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Abstract
A modified multi-pole impedance model and corresponding time-domain broadband impedance boundary
condition (TDIBC) is developed. It is validated by a two dimensional case in which the reflection of an
acoustic line source by an infinite impedance surface with uniform mean-flow is solved numerically. The
numerical efficiency and accuracy of the time-domain impedance boundary condition is then analyzed. It
is found that the number and positions of the poles in the impedance model are the key factors that have
an influence on the computational time. However, they barely affect the accuracy of the numerical results.

1. Introduction

Fan noise is one of the most important components of turbofan engine noise. Nacelle acoustic liner is one of the
efficient noise suppression method to prevent the fan noise radiating to far field. The acoustic lining is a perforated
sheet mounted on a honeycomb core with an impervious backing plate. For numerical investigation, it is extremely
time-consuming to resolve all the resonators to evaluate the acoustic performance. In order to avoid modeling the
realistic acoustic liner structure, impedance models and corresponding impedance boundary conditions have been
developed. With an aeroacoustic propagation solver, the simulation and optimization of acoustic liner are feasible.
Among the diverse impedance models, the multi-pole model is a purely numerical model which is generic and broad-
band. It is generally a summation of adjustable first- and second-order systems and to be tuned to fit the resistance and
reactance values. Several alternative mathematical forms are available from previous literatures.1, 4, 11, 14

Based on previous experience of using the multi-pole model, it is found that the time-step and accuracy wound be
affected by the positions and number of the poles. Therefore, the numerical efficiency and accuracy of the time-domain
multi-pole impedance boundary condition is analyzed in this paper. An overview of multi-pole impedance models and
the modified model proposed in this paper are given in Section 2. Numerical model and algorithms are described in
Section 3. Then the numerical results and analysis is given. Conclusions are made in the last section.

2. Multi-pole impedance model

2.1 An overview of multi-pole impedance models

In this section, an overview of multi-pole impedance models in the frequency domain is given. Reymen et al.14

proposed an impedance model in the form of a partial fraction expansion with resudues A j and poles ζ j.

Z(ω) =

N∑
j=1

A j

iω − ζ j
(1)

In practice, Reymen et al.14 focused on fitting the impedance data give by the three-parameter model.16 Hence, only a
pair of complex conjugate poles is used to represent the model as given by Eq. (2).

Z(ω) =
A1

iω − ζ
+

A2

iω − ζ∗
=

a1(iω) + a0

(iω − α)2 + β2 (2)
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The two complex conjugated poles are α ± iβ.
Bin et al.1 proposed a linear sum of second-order frequency response functions (FRFs) model to represent the
impedance. In their paper, four FRFs were used to obtain a good approximation of impedance data from NASA
Langley.10

Z(ω) =

N∑
j=1

a j
1(iω) + a j

0

b j
2(iω)2 + b j

1(iω) + b j
0

(3)

Li et al.11 proposed an improved multi-pole broadband impedance model,

Z(ω) = a0 +
a1

iω
+ a2(iω) +

N∑
j=1

 A j

iω − ζ j
+

A∗j
iω − ζ∗j

 (4)

where A j and ζ j are complex parameters, ∗ denotes the complex conjugate. This model is a combination of three-
parameter model16 and a multi-pole model.
Dragna et al.4 proposed a model which consists three terms.

Z(ω) = a0 +

M∑
j=1

a j

iω − λ j
+

N∑
j=1

 A j

iω − ζ j
+

A∗j
iω − ζ∗j

 (5)

where a0 is the limit value of Z(ω) as ω tends to infinity, λ j are real poles and ζ j, ζ∗j are a pair of complex conjugate
poles.

2.2 A modified multi-pole model

The impedance model proposed in this paper can be presented as,

Z(ω) = a0 + iωa1 +

M∑
j=1

b j

iω − λ j
+

N∑
j=1

 A j

iω − ζ j
+

A∗j
iω − ζ∗j

 (6)

where a0, a1, b j and λ j are real numbers, and λ j > 0. A j and ζ j are complex numbers and<(ζ j) > 0.

