

DLR Deutsches Zentrum für Luft- und Raumfahrt  𝜌 Density [kg/m³] 

ESA European Space Agency  t Thickness [mm] 

H, h Height [mm]  T Temperature [K] 

L Length [mm]  𝑣 Velocity [m/s] 

LIF Laser-induced Fluorescence  W Width [mm] 
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1 Introduction 
 

1.1 Motivation 
Liquid film cooling for rocket engines is an evident possibility to combine the injection of the fuel with an effective 

method to protect the inner combustor wall surfaces from the hot gas flow. Especially small rocket engines with an 

unfavourable small ratio of combustor volume to wall surface area use this technology to protect the combustion 

chamber wall from the hot combustion gases. For very small engines, where the propellant mass flow rates are too 

small to provide a regenerative cooling of the combustion chamber wall, this is often the only technology to provide 

a reliable means to limit the wall temperature of the combustion chamber. Large engines often use local film cooling, 

e.g. close to the injector face plate or upstream of the convergent section of the exhaust nozzle. 

As of today, engineers rely largely on empirical correlations to size and design the film cooling system of small 

liquid rocket engines. However, the applicability of the correlations in literature often is limited to certain operating 

conditions, film fluids or combustor or injection configurations. To overcome this shortcoming and to develop a 

more generic film cooling model, a simplified experiment is required which separates the effects of heat and mass 

transfer of a shear-driven liquid film from the chemical interaction between combustion gases and fuel film coolant.  

 

1.2 State of the Art 
Liquid film cooling has been intensively investigated by means of experiments since the mid of the 20

th
 century [1] - 

[3]. In fact, a significant portion of experimental work relevant for rocket motors was conducted in the 1950s and 

1960s [4]. As an example, the comprehensive experimental work of Kinney et al. [5] included the measurement of 

wall temperature distributions and an optical imaging system applied to a model combustor. Valuable reviews of 

existing literature on liquid film cooling experiments and simulations are available in references [4], [6] and [7].  

 

In later decades, the majority of published film cooling research focused on the gaseous cooling films within air-

breathing propulsion systems, e.g. see the comprehensive synopsis on computational work until 1996 by Kercher [8] 

or the experimental work of Zuniga et al. [9] or Dellimore et al. [10]. Although especially the experimental setups are 

also valuable, the encountered test cases are obviously not representative enough for the situation within a liquid 

rocket engine with liquid (not gaseous) internal wall film cooling. An example for an exception is the kerosene 

combustor at the institute for flight propulsion at the Technische Universität München initiated by the EU-FP6 

programme “Aerodynamic and Thermal Load Interactions with Lightweight Advanced Materials for High Speed 

Flight” (ATLLAS) project [16]. 

 

The experiments can be roughly divided into two categories: on the one hand, experimental tests based on modified 

rocket combustion chambers exist; on the other hand, test rigs have been designed for the investigation of liquid film 

cooling, which e.g. apply gas generator to provide hot gas flow. The first type of experiment is usually focused on 

the technological implications of film cooling, for example the effect on the local wall heat flux or the specific 

impulse of the engine. The second type is usually dedicated to the understanding of the phenomena governing liquid 

film cooling.  

 

Two general methods for the wall heat flux measurements were used in the past: first, the calorimetric method is 

applied, which is based on the temperature and pressure difference of cooling water piped through discrete wall 

segments; second [17], pairs of thermocouples with a radial recess relative to each other are placed in axial direction 

in order to directly compute the local temperature difference [18], [19]. Furthermore, measurements of liquid film 

thicknesses and state of the film (waviness) were attempted by means of high speed photography.   

 

Researchers experimented with various cooling fluids between the 1940s and 1960s, including fluids like Freon-113 

or liquid ammonia solutions [20]. Later, either the actual fuel was utilized as film coolant, or liquid water was 

applied [21]. From a modelling point of view, water provides the advantage that combustion with the hot gas does 

not need to be taken into account for modelling.  

 

A further parameter encountered in the tests is the location of film injectors and the angle at which the film is 

injected into the chamber. Moreover, the operating pressures and chamber temperatures vary across a relatively large 

range. In addition, the Mach number of the investigated flow varies across the tests. Whilst most experiments have 

been conducted with subsonic core flows, there also exist investigations of film cooling in the nozzle section of 

rocket combustor, e.g. [22]. 

