
Copyright © 2023 by First Author. Posted online by the EUCASS association with permission.

Model-Based Development of a Library with Standard Functions

for Safety-Critical Flight Control Laws

Dmitry Chernetsov*†, Bryan Laabs*, Ralph Paul** and Robert Luckner*

* Technische Universität Berlin, Marchstrasse 12-14, 10587 Berlin

** Leichtwerk AG, Hermann-Blenk-Str. 38, 38108 Braunschweig

dimitry.chernetsov@tu-berlin.de - bryan.laabs@tu-berlin.de - ralph.paul@leichtwerk.de - robert.luckner@tu-berlin.de

† Corresponding Author

Abstract

The establishment of a model element library enhances the efficiency of safety-critical model-based

software development and requires specific deliberation. TU Berlin established a model-based software

development process that follows RTCA DO-178C/DO-331 guidance where the individual advantages of

Simulink and SCADE environments are used. The paper emphasises the functional equivalence between

Simulink and SCADE models by specification and design of basic library modules common to both

environments. The library modules are tested in SCADE, and Simulink on a Host PC, and the target

platform. The results show that the functional and numerical deviations in different environments are

within expected tolerances and are acceptable for flight control applications.

1. Introduction

Flight control laws are an essential part of complex and safety-critical flight control systems that have to be developed

in compliance with certification specifications (e.g., CS-25 [1]) and the recommended processes defined in SAE 4754A

[2] and RTCA DO-178C [3]. The design of flight control algorithms and their implementation in software requires

appropriate tools, a compliant development process, a team with interdisciplinary knowledge, and a high level of

expertise in software development and control engineering domains. Model-Based Development (MBD) improves the

efficiency of the development of complex and safety-critical flight control laws [4]. The graphical representation of

software in block diagram format is commonly used in the flight control domain. The advantages are:

• Block diagrams are standard in engineering, and they allow the development of the functions to take place at

a higher level of abstraction than equations,

• Design models that are a representation of block diagrams in a formal, computer-readable, and executable

format providing a universal communication mean between different stakeholders,

• Software can be generated from the design models automatically using reliable code generators,

• Verification activities in the software life cycle can start very early, as the design models are executable for

dynamic testing and well-suited for model review.

These facts reduce the project risks and the time-to-market as well as save personal resources [5].

MATLAB/Simulink® and SCADE Suite® are integrated development environments (IDEs) used for MBD in the

aerospace domain. MATLAB/Simulink is widely used in control engineering, simulation and model-based software

development with a large number of users in teaching, research and industry. However, the use of MathWorks

Embedded Coder for code generation requires a qualification of additional verification tools according to RTCA DO-

330 [6] ensuring the absence of errors after code generation. On the other hand, Ansys SCADE Suite IDE is a tool

suite for developing safety-critical embedded software. It uses the high-level language Scade1 that is formally defined,

declarative and deterministic [7] allowing an error-free transformation from Scade to C code. The SCADE Suite KCG

code generator is pre-qualified according to RTCA DO-330.

In the project CERTT-FBW2, TU Berlin demonstrated a development process for flight control software, in which

flight control laws are designed in Simulink, the model is automatically translated into Scade, and the code is generated

by SCADE Suite KCG in a qualified manner. This approach combines the advantages of both tools [8] and is improved

in the projects FCL-Methods and IBAS3. In both projects the flight control software for the Leichtwerk’s

“StratoStreamer” high-altitude pseudo satellite (HAPS) aircraft [9] (see Figure 1-1) is developed. In the context of this

research, a model element library FCLib was implemented. The development process strictly follows the RTCA DO-

178C and RTCA DO-331 [10], for Design Assurance Level C (DAL-C) software. The library contains essential

modules that are used in flight control software.

1 Note, “Scade” is the modelling language and “SCADE” the name of ANSYS’s tool suite and its components.
2 The research project CERTT-FBW is funded by the Federal Ministry of Economic Affairs and Energy (BMWI) in the National Aerospace Research
Program (LUFO V).
3 See Acknowledgement.

DOI: 10.13009/EUCASS2023-953

Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS

mailto:dimitry.chernetsov@tu-berlin.de
mailto:bryan.laabs@tu-berlin.de
mailto:robert.luckner@tu-berlin.de

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 2

Figure 1-1: “StratoStreamer” HAPS aircraft [11]

Simulink and SCADE IDEs offer an extensive set of library elements of different complexity and for different

purposes. The elements are often not sufficiently documented[12], without details of the implementation or traceability

to requirements, description of the used design methods and test results. Many Simulink blocks have no equivalent

SCADE blocks [12] , which prohibits their usage in the presented development process. The SCADE Suite provides a

set of library elements described only on a functional level without certification data. Several SCADE Suite library

modules include external custom code or reference other C-Code libraries like math.h [13], for which the functional

correctness is assumed but not formally proven.

Reference [14] describes the workflow of how to reach reproducible numerical results in Simulink and on target

hardware with already developed mathematical libraries that were qualified according to European Space Agency

regulations. The same C-code Mathematical Library for Flight Software (MLFS)4 is used in the native Simulink

simulation, in stand-alone applications on a standard host PC and on the target. Additionally, a set of modelling and

compilation guidelines is described to achieve reproducibility within all used environments.

