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Abstract 

The establishment of a model element library enhances the efficiency of safety-critical model-based 

software development and requires specific deliberation. TU Berlin established a model-based software 

development process that follows RTCA DO-178C/DO-331 guidance where the individual advantages of 

Simulink and SCADE environments are used. The paper emphasises the functional equivalence between 

Simulink and SCADE models by specification and design of basic library modules common to both 

environments. The library modules are tested in SCADE, and Simulink on a Host PC, and the target 

platform. The results show that the functional and numerical deviations in different environments are 

within expected tolerances and are acceptable for flight control applications. 

1. Introduction

Flight control laws are an essential part of complex and safety-critical flight control systems that have to be developed 

in compliance with certification specifications (e.g., CS-25 [1]) and the recommended processes defined in SAE 4754A 

[2] and RTCA DO-178C [3]. The design of flight control algorithms and their implementation in software requires

appropriate tools, a compliant development process, a team with interdisciplinary knowledge, and a high level of

expertise in software development and control engineering domains. Model-Based Development (MBD) improves the

efficiency of the development of complex and safety-critical flight control laws [4]. The graphical representation of

software in block diagram format is commonly used in the flight control domain. The advantages are:

• Block diagrams are standard in engineering, and they allow the development of the functions to take place at

a higher level of abstraction than equations,

• Design models that are a representation of block diagrams in a formal, computer-readable, and executable

format providing a universal communication mean between different stakeholders,

• Software can be generated from the design models automatically using reliable code generators,

• Verification activities in the software life cycle can start very early, as the design models are executable for

dynamic testing and well-suited for model review.

These facts reduce the project risks and the time-to-market as well as save personal resources [5]. 

MATLAB/Simulink® and SCADE Suite® are integrated development environments (IDEs) used for MBD in the 

aerospace domain. MATLAB/Simulink is widely used in control engineering, simulation and model-based software 

development with a large number of users in teaching, research and industry. However, the use of MathWorks 

Embedded Coder for code generation requires a qualification of additional verification tools according to RTCA DO-

330 [6] ensuring the absence of errors after code generation. On the other hand, Ansys SCADE Suite IDE is a tool 

suite for developing safety-critical embedded software. It uses the high-level language Scade1 that is formally defined, 

declarative and deterministic [7] allowing an error-free transformation from Scade to C code. The SCADE Suite KCG 

code generator is pre-qualified according to RTCA DO-330. 

In the project CERTT-FBW2, TU Berlin demonstrated a development process for flight control software, in which 

flight control laws are designed in Simulink, the model is automatically translated into Scade, and the code is generated 

by SCADE Suite KCG in a qualified manner. This approach combines the advantages of both tools [8] and is improved 

in the projects FCL-Methods and IBAS3. In both projects the flight control software for the Leichtwerk’s 

“StratoStreamer” high-altitude pseudo satellite (HAPS) aircraft [9] (see Figure 1-1) is developed. In the context of this 

research, a model element library FCLib was implemented. The development process strictly follows the RTCA DO-

178C and RTCA DO-331 [10], for Design Assurance Level C (DAL-C) software. The library contains essential 

modules that are used in flight control software. 

1 Note, “Scade” is the modelling language and “SCADE” the name of ANSYS’s tool suite and its components. 
2 The research project CERTT-FBW is funded by the Federal Ministry of Economic Affairs and Energy (BMWI) in the National Aerospace Research 
Program (LUFO V). 
3 See Acknowledgement. 
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Figure 1-1: “StratoStreamer” HAPS aircraft [11] 

Simulink and SCADE IDEs offer an extensive set of library elements of different complexity and for different 

purposes. The elements are often not sufficiently documented[12], without details of the implementation or traceability 

to requirements, description of the used design methods and test results. Many Simulink blocks have no equivalent 

SCADE blocks [12] , which prohibits their usage in the presented development process. The SCADE Suite provides a 

set of library elements described only on a functional level without certification data. Several SCADE Suite library 

modules include external custom code or reference other C-Code libraries like math.h [13], for which the functional 

correctness is assumed but not formally proven. 

Reference [14] describes the workflow of how to reach reproducible numerical results in Simulink and on target 

hardware with already developed mathematical libraries that were qualified according to European Space Agency 

regulations. The same C-code Mathematical Library for Flight Software (MLFS)4 is used in the native Simulink 

simulation, in stand-alone applications on a standard host PC and on the target. Additionally, a set of modelling and 

compilation guidelines is described to achieve reproducibility within all used environments. 

Reference [15] describes a purely model-based development of elementary mathematics functions in Simulink. The 

main objectives are the improvement of the worst-case execution time on target and the demonstration of formal 

correctness of developed functions in terms of desired precision. 