3. Numerical model and algorithms

3.1 Numerical model

Reflection of an acoustic line source by an infinite impedance surface with uniform mean-flow3 as shown in Fig. 1 is
solved numerically. The mach number is Ma = 0.5. The annular frequency is ω = 31 and the corresponding acoustic
impedance is Z = 0.75 − (39/3100)i. A uniform mesh is designed in which ∆x = ∆y = 0.004. For comparison, a
simulation of sound reflection by an infinite hard wall is conducted as well.
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Figure 1: Sketch of the numerical model.
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Two models are used to achieve the target impedance at the given frequency. The first one is an ideal model,

Z(ω) = R − i cot(
ωL
c

) (7)

where R = 0.75 and L = 0.0502650434. As show in Fig. 2, the resistance is constant for all frequencies and the
reactance is a function of cotangent.

Figure 2: Acoustic impedance given by Eq. (7).

The second model deployed is this paper is Guess’s model.5 It is a semi-empirical model given by,

Z(ω) =

√
8νω
σc

(
1 +

t
d

)
+
π2

2σ

(
d
λ

)2

+
(1 − σ2)

σ

[
|u0|

c
+ kM

]
+ i

[
ω(t + δ)
σc

− cot
(
ωL
c

)]
(8)

The unknown parameters in the formula are derived to meet the impedance at the target frequency and given in Table.
1. Figure 3 shows the impedance spectrum.

Table 1: Coefficients of Guess’s impedance model

t (mm) d (mm) L (mm) σ δ (mm) |u0| (m/s) k
1 1 347.521 17.3127% 0.33333 0.65257 0.25

Figure 3: Acoustic impedance given by Eq. (8).

The vector fitting method6 is used to determine the coefficients in the multi-pole models. The values of the coefficients
and corresponding RMS errors are given in Appendix A2.
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3.2 Numerical algorithms

The two-dimensional linearized Euler equations (LEE) are adopted as the governing equations. The non-dimensional
form is written as,

∂U
∂t

+ A
∂U
∂x

+ B
∂U
∂y

+ DU = 0 (9)

U =


ρ
u
v
p

 A =


u0 ρ0 0 0
0 u0 0 1

ρ0

0 0 u0 0
0 γp0 0 u0


B =


v0 0 ρ0 0
0 v0 0 0
0 0 v0

1
ρ0

0 0 γp0 v0

 D =


∂u0
∂x +

∂v0
∂y

∂ρ0
∂x

∂ρ0
∂y 0

1
ρ0

(
u0

∂u0
∂x + v0

∂u0
∂y

)
∂u0
∂x

∂u0
∂y 0

1
ρ0

(
u0

∂v0
∂x + v0

∂v0
∂y

)
∂v0
∂x

∂v0
∂y 0

0 ∂p0
∂x

∂p0
∂y γ

(
∂u0
∂x +

∂v0
∂y

)


An in-house code based on advanced computational aeroacoustic (CAA) methods is deployed to solve these equations
numerically. The spatial discretization utilizes the seven points 4th order dispersion-relation-preserving (DRP) scheme
proposed by Tam & Webb.17 And the optimized 2-N storage 5/6 Runge-Kutta scheme8, 15 is implemented for time in-
tegration. An artificial selective filter proposed by Bogey & Bailly2 is adopted in the numerical simulation to eliminate
the unresolved short-wave components. In this paper, the filter coefficient is 0.0005 for the whole computational do-
main. In addition, an absorption boundary condition based on the perfectly matched layer method (PML) developed by
Hu et al.7 has been implemented. The discretization of the singular 2-D line source satisfies the fourth order moment
and smoothness conditions.13

The Myers or Ingard-Myers boundary condition9, 12 is used in this paper in which the acoustic normal displacement
and acoustic pressure are assumed continuous across the liner surface. It is a linearized frequency-domain boundary
condition.

p̃ = Zũ · n −
ū
iω
· ∇ p̃ +

p̃
iω

n · (n · ∇ū) (10)

The time-domain impedance boundary condition is derived by applying the inverse Fourier transform to Eq.(10),

p(t) =

∫ t

0
z(t − τ)u(τ) · ndτ −

∫ t

0
ū · ∇p(τ)dτ +

∫ t

0
n · (n · ∇ū)p(τ)dτ (11)

where z(t) is the inverse Fourier transform of Z(ω),

z(t) =
1

2π

∫ +∞

−∞

Z(ω)eiωtdω (12)

The inverse Fourier transform of Z(ω) in Eq. (6) is,

z(t) = a0δ(t) + a1
∂δ(t)
∂t

+

M∑
j=1

b jeλ jtH(t) +

N∑
j=1

2e<(ζ j)t
[
<(A j) cos(=(ζ j)t) − =(A j) sin(=(ζ j)t)

]
H(t) (13)

where δ(t) is the Dirac function and H(t) stands for the Heaviside function. Substituting Eq. (13) into Eq. (??),

p(t) = a0vn(t) + a1
∂vn(t)
∂t

+

M∑
j=1

b jφ j(t) +

N∑
j=1

2
[
<(A j)χI

j(t) − =(A j)χII
j (t)

]
− ū jψ j(t) + nin j

∂ūi

∂x j
Ψ(t) (14)
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where φ j(t), χ1
j (t), χ

2
j (t) and ψ(t) are accumulators which are convolution calculation.