Reference [15] describes a purely model-based development of elementary mathematics functions in Simulink. The

main objectives are the improvement of the worst-case execution time on target and the demonstration of formal

correctness of developed functions in terms of desired precision.

Both studies mentioned above only focus on elementary math functions which is not sufficient for the considered

development process. The use of external code in [14] lessens the advantage of qualified code generation in SCADE

due to leaving the qualified scope of the Scade language. In addition, the simultaneous use of manually written code

and MBD unnecessarily complicates the development process concerning DO-178C. The focus of reference [15] lies

on tool qualification aspects whereas the certification aspects regarding DO-331 are not addressed.

The FCLib comprises mathematical functions and typical elements from control engineering like integrators, limiters,

signal filters, look-up tables, digital logic, and navigation equations. The key objective of the development approach

is to ensure that Simulink and SCADE models behave identically. A further key objective is the establishment of a

documented and verified library that supports small teams with limited personnel resources to develop safety-critical

flight control software.

This paper describes the development approach for the FCLib and explains essential process steps using examples of

FCLib module design and verification on a host PC and target. In Section 2 the development process, Simulink to

SCADE mapping rules, and translation procedure are introduced. In Section 3 the design steps are shown in more

detail. Section 4 discusses the verification aspects of the library elements.

2. Model-Based Software Development Process

RTCA DO-331 a supplement to RTCA DO-178C outlines additional aspects of MBD for the development of safety-

critical software for aviation systems. In this work, DO-331 is used to establish a model-based software development

process for the development of Automatic Flight Control Laws software (AFCL SW) and Direct Flight Control Laws

software (DFCL SW) for a full-authority Automatic Flight Control System (AFCS) of the “StratoStreamer” HAPS

aircraft in the certified category. Both applications are integrated as segregated partitions into a flexible computing

platform that uses the Integrated Modular Avionic (IMA) technology of the Aviotech company. The deployment of

this IMA platform was already successfully demonstrated in [16] and [17].

The AFCL SW provides the following functions:

• Input signal pre-processing and signal filtering,

• Calculation of flight envelope limits and operational limits,

• Calculation of mode availability, flight state and mode of operation,

• Navigation and flight path calculation from waypoint commands and mission demands,

• Closed-loop control for longitudinal, vertical, and lateral guidance of the aircraft,

4 MLFS is available on https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 3

• Calculation of individual commands for the various aircraft control elements,

• Automatic take-off and landing function.

The DFCL SW provides the following functions:

• Pre-processing of cockpit input signals,

• Functions for manual flight control,

• Function for system parameter identification during flight test,

• Switch of control elements command between AFCL SW and DFCL SW commands.

The DFCL SW is used for piloted flight tests. It is developed according to the same standards as the AFCL SW.

Figure 2-1 shows the scope of the Software Life Cycle (SLC) and data generated during software development. The

focus is on establishment of methods and procedures for development, verification and configuration management,

which are documented in:

• Plan for Software Aspects of Certification (PSAC),

• Software Development Plan (SDP),

• Software Verification Plan (SVP),

• Software Configuration Management Plan (SCMP).

These plans fulfil the DO-178C objectives for the planning process. Additionally, based on our experience in previous

projects [8] and after several refinements through the SLC, a comprehensive software modelling and design standard

(SMS/SDS) has been developed. The model element library FCLib is developed using the same plans and standards

as the AFCL SW and DFCL SW.

Any FCLib baseline contains:

• FCLib as model element library in Simulink and in SCADE,

• Software Design Description (SDD),

• Software Verification Cases and Procedures (SVCP),

• Software Verification Results (SVR),

• Software Configuration Index (SCI).

Figure 2-1: Software Life Cycle Process and Data according to DO-178C/DO-331

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 4

2.1 Software Development Environment

Table 2-1 summarizes definitions that are of particular importance.

Table 2-1: Term Definitions

Term Definition

Design Model1 A model that defines any software design such as low-level requirements (LLR),

software architecture, algorithms, component internal structures, data flow and/or

control flow. A model used to generate Source Code is a Design Model. The Design

Model is the SCADE Suite Model.

Prototype Model A model that defines any software design such as low-level requirements, software

architecture, algorithms, component internal structures, data flow and/or control flow.

A model is called Prototype Model if no Source Code is generated from it. The

Prototype Model is a Simulink Model.

Library Module A Model Element that is included in a Model Element Library.

Model Element1 A unit from which a model is constructed.

Model Element Library1 A collection of model elements used as a baseline to construct a model. A model may

or may not be developed using model element libraries.
1 Definitions are adopted from [10], ANNEX MB.B. Glossary.

Figure 2-2 illustrates the development environment and tools used in the software development process described in

the previous section. All development activities are performed on a Host PC and on the Processor-in-the-Loop (PiL)

test rig that provides the environment and all tools described below.

The requirements for AFCL SW and DFCL SW are defined in textual form and managed with a requirement

management tool. A special characteristic of our process is that the requirements, from which the Prototype and

Design Models are developed, are on the system level. This approach implements the model usage example 5 of [10].

