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Abstract

In order to improve the performance of GNSS RTK positioning, we propose a new RTK algorithm
which combines MCAR with AEKF. In this algorithm, the MCAR method solves ionospheric delay,
and the LAMBDA algorithm is used to improve the success probability of ambiguity fixing. The
AEKF algorithm ensures the continuity and stability of RTK positioning. In the medium baseline
experiment, the proposed algorithm is compared with traditional LAMBDA algorithm. The results
show the proposed algorithm has the centimeter level positioning accuracy. Therefore, the proposed
algorithm can be adapted to the complex scenes which need the high accuracy positioning.

1. Introduction

With the increasing popularity of Global Navigation Satellite Systems (GNSS) and the rapid operation of continuous
operation reference stations (CORS) in major cities, short-baseline and medium baseline real-time kinematic(RTK)
positioning will become a hot spot in the field of high-precision positioning. High-precision positioning using carrier
phase will be widely used. Compared to the long-term precision single-point positioning, the short- and medium-
baseline RTK has advantages in terms of first positioning time, positioning accuracy and dynamic performance.

The traditional carrier phase solution is to search for ambiguity by the least squares ambiguity decorrelation
adjustment algorithm (LAMBDA), and the success rate and complexity of the calculation need to be improved.
Multi-carrier ambiguity resolution (MCAR) can avoid the complex calculation of the traditional ambiguity search
method. By combining the multi-frequency measurement values linearly, the combined measurement values with
longer wavelengths are generated, which is beneficial to fix the ambiguity.

In literature[1], the single-frequency/multi-frequency LAMBDA algorithm for GPS/BDS dual-system RTK
positioning is studied, and the advantages of dual-system in ambiguity resolution and positioning error are compared
and analyzed. In literature[2], the GPS/BDS dual-system short-baseline RTK algorithm based on Kalman filter is
studied. The ambiguity is solved by LAMBDA algorithm, and the implementation details are given. However, since
the LAMBDA algorithm uses the double-difference pseudo-range observation to solve the float solution, the
obtained ambiguity noise variance is large, which makes the ambiguity calculation result difficult to pass the
acceptance test, and the success rate is not high. In literature[3-4], the performance analysis of the existing three-
frequency ambiguity resolution method is carried out, and it is verified that the three-frequency ambiguity solution
has different degrees of improvement in positioning accuracy. The literature [5-6] studied the multi-system
combination positioning, combined with the measured data to verify the ambiguity resolution and positioning
accuracy. The results show that the MCAR optimization algorithm is feasible.

In this paper, the combined RTK positioning is performed by using the two frequencies of L1/L2 of GPS and
B1/B2/B3 of BDS. As the length of the baseline increases, the influence of the ionospheric delay and others on the
ambiguity resolution increases gradually. Therefore, we propose the multi-frequency signal ambiguity resolution and
adaptive extended Kalman filter (AEKF) RTK positioning solution. Then the implementation flow and positioning
algorithm of RTK positioning are given. In the end, the data of two CORS stations are used to carry out the medium
baseline experiment. The success rate and positioning error of the proposed algorithm are compared with the
traditional GPS/BDS LAMBDA algorithm. The results show that the proposed method can better satisfy the user's
reliability and the need of positioning accuracy.
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2. LAMBDA algorithm

The double-difference observation equation of pseudorange and carrier phase can be expressed as:

AP =AX +¢,, )
A =AX -,N, +¢,,

where the A represents a linear coefficient matrix, AP, and A¢ are the DD pseudorange and phase measurements,

and & are measurement noise

X :( X, ¥, z) is baseline parameter, A, is wavelength, N, is ambiguity, AS

Eap
corresponding to pseudorange and carrier phase.
The observation equation can be rewritten as:
X
L=5 M @

Where B is the design matrix and L is the pseudorange and carrier phase observation. In order to estimate the above
observation equations, the least squares criterion is applied. First, the float baseline parameters and the ambiguity
vector are solved as :

A
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Where (), is the covariance matrix of the observation. Then the calculated covariance matrix of the baseline and

ambiguity parameters can be expressed as:

Cov(f(,ﬁfj =(B'0;'B) ' = [gx gXNJ @)

The integer least squares solution can be seen as the solution to the following minimization problem:
mNin(N—NjQJ[N—Nj,NeZ" 5)
N

Finally, the de-correlation search can effectively obtain the integer ambiguity, so that the high-precision carrier phase
observation without ambiguity can be obtained, and the precise positioning of the double-difference carrier phase can
be realized.