Both studies mentioned above only focus on elementary math functions which is not sufficient for the considered 

development process. The use of external code in [14] lessens the advantage of qualified code generation in SCADE 

due to leaving the qualified scope of the Scade language. In addition, the simultaneous use of manually written code 

and MBD unnecessarily complicates the development process concerning DO-178C. The focus of reference [15] lies 

on tool qualification aspects whereas the certification aspects regarding DO-331 are not addressed. 

The FCLib comprises mathematical functions and typical elements from control engineering like integrators, limiters, 

signal filters, look-up tables, digital logic, and navigation equations. The key objective of the development approach 

is to ensure that Simulink and SCADE models behave identically. A further key objective is the establishment of a 

documented and verified library that supports small teams with limited personnel resources to develop safety-critical 

flight control software. 

This paper describes the development approach for the FCLib and explains essential process steps using examples of 

FCLib module design and verification on a host PC and target. In Section 2 the development process, Simulink to 

SCADE mapping rules, and translation procedure are introduced. In Section 3 the design steps are shown in more 

detail. Section 4 discusses the verification aspects of the library elements. 

2. Model-Based Software Development Process 

RTCA DO-331 a supplement to RTCA DO-178C outlines additional aspects of MBD for the development of safety-

critical software for aviation systems. In this work, DO-331 is used to establish a model-based software development 

process for the development of Automatic Flight Control Laws software (AFCL SW) and Direct Flight Control Laws 

software (DFCL SW) for a full-authority Automatic Flight Control System (AFCS) of the “StratoStreamer” HAPS 

aircraft in the certified category. Both applications are integrated as segregated partitions into a flexible computing 

platform that uses the Integrated Modular Avionic (IMA) technology of the Aviotech company. The deployment of 

this IMA platform was already successfully demonstrated in [16] and [17]. 

The AFCL SW provides the following functions: 

• Input signal pre-processing and signal filtering, 

• Calculation of flight envelope limits and operational limits, 

• Calculation of mode availability, flight state and mode of operation, 

• Navigation and flight path calculation from waypoint commands and mission demands, 

• Closed-loop control for longitudinal, vertical, and lateral guidance of the aircraft, 

                                                           
4 MLFS is available on https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software 
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• Calculation of individual commands for the various aircraft control elements, 

• Automatic take-off and landing function. 

The DFCL SW provides the following functions:  

• Pre-processing of cockpit input signals, 

• Functions for manual flight control, 

• Function for system parameter identification during flight test, 

• Switch of control elements command between AFCL SW and DFCL SW commands. 

The DFCL SW is used for piloted flight tests. It is developed according to the same standards as the AFCL SW. 

Figure 2-1 shows the scope of the Software Life Cycle (SLC) and data generated during software development. The 

focus is on establishment of methods and procedures for development, verification and configuration management, 

which are documented in: 

• Plan for Software Aspects of Certification (PSAC),  

• Software Development Plan (SDP),  

• Software Verification Plan (SVP),  

• Software Configuration Management Plan (SCMP). 

These plans fulfil the DO-178C objectives for the planning process. Additionally, based on our experience in previous 

projects [8] and after several refinements through the SLC, a comprehensive software modelling and design standard 

(SMS/SDS) has been developed. The model element library FCLib is developed using the same plans and standards 

as the AFCL SW and DFCL SW. 

Any FCLib baseline contains: 

• FCLib as model element library in Simulink and in SCADE, 

• Software Design Description (SDD), 

• Software Verification Cases and Procedures (SVCP), 

• Software Verification Results (SVR), 

• Software Configuration Index (SCI).  

 

 
Figure 2-1: Software Life Cycle Process and Data according to DO-178C/DO-331 
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2.1 Software Development Environment 

Table 2-1 summarizes definitions that are of particular importance. 

Table 2-1: Term Definitions 

Term Definition 

Design Model1 A model that defines any software design such as low-level requirements (LLR), 

software architecture, algorithms, component internal structures, data flow and/or 

control flow. A model used to generate Source Code is a Design Model. The Design 

Model is the SCADE Suite Model. 

Prototype Model A model that defines any software design such as low-level requirements, software 

architecture, algorithms, component internal structures, data flow and/or control flow. 

A model is called Prototype Model if no Source Code is generated from it. The 

Prototype Model is a Simulink Model. 

Library Module A Model Element that is included in a Model Element Library. 

Model Element1 A unit from which a model is constructed. 

Model Element Library1 A collection of model elements used as a baseline to construct a model. A model may 

or may not be developed using model element libraries. 
1 Definitions are adopted from [10], ANNEX MB.B. Glossary. 