The executable Prototype Model is developed utilising Simulink. The Prototype Model is used to develop the Flight

Control Functions (FCF) in closed-loop simulations with a high-fidelity Flight Mechanical Model (FMM) of the

aircraft. The Prototype Model effectively represents both software architecture and software low-level requirements

(LLR) and is a part of the system development process. However, it is essential to emphasise that the Prototype Model

is not a Design Model, as neither source code nor executable code for the target is generated from this model.

The Prototype Model undergoes a comprehensive examination utilising the Model Examiner® (MXAM) tool by Model

Engineering Solutions to ensure the translation readiness into Scade language and design standard compliance. This

analysis verifies the model’s adherence to the design rules, checks the complexity and structure and then the tool

produces detailed reports that document findings. These reports serve as evidence for the compliance of the Prototype

Model with the established design standards.

Afterwards, the Prototype Model is automatically translated into Scade using the SCADE Simulink Importer and the

customised S2S (Simulink to Scade) tool that provides additional features. The S2S tool enables a modular model

translation and enables the transfer of metadata (e.g., requirement traceability data). At this stage, the FCLib ensures

the functional equivalence of the two models by applying mapping rules between FCLib modules in Simulink and

SCADE. Testing the Design Model against the requirements utilised in the development of the Prototype Model makes

a tool qualification for model translation unnecessary.

After the translation of the Prototype Model from Simulink to SCADE, it becomes the formal software Design Model.

The Design Model encompasses the software architecture as well as the LLR. The LLR are represented by the safe

state machine syntax and equations consisting of primitive operators of the Scade language and are fully documented

in [18]. During the testing of the Design Model and by the Design Model Peer Review, all necessary verification

evidence is generated to show compliance with the objectives of DO-178C/DO-331.

A qualified SCADE toolchain is employed for testing, report generation, and code generation to reach compliance with

DO-178C/DO-331 objectives for the Design Model and the resulting source code:

1. SCADE Test Environment for Host is used for conducting Design Model simulations, demonstrating

compliance of the Design Model with requirements.

2. SCADE Test Model Coverage (MTC) performs comprehensive analysis and reporting of coverage

achieved through requirement-based testing at both the Design Model and source code levels.

3. SCADE Life Cycle Reporter guarantees the integrity and coherence of the generated Design Model Report

(DMR), ensuring its alignment with the Design Model. The DMR is an important annex to the SSD

document, and its assessment takes place during the Design Model Peer Review.

4. SCADE Suite KCG 6.6 Code Generator is responsible for the generation of source code from the Design

Model.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 5

Figure 2-2: Software Development Environment

The system integration process starts with the software pre-integration on a Processor-in-the-Loop (PiL) test rig, which

represents a single lane of the Core Processing Module (CPM) of the IMA platform. The executable object code (EOC)

is generated with the WindRiver® DIAB Compiler and is then loaded into the PiL environment. Inside the PiL

environment, the Design Model tests are replicated with attention turned to memory and timing aspects.

The EOC is delivered to Leichtwerk AG for Hardware in the Loop (HiL) tests after the successful completion of PiL

testing. The HiL test rig at Leichtwerk AG is a full replica of the AFCS IMA platform and encloses all required

functions.

2.2 Mapping of Primitive Operators between Scade and Simulink

The permissible extent of operators available for library design in Simulink is constrained by the functionally

equivalent elements of the Scade language. In this work, the Scade 6.6 language version is used for software design

within the SCADE IDE and its basic features are described here.

Scade is a synchronous language, using the synchronous hypothesis. This hypothesis states that model outputs are

generated instantaneously in response to inputs. All communications and computations within a model are considered

to be instantaneous [19]. This approach is well suited for real-time embedded systems as it guarantees deterministic

operation within finite time and memory frame [7].

Scade 6.6 as a formal language incorporates mathematical formalism, which enables automatic analysis ensuring the

correctness and absence of ambiguities in Scade models [7]. Formal analysis is exerted inside SCADE Suite Checker

as an integral component of the SCADE suite for examination of semantic and syntactic accuracy.

In SCADE IDE the Scade models have textual and graphical representations, as illustrated by the example of the FCLib

HOLD module in Figure 2-3 and Figure 2-4. This module retains the output y_out at its value of the previous execution

cycle yk1 as long as the input condition b1s remains false. Within the Scade language definition, the HOLD module is

considered a User-Defined Operator (UDO), which is a hierarchically structured Scade model. Each UDO can be

depicted as a node or function containing equations or state machines. Nodes represent operators with an internal state,

necessitating the storage of past values in memory. In contrast to nodes, functions are operators without internal states

and memory. In the given example, the UDOs Initial Condition (IC) and Switch are visually represented by yellow

rectangles, with IC being a node and Switch being a function. The blue square denoting "Followed By" (FBY) is a

primitive operator belonging to the fundamental expressions of the Scade 6.6 language and is a unit delay with an

initialisation value. The control and data flow of the Scade model is expressed through equations, which combine

various primitive operators.