 

  

DOI: 10.13009/EUCASS2019-150



Soller et al.: EXPERIMENTAL AND NUMERICAL INVESTIGATION OF LIQUID FILM COOLING IN SMALL ROCKET ENGINES 

 

 3 

The major parameters, in which the experiments available in literature vary, can be listed as follows:  

 

 Reacting vs. non-reacting hot gas flow  

 Reacting vs. non-reacting film fluid  

 Film cooling injection method 

 Liquid film vs. gaseous film 

 Thermodynamic state: subcritical, transcritical, supercritical 

 Accelerated flow vs. constant-velocity flow 

 Temporal length of test runs: few seconds vs. long runs with stabilization of measured quantities  

 Vector of film injection 

 Reynolds number 

 Injected film mass flow rate 

 Chamber pressure and temperature 

 

The design of the new film cooling experiment aims at providing additional and more accurate data of liquid film 

cooling in small rocket engines.   

 

 

1.3 Experimental Requirements 
To close gaps in the already existing and published experimental data base, the test case is intended to serve as a 

validation reference for CFD w.r.t. predicting the heating and vaporization of a liquid film in a shear driven flow. 

The test case is supposed to separate the film heating and vaporization process from other processes usually 

encountered in rocket thrust chambers, like chemical reactions or the impingement of liquid droplets or jets on the 

combustion chamber wall.  

 

The film fluid and the operating conditions shall be representative of the situation in a small rocket engine using 

storable liquid fuels like monomethylhydrazine (MMH) or ethanol. Figure 1 compares the thermal and transport 

properties of MMH with ethanol and water as potential substitute fluids. Ethanol was selected as substitute film fluid 

due to its similarity in properties when compared to MMH: Surface tension, heat of vaporization and thermal 

conductivity are quite similar to MMH. Unlike MMH, ethanol does not decompose exothermally at elevated 

temperatures; this simplifies the experiment, allows to exclude additional chemical effects from the modelling and to 

focus on the interaction of the shear-driven cooling film with the hot gas. Additionally, ethanol provides the 

advantage of being a potential rocket fuel itself, especially in the light of the efforts to reduce the use of harmful 

substances like hydrazine or its derivatives in future hypergolic rocket propellant combinations.  

 

The experimental setup shall allow for representative flow conditions with respect to the velocity of the hot gas flow 

as well as of the cooling film. Hence, a subsonic gas flow at moderate Mach numbers was envisaged. The use of 

ethanol as film coolant at subcritical operating conditions resulted in operating conditions which are quite moderate 

for a typical rocket combustor: hot gas shall be provided at temperatures between 500 K and 600 K. The limitation to 

600 K avoids the risk of auto-ignition with the oxidiser in the hot gas flow. To investigate the effect of the pressure 

on the heat transfer process, two different pressure levels shall be tested, namely ambient pressure and 2 bar. 

 

To provide detailed information on the evolution of the liquid cooling film with respect to its thickness and 

temperature evolution along the wall, the experimental channel shall provide optical access at several positions. The 

channel wall shall feature interfaces to install thermocouples to measure the channel's wall temperature.  

 

The interfaces of the setup shall comply with the interface conditions of the M11.1 test facility of DLR in 

Lampoldshausen, which has been selected for performing the tests.  
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Figure 1: Thermal and transport properties of potential liquid film fluids 

 

2 Experimental Setup 
The tests were performed at the M11.1 test facility of DLR in Lampoldshausen. For details on the M11.1 air vitiator 

and its repeatability of boundary conditions refer e.g. to [23] and [24]. The design of the experimental setup is 

described in detail in the following sections.  

 

2.1 Channel Design 
Figure 2 shows a schematic of the test setup. Compressed air is heated with a hydrogen-fuelled chemical air-vitiator 

(pre-heater). The hot air is piped to an approach section which transforms the circular cross section of the preheater 

duct to the rectangular shape of the test section and which ensures the required homogeneity of the inflowing gas at 

the start of the test section. The test section itself comprises the film injector and the channel housing featuring 

optical access and the channel floor with thermocouples. In order to allow for an adaptation of the chamber pressure 

independently of the temperature and pressure of the hot gas flow, a variable exhaust section is installed at the 

channel's exit.   