Figure 2-2 illustrates the development environment and tools used in the software development process described in 

the previous section. All development activities are performed on a Host PC and on the Processor-in-the-Loop (PiL) 

test rig that provides the environment and all tools described below. 

The requirements for AFCL SW and DFCL SW are defined in textual form and managed with a requirement 

management tool.  A special characteristic of our process is that the requirements, from which the Prototype and 

Design Models are developed, are on the system level. This approach implements the model usage example 5 of [10]. 

The executable Prototype Model is developed utilising Simulink. The Prototype Model is used to develop the Flight 

Control Functions (FCF) in closed-loop simulations with a high-fidelity Flight Mechanical Model (FMM) of the 

aircraft. The Prototype Model effectively represents both software architecture and software low-level requirements 

(LLR) and is a part of the system development process. However, it is essential to emphasise that the Prototype Model 

is not a Design Model, as neither source code nor executable code for the target is generated from this model. 

The Prototype Model undergoes a comprehensive examination utilising the Model Examiner® (MXAM) tool by Model 

Engineering Solutions to ensure the translation readiness into Scade language and design standard compliance. This 

analysis verifies the model’s adherence to the design rules, checks the complexity and structure and then the tool 

produces detailed reports that document findings. These reports serve as evidence for the compliance of the Prototype 

Model with the established design standards. 

Afterwards, the Prototype Model is automatically translated into Scade using the SCADE Simulink Importer and the 

customised S2S (Simulink to Scade) tool that provides additional features. The S2S tool enables a modular model 

translation and enables the transfer of metadata (e.g., requirement traceability data). At this stage, the FCLib ensures 

the functional equivalence of the two models by applying mapping rules between FCLib modules in Simulink and 

SCADE. Testing the Design Model against the requirements utilised in the development of the Prototype Model makes 

a tool qualification for model translation unnecessary. 

After the translation of the Prototype Model from Simulink to SCADE, it becomes the formal software Design Model. 

The Design Model encompasses the software architecture as well as the LLR. The LLR are represented by the safe 

state machine syntax and equations consisting of primitive operators of the Scade language and are fully documented 

in [18]. During the testing of the Design Model and by the Design Model Peer Review, all necessary verification 

evidence is generated to show compliance with the objectives of DO-178C/DO-331. 

A qualified SCADE toolchain is employed for testing, report generation, and code generation to reach compliance with 

DO-178C/DO-331 objectives for the Design Model and the resulting source code: 

1. SCADE Test Environment for Host is used for conducting Design Model simulations, demonstrating 

compliance of the Design Model with requirements. 

2. SCADE Test Model Coverage (MTC) performs comprehensive analysis and reporting of coverage 

achieved through requirement-based testing at both the Design Model and source code levels. 

3. SCADE Life Cycle Reporter guarantees the integrity and coherence of the generated Design Model Report 

(DMR), ensuring its alignment with the Design Model. The DMR is an important annex to the SSD 

document, and its assessment takes place during the Design Model Peer Review. 

4. SCADE Suite KCG 6.6 Code Generator is responsible for the generation of source code from the Design 

Model. 
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Figure 2-2: Software Development Environment 

The system integration process starts with the software pre-integration on a Processor-in-the-Loop (PiL) test rig, which 

represents a single lane of the Core Processing Module (CPM) of the IMA platform. The executable object code (EOC) 

is generated with the WindRiver® DIAB Compiler and is then loaded into the PiL environment. Inside the PiL 

environment, the Design Model tests are replicated with attention turned to memory and timing aspects. 

The EOC is delivered to Leichtwerk AG for Hardware in the Loop (HiL) tests after the successful completion of PiL 

testing. The HiL test rig at Leichtwerk AG is a full replica of the AFCS IMA platform and encloses all required 

functions. 

2.2 Mapping of Primitive Operators between Scade and Simulink  

The permissible extent of operators available for library design in Simulink is constrained by the functionally 

equivalent elements of the Scade language. In this work, the Scade 6.6 language version is used for software design 

within the SCADE IDE and its basic features are described here. 

Scade is a synchronous language, using the synchronous hypothesis. This hypothesis states that model outputs are 

generated instantaneously in response to inputs. All communications and computations within a model are considered 

to be instantaneous [19]. This approach is well suited for real-time embedded systems as it guarantees deterministic 

operation within finite time and memory frame [7]. 

Scade 6.6 as a formal language incorporates mathematical formalism, which enables automatic analysis ensuring the 

correctness and absence of ambiguities in Scade models [7]. Formal analysis is exerted inside SCADE Suite Checker 

as an integral component of the SCADE suite for examination of semantic and syntactic accuracy. 