All primitive operators are elements of the formal Scade 6.6 language and belong to the pre-qualified scope of the code

generator SCADE Suite KCG. Primitive operators can be categorised as outlined in Table 2-2 and include essential

elements used in algorithms such as simple arithmetic (plus, minus, division), logical (lower than, AND), bit-wise

operations (bit-wise OR, bit-wise NOT), structure and array operations (select array element, concatenation), temporals

(Init, FBY) and flow control (If..Then..Else). The higher order primitives include activate condition, Map and Fold

iterators to apply functions or nodes to array items. Furthermore, Table 2-2 provides examples of the mapping between

Scade primitives and elementary Simulink blocks. The full scope of allowed primitive operators and their mapping is

defined by the Software Design Standard (SDS) and Software Design Description (SDD) of FCLIb.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 6

Figure 2-3: Graphical Scade Representation

Figure 2-4: Textual Scade Representation

Table 2-2: Primitive Operators Examples and Mapping from Simulink to SCADE

Category Scade Primitive Block Simulink Block

Arithmetic Plus

Bitwise arithmetic Bitwise AND

Relational Equal

Boolean AND

Structure/Array Data Array

Temporal Init

Flow switches If..Then..Else

Higher Order Activate

2.3 Simulink Model Translation with S2S using the FCLib

The process of translation involves the conversion of Simulink models into SCADE Suite using the proprietary

command line tool S2S, implemented in Python. S2S automates the import activities of the SCADE Suite Simulink

Importer tool. Figure 2-5 illustrates the model translation process, which consists of two main tasks :

1. Exporting a Prototype Model from Simulink/Stateflow into JavaScript Object Notation (JSON) files.

2. Importing the JSON files into the Design Model in SCADE with configurable import options.

Moreover, S2S enables the reimport of the Prototype Model sub-modules. To achieve this, S2S analyses the model

hierarchy of an existing Design Model and invokes the Simulink Importer with the appropriate configuration files

(.cfg-file) for reimporting. The .cfg-file contains rules for reusing the imported operators of the created Scade models.

The .cfg-files are either automatically generated during the translation process or manually created and customised by

the user for specific mapping rules. Customised .cfg-file (lib_map.cfg) is used for mapping FCLib modules between

the Prototype and Design Model. Consequently, the imported Scade model does not include translations of the FCLib

library models from Simulink but rather instances of the library modules from the FCLib Scade models. Furthermore,

the mapping rules, which gover the translation of elementary Simulink blocks to Scade primitives are defined in the

op_map.cfg file.

The functional equivalence between the Prototype and Design Model is ensured by strict mapping rules between Model

Elements of the FCLib in Simulink and Scade, as well as compliance of the Prototype Model with design standards

and subsequent testing.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 7

Additionally, the S2S tool adds annotations to the generated Design Model through the SCADE Python API to preserve

data that is not retained by the Simulink Importer itself. An annotation is a note associated with an object in SCADE

IDE and is used to add extra information to the model. This information includes requirements traceability data, design

decisions, editorial comments as well as information from the Interface Control Document, and Git version control

information for configuration management.

Upon successful translation, the software designer uses the SCADE Checker tool to validate the semantic and syntactic

correctness of the Design Model. The SCADE Checker tool is qualified and belongs to the scope of the pre-qualified

code generator SCADE Suite KCG.

Figure 2-5: Translation procedure for Simulink models using the FCLib

3. Library Specification and Design

The development involves three distinct steps for specification and design (1) the elementary blocks of Simulink are

defined, which can be effectively mapped to suitable Scade primitive operators, (2) the functional scope of the library

is determined, (3) each library module is specified, implemented, and documented in the Software Design Document

(SDD). Automatic design model report is generated for all library modules in the SCADE IDE.

3.1 Functional Scope of the Library

The FCLib comprises 48 library modules, whereas the supplementary math library (MATHLib) comprises 44 library

modules, which are fully integrated into the FCLib within Simulink and SCADE Suite. The library is categorised into

three types:

• time-independent modules,

• time-dependent modules,

• MATHLib modules.

Time-independent modules encompass functions where the output is fully determined by the inputs within a single

execution cycle. On the other hand, time-dependent modules, rely on both the inputs and one or more stored values

(internal states) from previous execution cycles. Consequently, time-dependent library modules necessitate memory

access and initialisation. MATHLib modules are exclusively time-independent and are implemented as functions.

In addition to temporal considerations, the categorisation of FCLib modules based on their functional purpose within

flight control laws is depicted in Table 3-1.

The FCLib modules encompass limitations functions to maintain predefined or safe value ranges, such as envelope

limits or control surface deflections. Look-Up tables are commonly employed for controller gain scheduling. The

desired controller structure can be constructed using integrators and derivatives. Discrete filters, such as first-order

low-pass filters, can be used to modify or amplify specific characteristics of the signals. Digital logic modules

incorporate elements necessary for logical decision-making. Examples include signal edge indication, monostable or

flip-flops. Navigation equations can be employed to calculate the flight path based on commanded waypoints. These

equations use trigonometric double-precision mathematical functions (MATHLib) to achieve the calculation precision

needed for navigation algorithms. The MATHLib components encompass functions that assess specific attributes (e.g.,

presence of NaNs or INFs) of floating-point numbers represented in their binary form, aiming to simplify and accelerate

the computation of mathematical functions. These elementary operators and approximation algorithms are outlined in

[20].