 

 

Figure 2: Functional schematic of test setup 
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Figure 3: CAD view of the test setup installed on a support rig 

 

Table 1: Geometry of the test section 

Parameter Symbol Value  Comment 

Channel length L
test

 1.0  m Long enough to ensure film dry-out point is within test section 

Channel width W
test

 0.12 m Max. width limited by LIF measurements and max.   𝑚̇
hotgas

 of facility 

Channel height H
test

 0.08 m Depends on max. 𝑚̇
hotgas

 of facility and boundary layer thickness  

 
The actual design of the experimental setup is illustrated in Figure 3. The approach section, which comprises the 

transition piece to adapt the cross section of the channel and a short settling section to provide a homogeneous inflow 

profile, is illustrated in green in the CAD view. The subsequent test section is equipped with numerous windows to 

provide access for optical diagnostics. The exhaust section, comprising a variable-area shutter gate to set the system 

pressure, is flanged to the right end of the test section. CFD simulations have been performed to assess the flow 

homogeneity, the evolution of the boundary layer and the effect of the vortex structure upstream of the shutter gate at 

the exit. The simulations confirmed that the setup provides the required quality of flow conditions for the 

experiments.  

 

Table 1 lists the geometry of the test section. To allow monitoring the evolution of the film coolant flow in a wide 

range of mass flow rates, the test section has been designed to stretch across a length of Ltest = 1 m. The cross section 

of the channel is given with 12 cm x 8 cm.  

 

Figure 4 shows an overview of the test section. It comprises the channel housing with the installation positions for 

windows on the top and on the lateral side, as well as the film injector subassembly and the base plate, which is fixed 

to the setup via clamping plates at the bottom. The channel housing is made of aluminium alloy; the base plate is 

made of copper. Before starting a test, its temperature can be adjusted via dedicated heater pads which are glued to 

the base plate. 

 

The lateral windows can be installed at dedicated ports which are distributed equidistant along the channel axis. The 

vertical position of the windows allows a flush alignment of the window with the bottom of the channel in order to 

properly resolve the cooling film height with the optical diagnostics. The location of the top window takes into 

account that due to the limitation of the test time and the time it takes for the Laser-induced Fluorescence (LIF) 

temperature images to be taken, the optical temperature measurement cannot be performed along the entire channel 

length during one test run. Moreover, the LIF measurement is of interest only in the region where the film is heated 

from injection temperature to saturation temperature.  
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Figure 4: Test section 

 

 

The injector is fixed to the channel from the bottom. The cover of the injector, which forms the annular passage 

through which the coolant is injected into the measurement section, is fixed to the body by screws from below.  

 

First CFD simulations have shown that the design of the coolant manifold and the routing of the coolant inside the 

injector provide a homogeneous distribution of the film to the injector orifices. Subsequently, various CFD 

simulations were run by ArianeGroup and Numeca to address the following issues:  

 

 Effect of the detailed design of the coolant manifold upper volume on the homogeneity of the injected film 

 Effect of injection geometry - discrete bores vs. continuous slot on film quality 

 Effect of size of rearward facing step above injector on flow topology of film 

 Effect of ramp angle downstream of film injector on film homogeneity and entrainment 

 

Hot gas flow direction 

Film injector 
subassembl

Windows 

Channel 
housing 

Hot gas flow direction 

Clamping 
plates 

Channel base 
plate 

Thermocouple installation (exemplarily) 

Heater pad 
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For the design of the coolant manifold, the result of the simulations suggested modifying the geometry of the injector 

manifold to avoid secondary flows or regions of stationary vortex structures or regions of stagnation. The design 

limits also as far as possible the heat transfer from the hot gas flowing over the injector plate to the coolant fluid 

inside the manifold. Stainless steel was selected as material for this part to limit its thermal conductivity. The use of 

ceramic material to further reduce the heat input was discarded due to its limited machinability, its thermal expansion 

coefficient (which would not match to the rest of the setup), its availability and procurement lead time. 

