
Copyright © 2023 by First Author. Posted online by the EUCASS association with permission.

A Reinforcement Learning approach to UAV trajectory

configuration

Răzvan Ionuț Bălașa* and Ciprian Marian Bîlu* and Cătălin Iordache*†

* National Institute of Aerospace Research and Development “Elie Carafoli”

B-dul Iuliu Maniu no. 220, sect 6, Bucharest, 061126, Romania

balasa.razvan@incas.ro – bilu.ciprian@incas.ro – iordache.catalin@incas.ro
† Răzvan Ionuț Bălașa

Abstract

This paper presents a Reinforcement Learning (RL) approach to Unmanned Aerial Vehicle (UAV)

trajectory configuration, with a focus on the Proximal Policy Optimization (PPO). Our PPO agent has

been trained in a simulation where the UAV dynamics and the surrounding environment have been
modelled in order to imitate real-life conditions in both open-space and urban scenarios. The UAVs have

to pass through pre-established checkpoints and, depending on the performance of the PPO agent in

accomplishing this task, the simulated environment responds to each action set with Gaussian rewards.

1. Introduction

Due to their complex hardware configurations, widely varying dynamics, and the rising costs of the hardware

components, UAV agents cannot be trained on pre-existing data. Additionally, training a machine learning solution in

real-time directly on a hardware platform presents significant risks. The initial training steps can result in significant

actuators overshoot and orientation errors, which can lead to crashes and damage to the hardware.

Reinforcement Learning solutions remove the need of pre-computing a specific controller baseline [1] to maintain the

attitude of a quadcopter within specific bounds or track a specific trajectory profile. However, classical reinforcement

learning solutions faced challenges related to both performance and keeping the UAVs within the operational

boundaries of their designated regions.
Regarding the state-of-the-art Reinforcement Learning solutions, their main limitations can be summarized as either

poor performance in aerospace applications or high computational load. Solutions such as the Augmented Random

Search (ARS), the Twin Delayed DDPG (TD3) and the Deep Deterministic Policy Gradient (DDPG) struggle to

converge to the global optimum [2], [3] and [4]. The Hindsight Experience Replay (HER) encounters a similar issue,

as a shaped reward may divert the agent from achieving the true goal [5]. Conversely, the Deep Q Learning (DQN)

approach runs the risk of states overload, which can diminish the desired results and reduce overall performance [6].

The Distributional Reinforcement Learning with Quantile Regression (QR-DQN) has shown instability during the

training process [7], while the Soft Actor-Critic (SAC) approach is highly sensitive to hyperparameters and require

extensive tuning for convergence [8].

The main advantage of the Proximal Policy Optimization (PPO) solutions is their comparable or superior performance

to other state-of-the-art approaches, coupled with simpler to implementation and tuning [9]. This advantage stems from

PPO’s use of a first-order optimization method to minimize the cost function at each step, while ensuring a relatively
small deviation from the previous policy. Furthermore, PPO demonstrates excellent performance on continuous control

tasks and maintains increased stability during training [10]. It has been proven successful in UAV trajectory design

and control applications, including scenarios involving multiple UAVs [11], [12].

Lately, in the domain of Unmanned Aerial Vehicles, the focus has recently shifted towards cost-effective yet safe

operations for scientific and commercial purposes. Consequently, an ideal choice is a reliable algorithm that can easily

adapt to various hardware configurations and minimize development costs, particularly in terms of possible hardware

damage, compared to traditional approaches.

Given PPO’s successful implementation in aerospace applications for UAV navigation [13], attitude control [14] and

mission planning [15], it emerges as a suitable candidate for our UAV trajectory tracking applications. Furthermore,

its tendency to remain in the region of interest ensures safety in trajectory configuration applications.

Therefore, we propose a Multi-Agent Proximal Policy Optimization (PPO) solution which optimizes the computational
load and keeps the UAV's trajectory within a trusted region.