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 8

Table 3-1: FCLib Module Categories and Examples

FCLib Category FCLib Module Examples ID

Time-independent

Limitation &

protections

Limiter

Dead Space

LIM

DEAD

Look-up Tables 1-D Look-Up Table

2-D Look-Up Table

LINT1

LINT2

Navigation equations The course of an orthodrome

Target coordinates calculation

NAVCRS

NAVTGT

Math operators Absolute Value

Signum

ABS

SIGN

Time-dependent

Discrete Filter and

Transfer Functions

First-order low-pass filter

Integrator

FILTLP1a

INT

Data Consolidation synchronisation of two signals SYNC

Digital Logic Flip-Flop with reset priority

Conditional memory

Confirm trailing (falling) edge

FLIPR

HOLD

CONFT

MATHLib

floating point numbers Not a Number Check 64 bit

Subnormal Check 32 bit

f64NAN

f32SUBN

math functions single sine

double square root

SINF

SQRT

3.2 Specification, Implementation and Documentation

DO-331 requires the definition of library-specific requirements like interface conventions, timing aspects, operational

conditions, and functional aspects. The Software Design Document (SDD) serves the dual purpose of both specification

and design documentation and is an important item within the FCLib Life Cycle. It encompasses the essential

information regarding the usage rules, and general properties of the FCLib such as model execution basics, general

library parameters (e.g., used sample time), data types, numerical limits, and primitive operator mapping rules. When

a specific function is required in multiple instances within the AFCL or DFCL application, it is included as a library

module in the FCLib and described in the SDD. The functionality, interface definition, and description of each module

correspond to the software High-Level Requirements (HLR) in terms of RTCA DO-178C. As the FCLib consists of

library modules that implement elementary functions, these specifications directly serve as documentation for the

library modules within the SDD. Therefore, there is no separate establishment of a Software Requirement Document

(SRD). The specification is independent of the used modelling environment. With the assistance of pseudocode and

the requirements, the implementation can be carried out in various environments directly, including Simulink, SCADE,

or other programming languages. This characteristic provides the flexibility to adapt the specification to different

modelling environments, allowing for straightforward implementation in the desired environment. As a result, it

facilitates the convenient reuse and expansion of the FCLib in various projects, further enhancing its versatility and

applicability.

Each library module is comprehensively described in a distinct section, presenting all necessary information. The way

each module is specified, programmed, and documented is exemplified through the FCLib discrete first-order low-

pass filter FILTLP1a.

Figure 3-1 shows the graphical representation in both Simulink and SCADE is a part of every FCLib module

description in SDD. Each library module is equivalent to a Subsystem in Simulink and a User-Defined Operator in

SCADE. Both visual representations display input and output names, as well as module identifiers. The inputs and

outputs in SCADE correspond to the Inports and Outports in Simulink. Similarly, the mask parameters in Simulink

correspond to the hidden inputs in SCADE.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 9

Figure 3-1: Graphical Representation of FCLib modules in Simulink (left) and SCADE (right)

The module interface description includes input, output as well as hidden inputs definition. Additionally, the internal

states and used library parameters need to be identified. Figure 3-2 shows the definition of input variables for the

FILTLP1a module in SDD. Each variable has its unique identification within Simulink and SCADE (input/output

name), a symbol for the pseudocode description (algorithm variable), data type, value range and a short description.

Figure 3-2: Exemplary definition of input interface variables for FILTLP1a module in SDD

The pseudocode in Figure 3-3 provides a formal definition of the algorithm, serving as a comprehensive instruction

set for implementing the FCLib module. The temporal aspects of the algorithm are outlined by the initialisation and

cyclic execution sections. In conjunction with the previously described interface and internal states, this algorithm is

unambiguously defined and can be implemented.

The software High-Level Requirements (HLR) for the library modules correspond to the functionality description of

each module given in SDD. The only difference to a general way of writing the requirements is the absence of the verb

"shall". As Figure 3-5 shows, parts of the description of a library module which correspond to a requirement are

parenthesised by the “§”-character and a consecutive Roman numeral. Each library module additionally defines a

unique tag for each requirement in the Subsection “Traceability”. The tags are composed of the keyword “REQ”, the

identifier of the module and a three-digit number that corresponds to the Roman numeral in the module description.

The pseudocode and HLRs from the tagged functionality description do not provide an explicit design that is

implemented in the modelling environment, but with this information, the designer can implement the model directly

in Simulink and the tester creates the test scenarios to perform verification of the FCLib module.

After implementing all library modules in Simulink, they are then translated into Scade. To fully document the

architecture, data, and control flow of each module in the SCADE Suite, the SCADE LifeCycle Reporter is used to

automatically generate a Design Model Report (DMR) for all FCLib modules. The use of the SCADE LifeCycle

Reporter as a pre-qualified tool ensures the correctness of the report generation.