 

Figure 5 illustrates the investigations on the effect of the orifice geometry on the transient evolution of the film 

quality performed by Numeca. Whereas a configuration with discrete injection bores (as shown in the left image in 

Figure 5) would be more representative of the later application in a liquid rocket engine, where the liquid cooling jets 

potentially would impact under an oblique angle onto the combustion chamber wall, a continuous slot (like the one 

shown in the right image of Figure 5) results in a more homogeneous and well-controlled injection profile. This is 

better suited for fundamental code validation purposes focussing on the heat and momentum exchange further 

downstream. Consequently, it was decided to proceed with a configuration using a continuous slot. 

 

Figure 6 illustrates simulations performed by ArianeGroup on the effect of the thickness of the injector cover on the 

interaction of the hot gas flow and the liquid film downstream of the injector. The thickness of the injector cover 

defines the height of the rearward facing step at the injector, which induces a vortex structure impinging on the liquid 

film. From a numerical point of view, an infinitesimal thin step would be desirable. In real applications in liquid 

rocket engines, the flow structure is far more complex with the film being injected through discrete bores and very 

large recirculation zones of combustion gases close to the injector face plate. In the experiment the film cover was 

designed as thin as seems reasonable from an engineering point of view, given the fact that the top cover shall be 

machined at limited cost and shall provide sufficient mechanical strength against thermal dilatation.  

 

The design of the coolant manifold aims at minimising the heat input to the coolant fluid through the thin-edged 

cover plate to avoid local boiling of the ethanol due to the heat impact from the cover plate. As the film injector's 

cover is planned to be installed flush with the bottom floor of the experiment, its overall height directly influences 

the angle of the ramp, across which the film is injected to the film cooled wall. As with the injector cover, an 

infinitesimal height would be desirable. The slot height and the thickness of the lip chosen for the final configuration 

result in a ramp angle of just below 1.5°.  

 

Table 2 lists the geometry parameters of the film injection slot.  

 

 

      

Figure 5: Flow simulation by Numeca: 23 discrete bores vs. continuous slot  

 

 

 

Figure 6: ArianeGroup assessment of effect of thickness of rearward facing step  
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Table 2: Film injector parameters 

Parameter Symbol  Value 

Slot height h 0.25 mm 

Lip thickness / cover thickness t 0.40 mm 

Slot width w 100 mm 

Ramp angle  1.5° 

 

 

The channel base plate to which the film is injected is designed as an uncooled copper plate. It is set to a pre-defined 

bulk temperature before the start of the experiment in order to make use of the thermal inertia of the massive copper 

plate and heat up the floor plate prior to the test. The required range of temperature is limited by the saturation 

temperature of the coolant fluid. In all test cases, the difference between the hot gas temperature and the film 

temperature will be significantly higher than the temperature difference between the film and the wall, so that the 

potential heat flux from the channel wall to the film is subordinate to the heat input form the hot gas.  

 

The use of electrically heated pads which are glued to the lower surface of the copper plate can provide the required 

structure temperature in approximately 15 minutes. The heating power required is in the range of 0.7 kW to 2 kW. 

Before and during the test, the structure temperature was monitored with numerous type K thermocouples, which are 

installed in the bottom floor. The sheathed thermocouples feature an isolated measurement tip to avoid electric 

interference with the metallic test setup. They are installed in bores which end at a distance of 1 mm from the hot gas 

wall. The location and the spacing of the thermocouple bores are illustrated in Figure 7  

 

 

 

 

 

 

Figure 7: Channel floor plate with bores for thermocouples (film injector not shown) 

 

  

Clamping plate Cu channel floor plate Hot gas flow direction 

50 mm 100 mm 

2
0
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2.2 Optical Diagnostics 
To increase the quality of the already existing data base on liquid film cooling, the experiments used non-intrusive 

measurement techniques, which have been developed by VKI and DLR to fit to the experiment's requirements. VKI 

used a Laser-Induced-Fluorescence (LIF) setup to measure the bulk temperature of the liquid film downstream of the 

injection slot. DLR applied the so-called Background-Oriented Schlieren (BOS) technology to measure the film 

thickness independently of the LIF setup.  