DOI: 10.13009/EUCASS2023-907

Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS

mailto:balasa.razvan@incas.ro
mailto:bilu.ciprian@incas.ro
mailto:iordache.catalin@incas.ro

RL FOR UAV TRAJECTORY CONFIGURATION

 2

2. The Mathematical Model of the UAV

2.1 Key Assumptions

Our PPO solution has been developed and trained in a simulated environment using the following assumptions:

1. All the UAVs in each simulation set are identical. These UAVs are X configuration quadcopters with 6

degrees of freedom (3 rotational and 3 translational) and 4 control inputs 𝑢𝑖, which drive the rotation velocity

of each motor.

2. The position of the UAV is considered to be the position of the centre of mass.

3. Pre-existing training data is not available. The agent is trained solely based on the rewards gathered during
each episode of the simulation.

4. Each checkpoint consists of a rectangular area through which an UAV has to pass. Each checkpoint is wide

enough and placed at different heights and with different orientations.

5. The agent shall make the UAV pass through the checkpoints in a specific, pre-defined order.

6. For a mission to be deemed successful in a test scenario, the UAV has to pass through all the predefined

checkpoints.

7. The agent receives a reward for the action sets that successfully guide the UAV through each checkpoint, and

incurs a penalty in the UAV misses a checkpoint or crashes.

8. During the training, sixteen UAVs, each with its own agent, are flying in different simulation scenarios that

include various checkpoints placed in a random order.

9. The experiences acquired by each agent while the UAVs are running in parallel are gathered and used to train

a shared network.

2.2 UAV Dynamics

The UAVs consist of a set of quadcopters with identical configuration and physical parameters (Figure 1).

Figure 1: UAV Configuration

To represent the dynamics of these quadcopters, we map the direct impact which the control inputs, i.e., angular

velocity of each rotor (𝜔1 , 𝜔2 , 𝜔3, 𝜔4), has on the UAV’s Euler angles (roll (ϕ), pitch (θ), yaw (ψ)) and on the upwards

thrust (f) as in [16]

{

 𝑢𝑓 = 𝑏

(𝜔1
2 +𝜔2

2 + 𝜔3
2 +𝜔4

2)

𝑢𝜙 = 𝑏(𝜔1
2 + 𝜔2

2 −𝜔3
2 − 𝜔4

2)

𝑢𝜃 = 𝑏(𝜔1
2 −𝜔2

2 +𝜔3
2 − 𝜔4

2)

𝑢𝜓 = 𝑏(𝜔1
2 −𝜔2

2 −𝜔3
2 − 𝜔4

2)

(1)

where 𝑢𝑓 , 𝑢𝜙 , 𝑢𝜃 , 𝑢𝜓 are the thrust, roll, pitch, and yaw effects respectively, while 𝑏 is a thrust factor which captures

the geometry of the propellers’ configuration related to the main frame of the UAV.

The state vector of the UAV is written as:

𝑆𝑉 = [𝑥, 𝑦, 𝑧, 𝜌, 𝜃,𝜓] (2)

where 𝑥, 𝑦, 𝑧 – are the position coordinates of the UAV.

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 3

Meanwhile, the action set is written as:

𝑎 = [𝜔1 , 𝜔2, 𝜔3 , 𝜔4] (3)

The components of the state vector are obtained from the following dynamics [17]:

𝑥̈ = (𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑)
𝑢𝑓
𝑚

(4)

𝑦̈ = (𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑)
𝑢𝑓
𝑚

(5)

𝑧̈ = (𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠𝜑)
𝑢𝑓
𝑚
− 𝑔

(6)

𝜑̈ =
𝐽𝑥𝑞 − 𝐽𝑧𝑞
𝐽𝑥𝑞

𝜃̇𝜓̇ +
𝑙

𝐽𝑥𝑞
𝑢𝜙

(7)

𝜃̈ =
𝐽𝑧𝑞 − 𝐽𝑥𝑞
𝐽𝑥𝑞

𝜑̇𝜓̇ +
𝑙

𝐽𝑥𝑞
𝑢𝜃

(8)

𝜓̈ =
1

𝐽𝑧𝑞
𝑢𝜓

(9)

where 𝑚 – the mass of the UAV, 𝐽𝑥𝑞 , 𝐽𝑦𝑞 , 𝐽𝑧𝑞–the inertia matrices of the UAV.