3. Ambiguity resolution
3.1 Observation model of multi-frequency signals

The combined double-difference pseudo-code and the phase observation are linear combinations of the triple-
frequency signals, which can be expressed as:
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Where i, j, k are any combination coefficients, f;is the frequency of the signal, the carrier phase observation value of

equation (7) is in meters, and the carrier phase observation value of equation (8) is in units of weeks.
The combined frequency, corresponding wavelength, and integer ambiguity are defined as:

Jojw =0 h+i- Lotk f ©)
C
Ao =
(VR ifitj f,tk-f, 10)
AN(LM) =i-AN,+ j-AN, +k-AN, an

3.2 MCAR algorithm

The ambiguity resolution of the multi-frequency signal is performed in the order of the ultra wide lane EWL, the
wide lane WL and the narrow lane NL. The first step uses the geometrically independent TCAR algorithm to
determine the EWL ambiguity of the BDS. The second step uses the least squares solution of the BDS EWL carrier
phase observation with fixed ambiguity, and uses the LAMBDA algorithm to search for BDS WL and GPS WL
ambiguity. The third step is to combine the BDS WL and GPS WL carrier phase observations with the ambiguity and
the BDS NL and GPS NL carrier phase observation simultaneous equations to obtain the least squares solution and
obtain the BDS NL and GPS NL ambiguity using the LAMBDA algorithm. Finally, the ambiguity of each frequency
signal of BDS/GPS can be calculated according to the fixed BDS WL and GPS WL ambiguity and BDS NL and GPS
NL ambiguity.

(1) EWL ambiguity resolution
A geometrically independent model is constructed for the triple-frequency signal of the BDS system. Using its
carrier phase and pseudo-range observation, the EWL solution equation of the ultra-wide lane is as follows:

Ap,
AN — (0,1,1),B
(0,-1,1).8 " A¢(o,—1,1),3 _l a2)
(0.-1.1).8 ound

Among them, the subscript ‘B’ indicates the BDS system, the EWL carrier phase combination is (0,-11), and the

combined pseudorange is (0.1,1) . Through various experimental analysis before, it can be determined that the EWL
ambiguity solving by the formula (12) is simple and reliable.

(2) WL ambiguity resolution

After successfully determining the EWL ambiguity, the geometric model of the BDS/GPS combination is
constructed to enhance the ambiguity solving model. For BDS satellites and GPS satellites, although their satellite
positions are different, and the double-difference geometric distance from the receiver is different, but since the two
receivers are fixed in position, the baseline vectors b, of the BDS system and the GPS system are common
parameters. Therefore, we can construct a two-system observation equation in equation (13):

A’5(0,—1,1),/}3 AB 0 0 bur gAlb((J,fl,l),B
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Among them, the subscript ‘B’ indicates the BDS system, ‘G’ indicates the GPS system, A/S(O ) is the EWL

B

distance without ambiguity, A%,,l,o),q indicates the WL ambiguity of the L1 and L2 signals combined by GPS, and
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/1(1,0,,1)53 is the WL combined wavelength of BDS. /1(1,_1,0),(3 is the WL combination wavelength of GPS. The
geometric matrix A and 4;are designed by the cosine of the direction of observation.

For the float ambiguity AN, (10-1)5 and AN, (-10.G » the LAMBDA algorithm is used to search for the integer
ambiguity, and the ambiguity of the BDS WL combination can be derived from the linear relationship.

(3) NL ambiguity resolution

In the solution of the first two steps, we obtained the super wide lane and wide lane ambiguity of BDS, and the wide
lane ambiguity of GPS. Here, we consider the ionospheric delay of the BDS satellite and the GPS satellite separately.
Using the original carrier phase observation of the B1 signal and the original carrier phase observation of the L1
signal, the calculation equation of equation (14) can be obtained:

Aoye 4, 0 ar ol|% Eatuo. o
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Among them, Aﬁ(l,o,,l),g and A/A?(L,l,o),g are BDS combined observations without ambiguity , A%,O,o),g is B1 signal
carrier phase observation of BDS, Aﬁ(l,,l,o),g is GPS WL combination observation without ambiguity, and A%,g,g),g
is GPS L1 signal carrier phase observation . A

The unknown vectors in the observation equation are the baseline vector b,, , the NL ambiguity AN, (00,5 of BDS, the
NL ambiguity AZ\A/(LO‘O),G of GPS, the first-order ionospheric delay Al ; of Bl signal of BDS, and the first-order

ionospheric delay A, of L1 signal of GPS. According to the ionospheric relationship between carrier signals of
different frequencies, the coefficient can be derived as follows:

01_1(210 1), /’1(2100
c2= lzl 10) /22100 as)
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4. AEKF RTK algorithm
The flow of the BSK/GPS dual system AEKF RTK pos@?@?&?1899@@,9?999?9@ in this paper is shown in Figure 1.
AEKF