In SCADE IDE the Scade models have textual and graphical representations, as illustrated by the example of the FCLib 

HOLD module in Figure 2-3 and Figure 2-4. This module retains the output y_out at its value of the previous execution 

cycle yk1 as long as the input condition b1s remains false. Within the Scade language definition, the HOLD module is 

considered a User-Defined Operator (UDO), which is a hierarchically structured Scade model. Each UDO can be 

depicted as a node or function containing equations or state machines. Nodes represent operators with an internal state, 

necessitating the storage of past values in memory. In contrast to nodes, functions are operators without internal states 

and memory. In the given example, the UDOs Initial Condition (IC) and Switch are visually represented by yellow 

rectangles, with IC being a node and Switch being a function. The blue square denoting "Followed By" (FBY) is a 

primitive operator belonging to the fundamental expressions of the Scade 6.6 language and is a unit delay with an 

initialisation value. The control and data flow of the Scade model is expressed through equations, which combine 

various primitive operators. 

All primitive operators are elements of the formal Scade 6.6 language and belong to the pre-qualified scope of the code 

generator SCADE Suite KCG. Primitive operators can be categorised as outlined in Table 2-2 and include essential 

elements used in algorithms such as simple arithmetic (plus, minus, division), logical (lower than, AND), bit-wise 

operations (bit-wise OR, bit-wise NOT), structure and array operations (select array element, concatenation), temporals 

(Init, FBY) and flow control (If..Then..Else). The higher order primitives include activate condition, Map and Fold 

iterators to apply functions or nodes to array items. Furthermore, Table 2-2 provides examples of the mapping between 

Scade primitives and elementary Simulink blocks. The full scope of allowed primitive operators and their mapping is 

defined by the Software Design Standard (SDS) and Software Design Description (SDD) of FCLIb. 

DOI: 10.13009/EUCASS2023-953



MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS 

     

 6 

 
Figure 2-3: Graphical Scade Representation 

 
Figure 2-4: Textual Scade Representation 

Table 2-2: Primitive Operators Examples and Mapping from Simulink to SCADE  

Category Scade Primitive Block Simulink Block 

Arithmetic Plus 

  

Bitwise arithmetic Bitwise AND 
  

Relational Equal 
  

Boolean AND 
  

Structure/Array Data Array 

  

Temporal Init 

  

Flow switches If..Then..Else 
  

Higher Order Activate 
  

2.3 Simulink Model Translation with S2S using the FCLib 

The process of translation involves the conversion of Simulink models into SCADE Suite using the proprietary 

command line tool S2S, implemented in Python. S2S automates the import activities of the SCADE Suite Simulink 

Importer tool. Figure 2-5 illustrates the model translation process, which consists of two main tasks : 

1. Exporting a Prototype Model from Simulink/Stateflow into JavaScript Object Notation (JSON) files. 

2. Importing the JSON files into the Design Model in SCADE with configurable import options. 

Moreover, S2S enables the reimport of the Prototype Model sub-modules. To achieve this, S2S analyses the model 

hierarchy of an existing Design Model and invokes the Simulink Importer with the appropriate configuration files 

(.cfg-file) for reimporting. The .cfg-file contains rules for reusing the imported operators of the created Scade models. 

The .cfg-files are either automatically generated during the translation process or manually created and customised by 

the user for specific mapping rules. Customised .cfg-file (lib_map.cfg) is used for mapping FCLib modules between 

the Prototype and Design Model. Consequently, the imported Scade model does not include translations of the FCLib 

library models from Simulink but rather instances of the library modules from the FCLib Scade models. Furthermore, 

the mapping rules, which gover the translation of elementary Simulink blocks to Scade primitives are defined in the 

op_map.cfg file. 

The functional equivalence between the Prototype and Design Model is ensured by strict mapping rules between Model 

Elements of the FCLib in Simulink and Scade, as well as compliance of the Prototype Model with design standards 

and subsequent testing. 
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Additionally, the S2S tool adds annotations to the generated Design Model through the SCADE Python API to preserve 

data that is not retained by the Simulink Importer itself. An annotation is a note associated with an object in SCADE 

IDE and is used to add extra information to the model. This information includes requirements traceability data, design 

decisions, editorial comments as well as information from the Interface Control Document, and Git version control 

information for configuration management. 

Upon successful translation, the software designer uses the SCADE Checker tool to validate the semantic and syntactic 

correctness of the Design Model. The SCADE Checker tool is qualified and belongs to the scope of the pre-qualified 

code generator SCADE Suite KCG. 