 

LIF is a non-intrusive measurement technique, which is based on creation of an unstable energy state of a 

fluorophore dissolved in a flow, excited by a certain energy wavelength. A detailed description of the LIF technology 

can be found in [25]. In this setup, the LIF-technology was applied in the so-called 2-Colours-2-Dyes configuration 

(2C2D), in which two different dyes were used and excited at the same wavelength. This allows eliminating the 

effects of potential variations of dye concentration due to the evaporation of the liquid film. Another challenge for 

the LIF temperature measurement was the thin thickness of the film, which was expected to measure around 0.2 mm. 

To cope with this challenge, extensive calibration tests were performed before the setup was used at the M11.1 test 

facility. These calibration tests also addressed the long-duration stability of the dyes and the effect of evaporation on 

the recorded emission spectra.  

For this application, a laser beam expanded till a cross section of 20 mm of diameter and directed with an inclination 

of about 15° illuminated the liquid film, creating an ellipse of light on the liquid interface. The laser used was a 

Nd:Yag pulsed laser at 30 mJ and repetition rate of 15 Hz of the Litron brand. The collection device was an Ocean 

Optics spectrometer HR2000 provided with a fibre optic with aperture diameter of 600 µm. The fibre optic on the 

side of the liquid film was equipped by a spherical lens of 25 mm diameter, focal length of 20 mm and Numerical 

Aperture of 0.60. The system composed by the fibre optic head and the spherical lens looked from above the liquid 

film interface with an inclination of about 15°.  

 

The LIF optical test bench designed to operate at the M11.1test facility is shown in Figure 8. Figure 9 illustrates the 

excitation laser path and the fluorescent emission cone collected by the Top probe. In Figure 10, a picture of the LIF 

optical test bench mounted in the M11.1facility is presented, where the position of the calibration cell is visible. 

Indeed, the optical arrangement was such that in order to perform the daily verification of the calibration of the 

solution, the prism could be turned by 180° and realigned on the calibration cell. 

 

 

Figure 8: LIF setup configuration 
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Figure 9: Test setup installed at M11.1test facility 

 

 

Figure 10: Test setup installed at M11.1test facility 

 

To provide an additional non-intrusive and independent measurement on the film thickness, DLR installed an optical 

setup which applied the so-called "Background-Oriented Schlieren" technology. The Background Oriented Schlieren 

technique also known as ‘synthetic Schlieren’ ([26] and [27]) is a relatively new flow visualization technique. It has 

only become available during the last two decades through advances in computational image processing. Like the 

conventional Schlieren technique it is based on the deflection of light rays by gradients in the refractive index of the 

medium. However, in contrast to conventional Schlieren techniques the BOS technique has the advantage of a very 

simple setup and the fact that the field of view is not limited by the size of the optics. The basic principle of a BOS 

setup can be seen in Figure 11. 
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Figure 11: Background Oriented Schlieren (BOS) Setup Scheme 

 

A special background with a high spatial frequency pattern is recorded by a camera. This background can be e.g. a 

printed pattern or a laser speckle background. Due to refractive index gradients which are induced by the flow, light 

rays are deflected by a small angle. This causes a displacement of pixel in the recorded image compared to a 

reference image without flow. These displacements can then be computed by different image processing algorithms 

to ultimately create an image of the flow field. DLR Lampoldshausen uses the in-house developed and Matlab-based 

software BOSVIS, (see Fig. 16) which applies the optical flow algorithm by Horn and Schunck [28] to calculate the 

flow field. Unlike cross-correlation algorithms, the original resolution of the images is preserved when using optical 

flow algorithms (see [29]). Furthermore, computational very efficient implementations of this algorithm are already 

available for Matlab (see [30]). In order to further improve the results of the Horn-Schunck algorithm, additional post 

processing features have been implemented in the BOSVIS software. 

 

 

Figure 12: Screenshot of current BOSVIS software  

In order to determine the film thickness preliminary experiments using a Background Oriented Schlieren setup were 

performed. The BOS test setup consists of an actively cooled array of 30 Cree® XP-E2-Q4 green high power LEDs 

featuring a total electrical power of more than 100 W, which illuminate a backlit Plexiglas plate with a 1200 dpi 

high-resolution speckle background. The imaging is done by an industrial CCD camera (FLIR® Blackfly® S BFS-

U3-51S5M-C, 200 fps), equipped with a C-mount lens (Fujinon® HF50HA-1B, 1:2,3/50 mm). The LEDs emit green 

light, since the selected camera is most sensitive in the green spectrum of light. This high performance BOS system 

has been developed out of a BOS legacy on supersonic flows and Scramjet research at M11.1 (see [28]). 