2.3 The Environment

The environment provides two options for UAV training:

1. An obstacle-free training field, which is ideal for the basic UAV training of the UAV, when the UAVs learn

to fly and then cross checkpoints.

2. An urban environment that includes random obstacles. This urban environment is particularly useful for

advanced testing procedures dedicated to UAVs that have already acquired flying skills.

The environment consists of a set of ordered checkpoints that each UAV must pass through for a training or testing

episode to be considered successful. The figures below illustrate both the obstacle-free (Figure 2) and urban

trajectories, which comprises ordered checkpoints (Figure 3).

Figure 2: Checkpoints for the obstacle-free training field

Figure 3: Checkpoints for the urban testing environment

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 4

The environment has been simulated in Unity to facilitate easy review of the training and testing procedures. Besides

this 3D map, in developing the environment model, both the mathematical model of the UAV and the agent were

taken into consideration.

The interaction between the UAV and the environment, particularly the forces and accelerations acting on each vehicle,

is captured in the UAV dynamics equations ((4) – (9)). Simultaneously, the environment responds to each PPO agent

by providing rewards based on the agent's performance in each training episode.

However, utilizing a simulated environment presents its own challenges and limitations, particularly regarding the

fidelity of the fidelity of the simulation, which directly impacts training quality, overall performance, and potential

future hardware implementation. Additionally, the model must account for the real-time constraints of the UAV’s

hardware, which will also extend to the PPO agent.

3 The PPO Reinforcement Learning Solution

3.1 The Proximal Policy Optimization

In general, Policy Gradient Methods involve minimizing a loss function which holds the following general form [9]

𝐿𝑃𝐺(𝜒) = Ε̂𝑡[𝑙𝑜𝑔𝜋𝜒(𝑎𝑡|𝑠𝑡)𝐴̂𝑡]

where 𝐿𝑃𝐺 – the Policy Gradient Loss function to be minimized, 𝜋𝜒 – the policy, Ε̂𝑡[…] – expected operator, 𝑎𝑡 -

action taken at a time 𝑡, 𝑠𝑡 – the state vector (SV) at time 𝑡, 𝐴̂𝑡 – estimate of the advantage function at time 𝑡.
It shall be noted that the advantage function 𝐴𝑡 is used in order to decide whether or not the actions set 𝑎𝑡 will be taken

or not. Thus, if 𝐴𝑡 holds a positive value (𝐴𝑡 > 0), the probability of taking the actions 𝑎 is increased upon encountering

the 𝑠 states. Otherwise, the probability will be decreased. The main issue with policy gradient methods is that if the

parameter updates progressively move beyond the initial range, there is a risk of obtaining wrong values for 𝐴𝑡 and,

thus, the policy will lead to inaccurate results.
One way in which the Proximal Policy Optimization method mitigates this risk is by implementing the Trust Region

Method, which constrains the size of our policy update

𝛦̂𝑡 [
𝜋𝜒(𝑎𝑡|𝑠𝑡)

𝜋𝜒𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
𝐴̂𝑡]

(10)

where 𝜋𝜒𝑜𝑙𝑑 - the previous policy.

Let 𝑟𝑡(𝜒) be the probability ratio

𝑟𝑡(𝜒) =
𝜋𝜒(𝑎𝑡|𝑠𝑡)

𝜋𝜒𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

(11)

Consequently, the final PPO objective function is obtained as

𝐿𝐶𝐿𝐼𝑃(𝜒) = 𝛦̂𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜒)) 𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜒), 1 − 𝜀, 1 + 𝜀)𝐴̂𝑡)] (12)

where 𝑐𝑙𝑖𝑝 is the clip function which limits the output, consisting of the 𝑟𝑡(𝜒) function, within the desired bounds,

while 𝜀 is a hyperparameter.

Thus, the new objective function is represented by min(𝑟𝑡(𝜒)) 𝐴̂𝑡, which further tends to push the policy towards

actions which yield a high positive reward.

3.2 The PPO Agents

We write each state at a time instant 𝑡, SV𝑡 , to be a sequence of the past observations and actions:

𝑆𝑉𝑡 = 𝑆𝑉0, 𝑎0, … , 𝑎𝑡−1, 𝑆𝑉𝑡−1 (13)

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 5

where 𝑆𝑉0 – the initial state vector at time instant 0, and 𝑎0 the initial action, a𝑡−1, SV𝑡−1 – the state vector and the

action at time 𝑡 − 1.