 

 
Figure 2-5: Translation procedure for Simulink models using the FCLib 

3. Library Specification and Design 

The development involves three distinct steps for specification and design (1) the elementary blocks of Simulink are 

defined, which can be effectively mapped to suitable Scade primitive operators, (2) the functional scope of the library 

is determined, (3) each library module is specified, implemented, and documented in the Software Design Document 

(SDD). Automatic design model report is generated for all library modules in the SCADE IDE. 

3.1 Functional Scope of the Library 

The FCLib comprises 48 library modules, whereas the supplementary math library (MATHLib) comprises 44 library 

modules, which are fully integrated into the FCLib within Simulink and SCADE Suite. The library is categorised into 

three types: 

• time-independent modules,  

• time-dependent modules, 

• MATHLib modules. 

Time-independent modules encompass functions where the output is fully determined by the inputs within a single 

execution cycle. On the other hand, time-dependent modules, rely on both the inputs and one or more stored values 

(internal states) from previous execution cycles. Consequently, time-dependent library modules necessitate memory 

access and initialisation. MATHLib modules are exclusively time-independent and are implemented as functions. 

In addition to temporal considerations, the categorisation of FCLib modules based on their functional purpose within 

flight control laws is depicted in Table 3-1. 

The FCLib modules encompass limitations functions to maintain predefined or safe value ranges, such as envelope 

limits or control surface deflections. Look-Up tables are commonly employed for controller gain scheduling. The 

desired controller structure can be constructed using integrators and derivatives. Discrete filters, such as first-order 

low-pass filters, can be used to modify or amplify specific characteristics of the signals. Digital logic modules 

incorporate elements necessary for logical decision-making. Examples include signal edge indication, monostable or 

flip-flops. Navigation equations can be employed to calculate the flight path based on commanded waypoints. These 

equations use trigonometric double-precision mathematical functions (MATHLib) to achieve the calculation precision 

needed for navigation algorithms. The MATHLib components encompass functions that assess specific attributes (e.g., 

presence of NaNs or INFs) of floating-point numbers represented in their binary form, aiming to simplify and accelerate 

the computation of mathematical functions. These elementary operators and approximation algorithms are outlined in 

[20].  
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Table 3-1: FCLib Module Categories and Examples 

FCLib Category FCLib Module Examples ID 

Time-independent  

Limitation & 

protections 

Limiter 

Dead Space 

LIM 

DEAD 

Look-up Tables 1-D Look-Up Table 

2-D Look-Up Table 

LINT1 

LINT2 

Navigation equations The course of an orthodrome  

Target coordinates calculation 

NAVCRS 

NAVTGT 

Math operators Absolute Value 

Signum 

ABS 

SIGN 

Time-dependent 

Discrete Filter and 

Transfer Functions 

First-order low-pass filter 

Integrator 

FILTLP1a 

INT 

Data Consolidation synchronisation of two signals  SYNC 

Digital Logic Flip-Flop with reset priority  

Conditional memory 

Confirm trailing (falling) edge 

FLIPR 

HOLD 

CONFT 

MATHLib 

floating point numbers Not a Number Check 64 bit 

Subnormal Check 32 bit 

f64NAN 

f32SUBN 

math functions single sine 

double square root 

SINF 

SQRT 

3.2 Specification, Implementation and Documentation 

DO-331 requires the definition of library-specific requirements like interface conventions, timing aspects, operational 

conditions, and functional aspects. The Software Design Document (SDD) serves the dual purpose of both specification 

and design documentation and is an important item within the FCLib Life Cycle. It encompasses the essential 

information regarding the usage rules, and general properties of the FCLib such as model execution basics, general 

library parameters (e.g., used sample time), data types, numerical limits, and primitive operator mapping rules. When 

a specific function is required in multiple instances within the AFCL or DFCL application, it is included as a library 

module in the FCLib and described in the SDD. The functionality, interface definition, and description of each module 

correspond to the software High-Level Requirements (HLR) in terms of RTCA DO-178C. As the FCLib consists of 

library modules that implement elementary functions, these specifications directly serve as documentation for the 

library modules within the SDD. Therefore, there is no separate establishment of a Software Requirement Document 

(SRD). The specification is independent of the used modelling environment. With the assistance of pseudocode and 

the requirements, the implementation can be carried out in various environments directly, including Simulink, SCADE, 

or other programming languages. This characteristic provides the flexibility to adapt the specification to different 

modelling environments, allowing for straightforward implementation in the desired environment. As a result, it 

facilitates the convenient reuse and expansion of the FCLib in various projects, further enhancing its versatility and 

applicability. 

Each library module is comprehensively described in a distinct section, presenting all necessary information. The way 

each module is specified, programmed, and documented is exemplified through the FCLib discrete first-order low-

pass filter FILTLP1a. 