φ j(t) =

∫ t

0
eλ j(t−τ)vn(τ)dτ

χI
j(t) =

∫ t

0
e<(ζ j)(t−τ) cos[=(ζ j)(t − τ)]vn(t)dτ

χII
j (t) =

∫ t

0
e<(ζ j)(t−τ) sin[=(ζ j)(t − τ)]vn(t)dτ

ψ j(t) =

∫ t

0

∂p(τ)
∂x j

dτ

Ψ(t) =

∫ t

0
p(τ)dτ

The evaluation of the convolution integral in Eq (14) is extremely time consuming. Bin et al.1 and Dragna et al.4

developed an auxiliary differential equations (ADE) method, also referred as a generalized recursive method to avoid
the computationally heavy problem in calculating the convolution integral numerically. The fundamental idea of the
ADE method is calculating the accumulators by a differential system which could be easily derived by differentiating
the above equations.

∂φ j

∂t
− λ jφ j − vn = 0 (15)

∂χI
j

∂t
−<(ζ j)χI

j + =(ζ j)χII
j − vn = 0 (16)

∂χII
j

∂t
−<(ζ j)χII

j − =(ζ j)χI
j = 0 (17)

∂ψ j(t)
∂t

−
∂p
∂x j

= 0 (18)

∂Ψ(t)
∂t
− p = 0 (19)

(20)

In the numerical model used in this paper, the mean flow is ū = [u0 0 0]T and the normal vector on the impedance
boundary is n = [0 1 0]. Thus, the Ingard-Myers boundary condition could simplified as,

p̃ = Zṽn −
u0

iω
∂p̃
∂x

(21)

The corresponding time-domain impedance boundary condition is,

p(t) = a0vn(t) + a1
∂vn(t)
∂t

+

M∑
j=1

b jφ j(t) +

N∑
j=1

2
[
<(A j)χI

j(t) − =(A j)χII
j (t)

]
− u0ψx(t) (22)

4. Numerical results and discussion

Firstly, the maximum stable CFLmax is tested for both the hard wall and soft wall cases. It is found that the CFLmax
could reach around 0.85 for the case with hard wall and with the three impedance models. The time cost for each
configurations is given in Tabel 2. The CPU is Intel(R) Xeon (R) E5-2650 2.00 GHz and the memory is 32 GB.
Ten cores are used for each simulation. The comparison indicates that the computational time increases due to the
calculating of auxiliary difference equations is insignificant. For 4 poles, the simulation time almost doesn’t increase.
Even for 16 poles, it only needs 3.2% more time to get the results.
The instantaneous pressure fields with hard surface and impedance surface are given in Fig. 4 respectively. The CFL
is 0.8. Obviously, the reflection of acoustic wave by the surface depends on the impedance. And as a consequence, the
far-field directivity will change correspondingly. Figure 5 provides the directivity comparison of numerical results and

5

DOI: 10.13009/EUCASS2019-1034



EFFICIENCY ANALYSIS OF MP-TDIBCS

Table 2: Computational time for 6 × 104 steps.

Case HW #1 (4 poles) #2 (6 poles) #3 (16 poles)
Cost Time (min) 630.3 634.5 637.3 650.5

Increase (%) - 0.67% 1% 3.2%

(a) Hard surface (b) Impedance surface

Figure 4: Instantaneous pressure field.

Figure 5: Directivity comparison.

analytical solutions.3 The radius is R = 2 from the origin. The results agree with each other very well. All the seven
lobes are correctly resolved.
Figure 6 depicts the directivity comparison of different CFL numbers. It is found that the numerical results with smaller
CFL are general as the same as those with larger CFL number.

Previous investigation11 shown that larger
∣∣∣=(ζ j)

∣∣∣ requires a smaller ∆t to have a stable solution. A case with
a pole having much larger

∣∣∣=(ζ j)
∣∣∣ is designed to check its influence on the ∆t. The parameters are given in Table 3.