DD pseudorange | |

observations | )
Ambiguity resolution —» > Prediction Update Easeline

DD carrier phase | output

observations T ‘

Figure 1: Flow chart of BDS/GPS AEKF RTK algorithm

The system state vector is as shown in equation (16) and contains the coordinates of the mobile station and the
double difference ambiguity of the GPS L1/L2 and BDSB1/B2/B3 frequencies. The measurement vector is as shown
in equation (17) and contains a double-difference carrier phase observation of 5 frequencies.
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The prediction process of EKF is
18)
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In the formula, the subscript “k” represents the epoch time; the superscript represents the a priori estimate,
“+” represents the a posteriori estimate; F is the prediction matrix, and the static motion model is the unit matrix;
P is the variance-variance of the state error; () is the VC array of process noise, and it will be the zero matrix in the

static motion model.
The measurement update process of EKF is

_ _ -1
Kk+1 = ])k+lHT (H])kHHT + Rv)
. _ _ 19
X/c+1 =Xk+l+Kk+l(Zk+l_h(Xk+l)) ( )
Pk-:-l = (I - Kk+1H)Pk_+]
Where K is the Kalman gain; h( X/;H) is the nonlinear functional relationship between the double-difference carrier
phase observation and the system state vector; H is the measurement matrix, and h( X k*H) is the partial derivative of

the system state, as shown in equation (20). R is a VC matrix for measuring noise, which is time-varying as the

quality of the measurement changes, and is difficult to estimate by the model. Therefore, the adaptive method based
on the innovation sequence shown in equation (21) is used for estimation.

AB A’Bll
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Among them, V is a new interest sequence, and v, = Z,,, —h (X . ) , N is an adaptive update period.

5. Experiment and analysis

In this paper, the medium baseline data with a length of 26.3km is selected for the experiments. The cutoff elevation
angle of the satellite is 10° . The reference satellite selects the satellite with the highest elevation angle, and the
broadcast ephemeris is used as the navigation file.
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5.1 LAMBDA algorithm experiments

Under the baseline condition, Figure 2 shows the positioning error of BDS/GPS. It can be seen that the error points at
each moment are relatively unstable. Table 1 counts the root mean square value of the error.

The positioning error/m
The positioning error/m

Epoch[interval=1 hour] Epoch[intevral=1 hour]
(a)BDS (b)GPS

Figure 2: The position accuracy of LAMBDA

Table 1: The RMS of position accuracy /m

East North Up
BDS 0.79 0.83 2.01
GPS 0.69 0.76 1.44

From the statistical results of Table 1, it is seen that under the medium baseline condition of 26.3 km, the positioning
error of the BDS and GPS systems in the east (E) and north (N) directions is decimeter. And the positioning error in
the up(U) direction is about two meters. So the ambiguity success rate obtained by directly using the LAMBDA
algorithm is not high, and the more high-precision positioning result cannot be brought from this algorithm.

5.2 MCAR and AEKF RTK experiments

Under the medium baseline, the ionospheric delay of the B1 signal of the BDS system and the ionospheric delay of
the GPS system L1 signal are shown in Figure 3. In this experiment, the visible satellites of BDS are C01, C02, C03,
C04, C05, C06, C07, C08, C09, C10, C11, C12, which are respectively represented by different colors. GPS visible
satellites are G02, G03, G09, G12 G13, G17, G19, G20, G23, G26, G28, G29 are respectively represented by
different colors. When the current satellite is not received at the observation time, the ionospheric delay of the
corresponding satellite in Figure 3 is represented by 0.
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The ionospheric delay/m
The ionospheric delay/m

8
Epochlinterval=1 hour] Epoch[interval=1 hour]

12 16 22

(a)BDS (b)GPS

Figure 3: The ionospheric delay

Table 2: The RMS of ionospheric delay (BDS system)/m

Satellite No BO1 B02 B03 B04 BO5 B06
RMS 0.078 0.056 0.089 0.101 0.103 0.088
Satellite No B07 B08 B9 B10 B11 B12
RMS 0.102 0.069 0.076 0.081 0.094 0.091

Table 3: The RMS of ionospheric delay (GPS system)/m

Satellite No G02 GO03 GO09 G12 G13 G17
RMS 0.088 0.062 0.091 0.103 0.092 0.064
Satellite No G19 G20 G23 G26 G28 G29
RMS 0.091 0.066 0.080 0.073 0.103 0.084

Table 2 counts the RMS value of some BDS satellite ionospheric delays. Table 3 shows the ionospheric delays of
some GPS satellites. The results show that the ionospheric delays of BDS satellites and GPS satellites are all in the
centimeter level, and the RMS values are basically less than 1 decimeter.

Under the medium baseline, the positioning error of combined BDS and GPS system for RTK solution is shown in
Figure 4:
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Figure 4: The position accuracy of MCAR and AEKF RTK

The RMS values of the positioning error in east direction is RMS; =0.015 m, the north direction is RMS, =0.019 m,

and the up direction is RMS;, =0.035 m. Respectively, the MCAR and AEKF RTK algorithm reduces the discrete
error points of the distribution, and the centimeter-level positioning under the medium baseline can be achieved.

6. Conclusion

This paper proposes a combined MCAR and AEKF RTK positioning scheme. For the combined BDS and GPS
system, the spatial geometric distribution characteristics of the satellite can be improved, the number of visible
satellites participating in the positioning is increased, and it guarantees the continuity of positioning points. The
MCAR algorithm can calculate the ionospheric delay and finally achieve a stable positioning of 5 cm under the
medium baseline of 26.3 km. It shows that the scheme can be adapted to high-precision positioning scenarios in
complex environments such as cities.
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