Figure 3-1 shows the graphical representation in both Simulink and SCADE is a part of every FCLib module 

description in SDD. Each library module is equivalent to a Subsystem in Simulink and a User-Defined Operator in 

SCADE. Both visual representations display input and output names, as well as module identifiers. The inputs and 

outputs in SCADE correspond to the Inports and Outports in Simulink. Similarly, the mask parameters in Simulink 

correspond to the hidden inputs in SCADE. 

DOI: 10.13009/EUCASS2023-953



MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS 

     

 9 

 
Figure 3-1: Graphical Representation of FCLib modules in Simulink (left) and SCADE (right) 

The module interface description includes input, output as well as hidden inputs definition. Additionally, the internal 

states and used library parameters need to be identified. Figure 3-2 shows the definition of input variables for the 

FILTLP1a module in SDD. Each variable has its unique identification within Simulink and SCADE (input/output 

name), a symbol for the pseudocode description (algorithm variable), data type, value range and a short description. 

 
Figure 3-2: Exemplary definition of input interface variables for FILTLP1a module in SDD 

The pseudocode in Figure 3-3 provides a formal definition of the algorithm, serving as a comprehensive instruction 

set for implementing the FCLib module. The temporal aspects of the algorithm are outlined by the initialisation and 

cyclic execution sections. In conjunction with the previously described interface and internal states, this algorithm is 

unambiguously defined and can be implemented. 

The software High-Level Requirements (HLR) for the library modules correspond to the functionality description of 

each module given in SDD. The only difference to a general way of writing the requirements is the absence of the verb 

"shall". As Figure 3-5 shows, parts of the description of a library module which correspond to a requirement are 

parenthesised by the “§”-character and a consecutive Roman numeral. Each library module additionally defines a 

unique tag for each requirement in the Subsection “Traceability”. The tags are composed of the keyword “REQ”, the 

identifier of the module and a three-digit number that corresponds to the Roman numeral in the module description. 

The pseudocode and HLRs from the tagged functionality description do not provide an explicit design that is 

implemented in the modelling environment, but with this information, the designer can implement the model directly 

in Simulink and the tester creates the test scenarios to perform verification of the FCLib module. 

After implementing all library modules in Simulink, they are then translated into Scade. To fully document the 

architecture, data, and control flow of each module in the SCADE Suite, the SCADE LifeCycle Reporter is used to 

automatically generate a Design Model Report (DMR) for all FCLib modules. The use of the SCADE LifeCycle 

Reporter as a pre-qualified tool ensures the correctness of the report generation. 

The DMR provides comprehensive details about the module interface, including its data type, module hierarchy, 

comments, and transferred metadata from Simulink. Additionally, it includes the graphical representation of the Scade 

language control and data flow, along with all sub-operators. This graphical representation, as shown in Figure 3-4, 

enhances the understanding of the module's functionality and facilitates analysis and review processes. 
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Figure 3-3: Pseudocode 

example of FILTLP1a 

 
Figure 3-4: View of FILTLP1a module in Design Model Report 

 
Figure 3-5: Software HLRs for 

FILTLP1a module 

4. Library Verification Approach 

This chapter explains the test and analysis methods employed for library verification and highlights the significant 

results obtained. These methods, evaluate the library timing performance and behaviour. 

4.1 FCLib Test and Analysis Methods 

The test process involves the requirement-based definition of test cases. The requirements identified in the SDD serve 

as the basis for the test case specifications in a Software Verification and Procedures Document (SVCP). A test case 

specification provides precise instructions on how to test a specific requirement. It is used to develop the test sequence 

for the SCADE Test Environment for HOST (TEH). Figure 4-1 shows a test case example for the DBZ module (divide 

by zero protection). A test case specification includes a unique test case identification, the corresponding requirement 

tag from which the test case is derived, a description of pre-conditions, required inputs, post-conditions, and expected 

results. 

A test sequence comprises the set of input values and expected output values that represent one or multiple test cases. 

The test sequences are defined as ASCII comma-separated value (CSV) files and subsequently entered into the TEH. 

To generate these test sequences, MATLAB scripts are created based on the test case specifications. The expected 

values are defined using pseudocode and the requirements outlined in SDD, enabling the automated generation of the 

test sequences. To demonstrate the functional equivalence of the FCLib modules in both SCADE and Simulink, the 

test sequences developed for TEH are executed in Simulink as well. 
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Figure 4-1: Example of Test Case Specification for the DBZ Module 

The test sequences are prepared for the simulation of individual modules with TEH. These simulations encompass 

three distinct types of tests. 