The DMR provides comprehensive details about the module interface, including its data type, module hierarchy,

comments, and transferred metadata from Simulink. Additionally, it includes the graphical representation of the Scade

language control and data flow, along with all sub-operators. This graphical representation, as shown in Figure 3-4,

enhances the understanding of the module's functionality and facilitates analysis and review processes.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 10

Figure 3-3: Pseudocode

example of FILTLP1a

Figure 3-4: View of FILTLP1a module in Design Model Report

Figure 3-5: Software HLRs for

FILTLP1a module

4. Library Verification Approach

This chapter explains the test and analysis methods employed for library verification and highlights the significant

results obtained. These methods, evaluate the library timing performance and behaviour.

4.1 FCLib Test and Analysis Methods

The test process involves the requirement-based definition of test cases. The requirements identified in the SDD serve

as the basis for the test case specifications in a Software Verification and Procedures Document (SVCP). A test case

specification provides precise instructions on how to test a specific requirement. It is used to develop the test sequence

for the SCADE Test Environment for HOST (TEH). Figure 4-1 shows a test case example for the DBZ module (divide

by zero protection). A test case specification includes a unique test case identification, the corresponding requirement

tag from which the test case is derived, a description of pre-conditions, required inputs, post-conditions, and expected

results.

A test sequence comprises the set of input values and expected output values that represent one or multiple test cases.

The test sequences are defined as ASCII comma-separated value (CSV) files and subsequently entered into the TEH.

To generate these test sequences, MATLAB scripts are created based on the test case specifications. The expected

values are defined using pseudocode and the requirements outlined in SDD, enabling the automated generation of the

test sequences. To demonstrate the functional equivalence of the FCLib modules in both SCADE and Simulink, the

test sequences developed for TEH are executed in Simulink as well.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 11

Figure 4-1: Example of Test Case Specification for the DBZ Module

The test sequences are prepared for the simulation of individual modules with TEH. These simulations encompass

three distinct types of tests.

(1) Instrumented tests are applied when a polymorphic FCLib operator is tested. The internal data type definition of

a polymorphic operator depends on the block usage context. For testing purposes, these blocks are instrumented

with inputs and outputs of all possible data types according to their specification given in the SDD (see Figure

4-2), enabling the execution of the instrumented models.

(2) Direct tests are applied on non-polymorphic FCLib operators that have predefined data types. Such modules are

executable and can be stimulated by input vectors from test sequences without any instrumentation.

(3) MATHLib tests are applied to math operators which are part of FCLib. The MATHLib modules require additional

instrumentation to achieve better accuracy for stimulation values in test sequences. Reading the input stimulation

of floating-point data type from the CSV file yields a loss of accuracy, which leads to deviations in the test results

of the library module. To address this issue, the library module inputs are instrumented with union-type operators.

These operators facilitate the transfer of an unsigned integer representation into any other data type and vice versa.

This conversion allows stimulation with exact bit representations of floating-point numbers. The union-type

operators (e.g., block UTuint64_f64 in SIN instrumentation, Figure 4-3) are implemented as imported C functions

in SCADE and as S-Functions in Simulink. Different types of MATHLib instrumentations are applied:

• requirements-based tests and precision analysis,

• testing simple mathematical identities e.g. sin(−𝑥) = −sin(𝑥), see upper diagram in Figure 4-3,

• error propagation analysis in mathematical identities e.g. exp(x − v) = exp(x) ∗ exp(−v), see bottom

diagram in Figure 4-3.

Figure 4-2: Instrumentation of

polymorph ABS module

Figure 4-3: Instrumentation of SIN and EXP MATHLib modules

The structural model coverage analysis is performed with the SCADE Test Model Coverage (TMC) tool. The FCLib

coverage analysis ensures that all elements and paths of the FCLib modules in SCADE have been stimulated and

activated by requirement-based test cases. The considered coverage metrics are Decision Coverage (DC) as well as

Data and Control (D&C) coupling that has to be achieved for the software DAL level C.

Both TEH and TMC are qualified tools according to DO-330. Tool qualification is required when the output of tools

is used to automate, reduce, or eliminate objectives of the software development process defined by DO-178C/DO331.

TEH's qualification ensures the correct evaluation of test results, while TMC's qualification ensures the proper

acquisition of coverage results and generation of coverage reports.

One significant timing concern in the AFCL software is the utilisation of double precision math functions. The

PowerPC MPC5567 target processor lacks a double-precision floating-point unit, necessitating the use of emulation

routines for double-precision float computations. Consequently, the extensive execution time of navigation functions

that use multiple double-precision math functions leads to exceeding the allocated Worst-Case Execution Time

(WCET) for the AFCL SW. To address this issue, the execution time of FCLib math functions and the Wind River

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 12

Diab Compiler® math functions provided along with the compiler, are compared. Two approaches are used for timing

analysis:

(1) Leichtwerk AG operates the Absint aiT WCET Analyzer tool, which performs static analyses of a task’s

intrinsic cache and pipeline behaviour based on formal cache and pipeline models. This analysis enables the

computation of accurate and tight upper bounds for the WCET. The analysis is individually performed for

each MATHLib module instance using compiled object code.

(2) Execution time measurement is carried out on the target processor in the Processor-in-the-Loop (PiL) test

environment. The PiL configuration allows the execution of a desired software partition without the IMA

platform's timing limits. This analysis is conducted by integrating each MATHLib instance on the PiL as an

AFCL partition for the measurement campaign.