DOI: 10.13009/EUCASS2019-150



EUCASS-2019-150 

 12 

3 Experimental Results  

3.1 Operating Conditions 
The test campaign was performed between January and June 2019. A first series of tests was performed without film 

injection to characterise the hot gas system only. These tests provided information on the general behaviour of the 

setup, the transient characteristics of the test section and the reproducibility of the hot gas conditions.  

 

Subsequently, the tests with different film coolant mass flow rates were performed. Altogether, more than 100 load 

points were performed, covering various different operating conditions in mass flow rates, pressure and gas 

temperature. The range of parameters investigated is given in Table 3. The blowing ratio given in the diagram has 

been calculated as ratio of the momentum flux of the cooling film and of the hot gas: 

 

𝑀 =
𝜌𝐿 ∙ 𝑣𝐿
𝜌𝐺 ∙ 𝑣𝐺

 

 

 

Table 3: Range of experimental parameters 

Parameter Symbol  Values 

Hot gas temperature THG 500 K; 600 K 

Hot gas mass flow rate 𝑚̇HG 0.63 kg/s; 1.35 kg/s 

Hot gas static pressure pHG 1 bar; 2 bar 

Film mass flow rate 𝑚̇film 5 g/s; 10 g/s, 20 g/s; 30 g/s; 40 g/s 60 g/s 

Blowing ratio M 1.5 - 50 

 

Figure 13 shows the operating conditions as a diagram in which the hot gas temperature THG has been plotted vs. the 

blowing ratio M.  

 

 

Figure 13: Film Cooling Operating Conditions: Blowing ratio M vs. pressure and gas temperature 

 

 

3.2 Wall Temperature Measurements 
First results from the thermocouple wall temperature measurements are shown in Figure 14 and Figure 15. The data 

shown in the diagrams have been recorded in a test with a hot gas mass flow rate of 1.35 kg/s at a temperature of 

600 K and a pressure of 2 bar. A film mass flow rate of 10 g/s was injected at ambient temperature. The coolant 

temperature is measured during the test in the injector manifold and is shown with a black line. A red line shows the 
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hot gas pressure and indicates a run time of 20 seconds. The measured wall temperatures are given with various 

colours. 

During the test sequence, the cooling film is injected 5 seconds before the hot gas valve is opened in order to 

properly establish a liquid film before this interacts with the hot gas flow. This results in a noticeable drop of 

approximately 2 - 3 K in the wall temperature at H0-5 seconds in all axial positions. Due to heat transfer effects in the 

film injector manifold, the coolant temperature stabilizes approximately at H0+3 seconds.  

 

Figure 14: Wall temperature measurements: lateral distribution 50 mm downstream of injector  

(Film mass flow rate 10 g/s, gas mass flow rate 1.35 kg/s, gas temperature 600 K) 

 

  

Figure 15: Wall temperature measurements: lateral distribution 500 mm downstream of injector 

(Film mass flow rate 10 g/s, gas mass flow rate 1.35 kg/s, gas temperature 600 K) 
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Comparing the wall temperature signals recorded at the two axial positions (50 mm downstream of the injector in 

Figure 14 and 500 mm downstream of the injector in Figure 15, respectively) show that the wall temperature 

measurements give a very homogeneous result in span-wise direction with a scatter of less than 2 K at test start. Note 

that during this test, the initial wall temperature of the bottom wall was not exactly uniform at the beginning of the 

test due to the heat input from a preceding test run. From the injector to the last measurement position, an increase in 

the wall temperature of about 15 K was recorded before the start of the test.  

 

Figure 14 shows that at a position 5 mm downstream of the film injector the wall is continuously cooled down by the 

film injection, approaching a steady-state plateau at H0+20 seconds, when the test is stopped. In contrast, the wall 

temperature at a position 500 mm downstream of the injector increases continuously throughout the test (see Figure 

15).   