(1) Instrumented tests are applied when a polymorphic FCLib operator is tested. The internal data type definition of 

a polymorphic operator depends on the block usage context. For testing purposes, these blocks are instrumented 

with inputs and outputs of all possible data types according to their specification given in the SDD (see Figure 

4-2), enabling the execution of the instrumented models. 

(2) Direct tests are applied on non-polymorphic FCLib operators that have predefined data types. Such modules are 

executable and can be stimulated by input vectors from test sequences without any instrumentation. 

(3) MATHLib tests are applied to math operators which are part of FCLib. The MATHLib modules require additional 

instrumentation to achieve better accuracy for stimulation values in test sequences. Reading the input stimulation 

of floating-point data type from the CSV file yields a loss of accuracy, which leads to deviations in the test results 

of the library module. To address this issue, the library module inputs are instrumented with union-type operators. 

These operators facilitate the transfer of an unsigned integer representation into any other data type and vice versa. 

This conversion allows stimulation with exact bit representations of floating-point numbers. The union-type 

operators (e.g., block UTuint64_f64 in SIN instrumentation, Figure 4-3) are implemented as imported C functions 

in SCADE and as S-Functions in Simulink. Different types of MATHLib instrumentations are applied:  

• requirements-based tests and precision analysis,  

• testing simple mathematical identities e.g. sin(−𝑥) = −sin(𝑥), see upper diagram in Figure 4-3, 

• error propagation analysis in mathematical identities e.g. exp(x − v) = exp(x) ∗ exp(−v), see bottom 

diagram in Figure 4-3. 

Figure 4-2: Instrumentation of 

polymorph ABS module 

 
Figure 4-3: Instrumentation of SIN and EXP MATHLib modules 

The structural model coverage analysis is performed with the SCADE Test Model Coverage (TMC) tool. The FCLib 

coverage analysis ensures that all elements and paths of the FCLib modules in SCADE have been stimulated and 

activated by requirement-based test cases. The considered coverage metrics are Decision Coverage (DC) as well as 

Data and Control (D&C) coupling that has to be achieved for the software DAL level C. 

Both TEH and TMC are qualified tools according to DO-330. Tool qualification is required when the output of tools 

is used to automate, reduce, or eliminate objectives of the software development process defined by DO-178C/DO331. 

TEH's qualification ensures the correct evaluation of test results, while TMC's qualification ensures the proper 

acquisition of coverage results and generation of coverage reports. 

One significant timing concern in the AFCL software is the utilisation of double precision math functions. The 

PowerPC MPC5567 target processor lacks a double-precision floating-point unit, necessitating the use of emulation 

routines for double-precision float computations. Consequently, the extensive execution time of navigation functions 

that use multiple double-precision math functions leads to exceeding the allocated Worst-Case Execution Time 

(WCET) for the AFCL SW. To address this issue, the execution time of FCLib math functions and the Wind River 
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Diab Compiler® math functions provided along with the compiler, are compared. Two approaches are used for timing 

analysis: 

(1) Leichtwerk AG operates the Absint aiT WCET Analyzer tool, which performs static analyses of a task’s 

intrinsic cache and pipeline behaviour based on formal cache and pipeline models. This analysis enables the 

computation of accurate and tight upper bounds for the WCET. The analysis is individually performed for 

each MATHLib module instance using compiled object code. 

(2) Execution time measurement is carried out on the target processor in the Processor-in-the-Loop (PiL) test 

environment. The PiL configuration allows the execution of a desired software partition without the IMA 

platform's timing limits. This analysis is conducted by integrating each MATHLib instance on the PiL as an 

AFCL partition for the measurement campaign.  

4.2 Evaluation of FCLib Test Results and Analysis  

The functional tests performed on the FCLib modules, involving Boolean data types and integer operations, 

demonstrate compliance with the expected results. To evaluate the floating-point modules, tolerances for pass-fail 

criteria are defined in Table 4-1. Notable deviations are observed in single precision second-order low pass filter 

module FILPLP2a and the navigation equation modules.  

All test sequences were repeated in Simulink. All FCLib modules in Simulink demonstrate the same behaviour and the 

same numerical deviations from expected results as in SCADE. 

One of the reasons for these deviations is attributed to the format CSV files of the test sequence. The textual 

representation of the floating-point numbers leads to a loss of accuracy when the stimulation values are read.   

Functional tests are executed and subsequent precision analysis is performed for instrumented MATHLib modules. 

The expected values for test sequences are generated with native mathematical functions in MATLAB. Figure 4-5 and 

Figure 4-6 depict the numerical deviations of double precision sine and single precision cosine from expected values. 