In #4,
∣∣∣=(ζ j)

∣∣∣ is 100 times of it in #1 case. The target impedance at ω = 31 remains. When the CFL equals 0.8, the
boundary condition is not stable. As shown in Fig. 7, instability waves occur on the impedance boundary and grow
rapidly. However, the solver becomes stable when the CFL decreases to around 0.3. Figure 8 shows the comparison of

6
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Figure 6: Directivity comparison.

the directivity of sound radiation. The results are nearly the same. Therefore, a pole with larger
∣∣∣=(ζ j)

∣∣∣ will require a
much smaller ∆t to keep the boundary stable, and it doesn’t affect the numerical solutions when a stale CFL is used.

Table 3: Coefficients of the impedance model

No. a0 a1 b j λ j A j ζ j

#4 0.74873 0.02032 19.89724 0.00013 20.16305+0.03386i -0.00289+6251.56473i0.08624 -47.24916

Figure 7: Instantaneous pressure field.
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Figure 8: Directivity comparison.

5. Conclusion

A modified multi-pole impedance model is proposed. And the corresponding time-domain impedance boundary con-
dition is derived. Numerical test shows that the maximum stable CFL could remain as the same as the hard wall case
for poles have small

∣∣∣=(ζ j)
∣∣∣ in the model. The additional computational time due to the boundary condition increases

little. Different impedance models and corresponding parameters make no difference in the results if the target acoustic
impedance at a given frequency is achieved. However, if there is a pole or poles with large

∣∣∣=(ζ j)
∣∣∣ in the impedance

model, the maximum stable CFL decreases. Mathematical analysis is needed to determine the relationship between
CFLmax and

∣∣∣=(ζ j)
∣∣∣ in the future.

Acknowledgments

This work is supported by grants from the National Science Foundation of China (91752204, 51476005), the IMAGE
project and the 111 Project B07009 of China.

Appendix

A1. Definition

Assuming the fluctuating pressure and velocity fluctuations have time dependence, at t → ∞, of the form,

p(x, t) = p(x)ei(ωt−φx), v(x, t) = v(x)ei(ωt−φx) (23)

The Fourier transform and the inverse Fourier transform are defined as,

f̃ (ω) =

∫ +∞

−∞

f (t)e−iωtdt, f (t) =
1

2π

∫ +∞

−∞

f̃ (ω)eiωtdω (24)

The convolution of two functions is defined as,

f ∗ g(t) =

∫ +∞

−∞

f (t′)g(t − t′)dt′ (25)

The acoustic impedance is defined as,

Z(ω) = R(ω) + iX(ω) =
p̃(ω)

ũ(ω) · n
(26)
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where ω is the angular frequency, R is referred as resistance and X is reactance, ũ(ω) · n is the complex amplitude
of the normal acoustic velocity pointing into the lined wall. The frequency depended acoustic impedance is normally
either deduced from an experiment or predicted by a semi-empirical model. And the given impedance data is fitted by
multi-pole impedance models, then the following numerical simulations could be conducted.

A2. Coefficients of the time-domain impedance model

Table 4: Coefficients of the impedance model for fitting Eq. (7)

No. a0 a1 b j λ j A j ζ j RMS Error

#1 0.75501 0.00657 19.89731 -0.00007 20.17765 + 0.03071i −0.00235 + 62.5156i 3.75 × 10−3
-0.44701 -110.10225

#2 0.75376 0.002703 19.89454 0 19.89499 + 0.00006i −0.000002 + 62.50057i 2.02 × 10−6
-0.21241 -154.72834 34.72416 + 0.20610i −0.17822 + 134.17739i

Table 5: Coefficients of the impedance model for fitting Eq. (8)

No. a0 a1 b j λ j A j ζ j RMS Error

#3

1.11441 0.01290 2.89215 -0.00604 2.88001 + 0.00201i −0.00002 + 9.04004i

1.12 × 10−2

-49.74967 -136.08284 2.87882 + 0.00110i −0.00003 + 18.08007i
2.87706 − 0.00014i −0.00000 + 27.12006i
2.87529 + 0.00030i −0.00005 + 36.15999i
2.87494 + 0.00053i −0.00009 + 45.19984i
2.87915 + 0.00030i −0.00002 + 54.23984i
5.53466 + 0.44668i −0.22518 + 64.32188i
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