4.2 Evaluation of FCLib Test Results and Analysis

The functional tests performed on the FCLib modules, involving Boolean data types and integer operations,

demonstrate compliance with the expected results. To evaluate the floating-point modules, tolerances for pass-fail

criteria are defined in Table 4-1. Notable deviations are observed in single precision second-order low pass filter

module FILPLP2a and the navigation equation modules.

All test sequences were repeated in Simulink. All FCLib modules in Simulink demonstrate the same behaviour and the

same numerical deviations from expected results as in SCADE.

One of the reasons for these deviations is attributed to the format CSV files of the test sequence. The textual

representation of the floating-point numbers leads to a loss of accuracy when the stimulation values are read.

Functional tests are executed and subsequent precision analysis is performed for instrumented MATHLib modules.

The expected values for test sequences are generated with native mathematical functions in MATLAB. Figure 4-5 and

Figure 4-6 depict the numerical deviations of double precision sine and single precision cosine from expected values.

The deviations observed in cosine in the primary input range [−2𝜋, 2𝜋] remain below the tolerance values. However,

for input values exceeding |𝑥| > 8 ∙ 103, the deviations violate the required numerical tolerances. Within the context

of the AFCL software, these deviations are considered not critical since the relevant input range for the COSF module

is limited to [−2𝜋, 2𝜋].
Table 4-1: Tolerance Settings for Floating-Point Variables

FCLib Modules 𝜀𝑟𝑒𝑙 𝜀𝑎𝑏𝑠
single double single double

time-independent 10−6 10−8 10−6 10−8

time-dependent 10−4 10−6 10−5 10−6

After the execution of requirement-based test sequences, the structural coverage analysis reveals complete coverage

for both DC and D&C coupling metrics in all time-independent and math modules. However, a few time-dependent

modules exhibit minor coverage gaps. Figure 4-6 provides an example of such a gap in the DERIV module, which is

responsible for signal differentiation. In this instance, the initial value of the unit delay primitive FBY does not impact

the module's output because the initial condition (IC) operator overwrites the output by zero in the first execution cycle.

This behaviour violates the C&D coupling metric. The use of the unit delay is necessary to avoid an algebraic loop,

while the DERIV module requires a specific initialisation value on its output. To mitigate this issue, a justification is

provided, explaining the reasons why such a gap is deemed acceptable. These justifications flow into the generation of

the coverage report, ensuring that the reasons for the observed gaps are considered and appropriately documented.

The coverage results achieved for the FCLib are leveraged for the coverage analysis of DFCL and AFCL software. In

instances where an integrated FCLib module does not reach full coverage, the coverage gaps are justified by referring

back to the coverage results obtained from the library's test. This approach allows the effective reuse of existing

coverage information and provides a basis for explaining observed coverage gaps within the integrated software.

Results in Table 4-2 indicate that MATHLib implementations of sine, cosine, and tangent functions require

significantly less time (52% to 66%) compared to DIAB functions. However, MATHLib modules for arc cosine, arc

sine, and arc tangent functions require nearly twice the time compared to DIAB functions. The timing results of Absint

analysis and PiL measurement correlate with each other. Absint analysis provides a more conservative estimate

compared to PiL measurement.

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 13

Figure 4-4: double precision sine (SIN) deviation from

MATLAB sine

Figure 4-5: single precision cosine (COSF) deviation

from MATLAB cosine

Figure 4-6: Visualisation of a coverage gap in the FBY primitive in the DERIV module in SCADE IDE

Table 4-2: WCET analysis for selected MATHLib modules

Module Max. DIAB

[μs]

Max. MATHLib

[μs]

Ratio DIAB/MATHLib

PiL results

COS 735 628 120 %

SIN 734 576 133 %

TAN 832 603 145 %

ACOS 533 932 52 %

ASIN 536 930 53 %

ATAN 460 798 52 %

Absint results

COS 1353 893 151 %

SIN 1353 827 164 %

TAN 1405 725 194 %

ACOS 529 1124 47 %

ASIN 550 1123 49 %

ATAN 399 857 47 %

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 14

5. Conclusion

The development process for flight control laws includes two processes: the system development process (SAE 4754A)

and the software development process (RTCA DO-178C and DO-331). The efficiency of the FCL development can be

significantly increased through model-based development, automation in testing and by using ready-made library

elements. For the design of the flight control functions, Mathworks Simulink is a common tool, whereas for the FCL

software design, Ansys SCADE Suite has the advantage to significantly reduce workload in the certification process,

as the transition from block diagram to executable code is formally proven. A process that combines the advantages of

both tools was developed. This process includes the automated translation of Simulink models to Scade. It was applied

to design and verify the FCLib library elements – and then for the DFCL SW and the AFCL SW.

The elements of the library FCLib play an important role in the translation procedure. The re-use of test and coverage

results, significantly reduce the verification effort, especially repetitive unit tests to ensure 100% Decision Coverage

and Control & Data coupling. The FCLib provide a wide range of functionality and can be customised according to

specific project requirements. This versatility enables its usage as a stand-alone library in both Simulink and SCADE

environments. The FCLib has also been successfully employed in the MODULAR5 to demonstrate efficient processes

for flight control law and actuator control software development.