The deviations observed in cosine in the primary input range [−2𝜋, 2𝜋] remain below the tolerance values. However, 

for input values exceeding |𝑥| > 8 ∙ 103,  the deviations violate the required numerical tolerances. Within the context 

of the AFCL software, these deviations are considered not critical since the relevant input range for the COSF module 

is limited to [−2𝜋, 2𝜋]. 
Table 4-1: Tolerance Settings for Floating-Point Variables 

FCLib Modules 𝜀𝑟𝑒𝑙 𝜀𝑎𝑏𝑠 
single double single double 

time-independent 10−6 10−8 10−6 10−8 

time-dependent 10−4 10−6 10−5 10−6 

After the execution of requirement-based test sequences, the structural coverage analysis reveals complete coverage 

for both DC and D&C coupling metrics in all time-independent and math modules. However, a few time-dependent 

modules exhibit minor coverage gaps. Figure 4-6 provides an example of such a gap in the DERIV module, which is 

responsible for signal differentiation. In this instance, the initial value of the unit delay primitive FBY does not impact 

the module's output because the initial condition (IC) operator overwrites the output by zero in the first execution cycle. 

This behaviour violates the C&D coupling metric. The use of the unit delay is necessary to avoid an algebraic loop, 

while the DERIV module requires a specific initialisation value on its output. To mitigate this issue, a justification is 

provided, explaining the reasons why such a gap is deemed acceptable. These justifications flow into the generation of 

the coverage report, ensuring that the reasons for the observed gaps are considered and appropriately documented. 

The coverage results achieved for the FCLib are leveraged for the coverage analysis of DFCL and AFCL software. In 

instances where an integrated FCLib module does not reach full coverage, the coverage gaps are justified by referring 

back to the coverage results obtained from the library's test. This approach allows the effective reuse of existing 

coverage information and provides a basis for explaining observed coverage gaps within the integrated software. 

Results in Table 4-2 indicate that MATHLib implementations of sine, cosine, and tangent functions require 

significantly less time (52% to 66%) compared to DIAB functions. However, MATHLib modules for arc cosine, arc 

sine, and arc tangent functions require nearly twice the time compared to DIAB functions. The timing results of Absint 

analysis and PiL measurement correlate with each other. Absint analysis provides a more conservative estimate 

compared to PiL measurement. 
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Figure 4-4: double precision sine (SIN) deviation from 

MATLAB sine 

 
Figure 4-5: single precision cosine (COSF) deviation 

from MATLAB cosine 

 
Figure 4-6: Visualisation of a coverage gap in the FBY primitive in the DERIV module in SCADE IDE 

Table 4-2: WCET analysis for selected MATHLib modules 

Module Max. DIAB 

[μs] 

Max. MATHLib 

[μs] 

Ratio DIAB/MATHLib 

PiL results 

COS 735 628 120 % 

SIN 734 576 133 % 

TAN 832 603 145 % 

ACOS 533 932 52 % 

ASIN 536 930 53 % 

ATAN 460 798 52 % 

Absint results 

COS 1353 893 151 % 

SIN 1353 827 164 % 

TAN 1405 725 194 % 

ACOS 529 1124 47 % 

ASIN 550 1123 49 % 

ATAN 399 857 47 % 
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5. Conclusion 

The development process for flight control laws includes two processes: the system development process (SAE 4754A) 

and the software development process (RTCA DO-178C and DO-331). The efficiency of the FCL development can be 

significantly increased through model-based development, automation in testing and by using ready-made library 

elements. For the design of the flight control functions, Mathworks Simulink is a common tool, whereas for the FCL 

software design, Ansys SCADE Suite has the advantage to significantly reduce workload in the certification process, 

as the transition from block diagram to executable code is formally proven. A process that combines the advantages of 

both tools was developed. This process includes the automated translation of Simulink models to Scade. It was applied 

to design and verify the FCLib library elements – and then for the DFCL SW and the AFCL SW.  

The elements of the library FCLib play an important role in the translation procedure. The re-use of test and coverage 

results, significantly reduce the verification effort, especially repetitive unit tests to ensure 100% Decision Coverage 

and Control & Data coupling. The FCLib provide a wide range of functionality and can be customised according to 

specific project requirements. This versatility enables its usage as a stand-alone library in both Simulink and SCADE 

environments. The FCLib has also been successfully employed in the MODULAR5 to demonstrate efficient processes 

for flight control law and actuator control software development.  

The library design enables rapid extension to accommodate specific requirements for new library modules. The 

availability of a well-documented and verified library aids small teams with limited personnel resources when 

developing safety-critical software.  

Finally, it is recommended to further investigate numerical accuracy, particularly concerning mathematical modules. 

One potential solution is to explore more precise approximation methods for these modules and assess their impact on 

execution time. 
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