 

Figure 16 illustrates the evolution of the wall temperature along the central axis of the setup. The axial temperature 

profile of the wall, which is present at the start of the experiment, can clearly be seen before H0. The decreasing 

efficiency of the cooling film is illustrated by the different slopes of the temporal evolution of the wall temperature at 

different axial positions. At the end of the test, the axial temperature gradient only slowly levels out.  

 

 
 

Figure 16: Wall temperature measurements: axial evolution along centreline from 50 mm to 700 mm 

downstream of injector (Film mass flow rate 10 g/s, gas mass flow rate 1.35 kg/s, gas temperature 600 K) 

 

 

3.3 Optical Diagnostics - Film Temperature 
First results from LIF technique are presented in Figure 17. The data shown correspond to a position of about 118 

mm downstream to the injector and they have been recorded with a hot gas mass flow rate of 1.35 kg/s at a 

temperature of 600 K and a pressure of 2 bar. Only the data coloured in red were recorded at a testing pressure of 

1 bar. The liquid flow rate varies between 5 and 30 g/s. In the plot, markers represent LIF data while continuous lines 

represent the thermocouple values at a position 150 mm downstream to the injector at the axial position. Additional 

measurements have been performed at a position 378 mm downstream to the injector with the same test conditions 

(see Figure 18). For this position, no LIF data were available at a film flow rate of 5 g/s due to an irregular presence 

of dry-spots, probably located upstream. The available data at 10, 20 and 30 g/s suggest that the liquid temperature is 

not affected by the film mass flow rate.  
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Figure 17: LIF temperature measurements at 118 mm downstream to the injector and corresponding wall temperature 

measurements at the axis, 150 mm downstream to the injector.  

 

 

 

Figure 18: LIF temperature measurements at 378 mm downstream to the injector and corresponding wall temperature 

measurements at the axis, 400 mm downstream to the injector.  

 

 

3.4 Optical Diagnostics - Film Thickness 
Figures 19 to 21 show preliminary BOS results for a hot run at 600 K stagnation temperature and 2 bar static 

pressure in the experimental channel as an example. This corresponds to a hot gas mass flow rate of 1.35 kg/s. 

Ethanol coolant was injected at a rate of 20 g/s into the main flow. The interrogation area shown covers the whole 

first lateral window with a length of 200 mm and a height of 20 mm. In all images the ramp can be identified on the 

left hand side with a length of about 20 mm. Furthermore, dark areas appear at the upper left and on both corners of 

the window. Those areas are cracks in the window caused by thermal stresses on the experimental channel and the 

resulting thermal expansion. They appear as dark areas, since they obscure the speckle background and therefore get 

subtracted by the BOSVIS algorithm. Figure 19 shows a sharp border between the coolant boundary layer and the 

hot gas main flow, which corresponds to the other results gained so far by BOS. They indicate that this method is 

well applicable for determining the film thickness. Figures 20 and 21 show that the main displacement takes place in 

the vertical direction, whereas only small displacements are found in the horizontal direction. 

Further BOS results indicate an inhomogeneous coolant boundary layer with surface waves and evaporation, which 

is currently under investigation but might have an effect on the LIF measurements that needs to be compensated. 

 

 
Figure 19: BOS total displacement image of ethanol coolant film at  

600 K, 2 bar, 1.35 kg/s and 20 g/s coolant mass flow rate, 1
st
 lateral window 
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Figure 20: BOS vertical displacement image of ethanol coolant film at  

600 K, 2 bar, 1.35 kg/s and 20 g/s coolant mass flow rate, 1
st
 lateral window 

 

 
Figure 21: BOS horizontal displacement image of ethanol coolant film at  

600 K, 2 bar, 1.35 kg/s and 20 g/s coolant mass flow rate, 1
st
 lateral window 

 

 

4 Discussion of Results 
More than 100 individual load points have been recorded, providing a sound data base for the validation of 

engineering and high-fidelity simulation models. A detailed analysis of all the test data is currently in progress. In 

parallel, simulations at ArianeGroup and Numeca are being performed to validate the individual CFD codes against 

dedicated test cases, which have been derived from the experimental data base. As soon as these simulations are 

finished, a comparison of the simulation and the experimental results will be published.  