The library design enables rapid extension to accommodate specific requirements for new library modules. The

availability of a well-documented and verified library aids small teams with limited personnel resources when

developing safety-critical software.

Finally, it is recommended to further investigate numerical accuracy, particularly concerning mathematical modules.

One potential solution is to explore more precise approximation methods for these modules and assess their impact on

execution time.

Acknowledgement

The presented work is the result of the FCL-Methods research project at the Department for Flight Mechanics, Flight

Control and Aeroelasticity, Technische Universität Berlin. FCL-Methods was funded and supervised by Leichtwerk

AG. The results and methods were refined in the scope of the subsequent joint project IBAS in the context of the public

sponsorship program Niedersächsische Luftfahrtförderrichtlinie funded by NBank.

References

[1] EASA. Nov. 2021. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes (CS-

25): Amendment 27, CS-25.

[2] ARP4754A. 2010. Guidelines for Development of Civil Aircraft and Systems. S-18 Aircraft and Sys Dev and

Safety Assessment Committee, SAE International.

[3] RTCA DO-178C. Dec. 2011. Software Considerations in Airbone Systems and Equipment Certification. Radio

Technical Commission for Aeronautics, RTCA.

[4] Torres-Pomales,W. Dec. 2014. "Is Model-Based Development a Favorable Approach for Complex and Safety-

Critical Computer Systems on Commercial Aircraft?". NASA, Langley Research Center.

[5] Schmidt, D.C. 2006. “Guest Editor’s Introduction: Model-Driven Engineering”. In: Computer. vol. 39. no. 2. pp.

25–31.

[6] RTCA DO-330. Dec. 2011. Software Tool Qualification Considerations. Radio Technical Commission for

Aeronautics, RTCA.

[7] Colaço, J.-L., Pagano, B., and Pouzet, M. 2017. SCADE 6: A formal language for embedded critical software

development (invited paper). In 2017 International Symposium on Theoretical Aspects of Software Engineering

(TASE). pp. 1–11.

[8] Walde, G., and Luckner, R. 2016. Bridging the tool gap for model-based design from flight control function

design in Simulink to software design in SCADE. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference

(DASC). pp. 1–10.

[9] Kickert, R. 2021. High Altitude Platform Stations (HAPS). In: DGLR Magazin Luft- und Raumfahrt. vol. 2/2021.

pp.17-19.

[10] RTCA DO-331. Dec. 2011. Model-Based Development and Verification Supplemant to DO-178C and DO-

278A. Radio Technical Commission for Aeronautics, RTCA.

[11] Leichtwerk AG. 2021. High Altitude Platform Stations (HAPS)-A Future Key Element of Broadband

Infrastructure. https://www.leichtwerk.de/fileadmin/start/HAPS_WhitePaper_A11_e.pdf (accessed Jul. 5, 2023).

[12] Bourke, T. Carcenac,F. Colaço, J.-L. Pagano, B. Pasteur, C. and Pouzet, M. 2017. A Synchronous Look at the

Simulink Standard Library. In: ACM Trans. Embed. Comput. Syst. vol. 16.

5 Research project in cooperation with Liebherr Aerospace Lindenberg (Bundesministerium Wirtschaft und Energie, Luftfahrtforschungsprogramm

LUFO VI-1)

DOI: 10.13009/EUCASS2023-953

MODEL-BASED DEVELOPMENT OF A LIBRARY FOR SAFETY-CRITICAL FLIGHT CONTROL LAWS

 15

[13] ANSYS, Inc. Nov 2020. SCADE Suite Libraries Manual. ANSYS SCADE Products.

[14] Arregi, A. Schriever, F. Arias, C. and Jung, A. 2019. Ensuring Numerical Reproducibility for Model-Based

Software Engineering. doi: 10.13009/EUCASS2019-790.

[15] Nürnberger, K. 2019. Development of Elementary Mathematics Functions in an Avionics Context. PgD Thesis.

Technische Universität München.

[16] Gorke, S. Riebeling, R. Kraus, F. and Reichel,R. 2013. Flexible platform approach for fly-by-wire systems. In:

2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC 2013): East Syracuse, New York, USA, 5 -

10 October 2013, East Syracuse, NY, USA.

[17] Luckner, R. Dalldorff, L. and Reichel, R. 2014. A utility aircraft for remote sensing missions with a high-

precision automatic flight control system. In: 2014 IEEE Intenational Conference on Aerospace Electronics and

Remote Sensing Technology (ICARES 2014). pp. 1–11.

[18] ANSYS, Inc. Nov. 2020. Scade Language Reference Manual. ANSYS SCADE Products.

[19] Benveniste, A. and Berry, G. 1991. The synchronous approach to reactive and real-time systems. In: Proc. IEEE,

vol. 79, no. 9, pp. 1270–1282.

[20] Cody, W.J. and Waite, W.M. 1980. Software manual for the elementary functions (Prentice-Hall series in

computational mathematics). Englewood Cliffs, NJ: Prentice-Hall.

DOI: 10.13009/EUCASS2023-953