 

An experimental data base for liquid ethanol cooling films has been established. The test data recorded at different 

operating conditions allow for assessing the effect not only of mass flow rate and temperature of the hot gas and the 

film coolant, but also of the pressure and of the wall temperature of the wall under the cooling film. Wall temperature 

measurement was successfully performed at various axial and lateral positions in the cooled wall. Non-intrusive LIF-

based temperature measurements of the liquid cooling film have been performed successfully.  

 

A first qualitative analysis of the test data showed that the data base allows for quantifying the effect of operating 

parameters like the gas mass flow rate, temperature and pressure on the film behaviour. The measured wall 

temperatures indicate an effect of the film mass flow rate of the axial temperature gradient. A quantitative assessment 

of the data has not been performed yet. As expected, the LIF temperature measured at the first axial position shows 

an effect of the cooling efficiency and hence on the difference between wall temperature and film temperature. For a 

more detailed analysis, the offset of the initial wall temperature values in the different tests needs to be taken into 

account. The same applies for the effect of the operating pressure, which can be assessed in Figure 17 when 

comparing the blue and the red symbols. Data seem to indicate that in the case with the lower pressure the heat input 

into the film and the wall is lower, resulting in a better cooling performance of the film. Again, a more detailed 

analysis of the data is required before definite conclusions can be drawn. 
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At a position of 378 mm downstream of the film injection, the comparison of LIF-based film temperature 

measurement and wall temperature values measured with the thermocouples shows a clear effect of the film mass 

flow rate on the cooling efficiency of the film: With increasing film mass flow rate, the difference between wall 

temperature and film temperature increases. Again, the effect of initially different wall temperature levels needs to be 

taken into account for a more detailed quantitative analysis. The fact that the liquid film temperature does not vary in 

this position for the different film mass flow rates indicates that the ethanol has reached its saturation temperature in 

this position. Here, a detailed comparison of the measured temperature with the theoretical saturation temperature at 

the static pressure in the experiment needs to be performed; the latter increases from 351 K to 370 K with an increase 

in pressure from 1 bar to 2 bar.   

 

The experiments showed that achieving steady state wall temperature conditions was not quite straightforward during 

the tests. The heating pads could be used to deliberately modify the wall temperature at the start of the experiment. 

However, the comparatively high mass of the floor plate provided significant thermal inertia, which was visible as 

axial temperature gradient at test start in some of the experiments. For the validation of simulation models, the axial 

wall temperature profile needs to be taken into account. 

 

For high film mass flow rates, the interaction of the cooling film with the hot gas resulted in a noticeable reduction of 

the hot gas bulk temperature, which was measured before the exit of the test section. Whether this is attributed to 

evaporation effects only or additional effects of entrainment of film fluid in the hot gas core flow is currently being 

investigated. Such effects have been detected by BOS; but since the data is still undergoing post-processing the 

results of this analysis will be included in future publications 

 

 

5 Summary 
Within a test series at the M11.1 air vitiator test facility of DLR Lampoldshausen, liquid film cooling tests have been 

performed using liquid ethanol as film fluid. The film fluid, as well as, the operating conditions were selected to be 

representative of operating conditions in a small rocket combustion chamber. The tests deliberately aimed at 

avoiding a chemical interaction of the hot gas and the cooling film; instead the design of the experiment focusses on 

the interaction of a shear-driven liquid film subjected to heat transfer.   

 

The tests used thermocouples to monitor the film cooled wall temperature during the test. Additionally, the von-

Karman-Institute performed in-situ temperature measurement of the film using a specially calibrated LIF setup. DLR 

developed a setup to perform a Background-Oriented Schlieren measurement of the film thickness along the channel 

floor.  

 

The test data can be used to assess the film efficiency along the channel wall for various operating conditions and 

serves as a data base for the validation of numerical models which are currently being developed at Numeca.  

 

 

6 Outlook 
Dedicated load points will be selected as reference test cases for the validation of numerical models of Numeca and 

ArianeGroup. Whilst ArianeGroup focuses on the anchoring and improvement of its 3D-Navier-Stokes solver 

Rocflam3, Numeca is currently updating the multiphase flow simulation capabilities of its Fine
TM

/Open with 

OpenLabs
TM

 integrated environment to take into account effects of heat transfer and evaporation.  
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