It is important to note that none of the agents possess any information regarding the environment model or the dynamics

of the UAV. The agents only receive data from simulated inertial sensors and the position of the checkpoints.

In each episode, a UAV is required to navigate through a predetermined number of 𝑁𝑐ℎ𝑒𝑐𝑘 checkpoints. The episodes

are time-limited to prevent infinite loops and unnecessary resource consumption. Specifically, each UAV is allotted a

finite time interval 𝜏𝑚𝑎𝑥 to travel from one checkpoint to the next. If this time interval elapses or if the UAV crashes

before reaching the checkpoint, we consider the episode's objective to be unmet, and the agent receives the maximum

penalty.

Figure 4: UAV reaching the checkpoints in an obstacle-free environment

Figure 5: UAV reaching the checkpoints in an urban environment

The reward functions are designed to provide a positive reward for reaching a checkpoint, while any deviation or

failure incurs a penalty. Therefore, each type of action outcome is associated with a corresponding reward function,

denoted as 𝑟𝑜𝑢𝑡𝑐𝑜𝑚𝑒 , which follows an unitary form, as illustrated in the table below (Table 1)

Table 1 Action rewards based on the overall episode outcome

Action outcome 𝑟𝑜𝑢𝑡𝑐𝑜𝑚𝑒

Reaching a checkpoint within 𝜏𝑚𝑎𝑥 s 1 point

NOT reaching a checkpoint within 𝜏𝑚𝑎𝑥 s −1 point

Crashing −1 point

In addition to these rewards, we implement a time penalty and a direction penalty. These penalties are implemented at
each second to determine the agent to optimize the trajectory by choosing the shortest paths.

In case the 0 < Δ𝑡 ≤ 𝜏𝑚𝑎𝑥 , the delay penalty is computed as

 𝑟𝑝,𝑑𝑒𝑙𝑎𝑦 = −𝛼𝑝,𝑡 ∙ Δ𝑡 . (14)

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 6

If Δ𝑡 > 𝜏𝑚𝑎𝑥 , it means that the time limit has been exceeded and, thus, we no longer apply the linear time penalty

because we already have a -1 penalty from (14).

For a Δ𝜓 deviation from the direction which connects the centre of the UAV to the centre of the checkpoint which

obeys the 0 < Δ𝜓 < α𝜓 condition, we implement a direction penalty, which is related to the heading of the UAV:

𝑟𝑝,𝜓 =
1

5
∙ 𝑒

−(
Δ𝜓
𝛼𝑝,𝜓

)

2

− 0.75,

(15)

where Δ𝜓- UAV heading deviation [rad], 𝛼𝜓– coefficient related to the maximum direction deviation allowed [rad].

The coefficients of these penalties are bounded as illustrated below

0 ≤ 𝛼𝑝,𝑡 < 0.05, (16)

0 ≤ 𝛼𝜓,𝑡 <
𝜋

2
. (17)

The number of checkpoints 𝑁𝑐ℎ𝑒𝑐𝑘, the linear time penalty coefficient 𝛼𝑝,𝑡 , the direction deviation coefficient 𝛼𝑝,𝜓,

and the maximum time interval for reaching a checkpoint 𝜏𝑚𝑎𝑥 are tuneable parameters which are set at the beginning

the simulation and kept constant during the whole training process.

We compute the overall reward for each episode as a weighted sum of the aforementioned rewards and penalties

𝑟𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = {
𝑟𝑜𝑢𝑡𝑐𝑜𝑚𝑒 + 𝑤𝑝,𝑑𝑒𝑙𝑎𝑦 ∙ 𝑟𝑝,𝑑𝑒𝑙𝑎𝑦 + 𝑤𝑝,𝜓 ∙ 𝑟𝑝,𝜓, 𝑖𝑓 𝑟𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = 1,

−1, 𝑖𝑓 𝑟𝑜𝑢𝑡𝑐𝑜𝑚𝑒 = −1,

(18)

 where 𝑤𝑝,𝑑𝑒𝑙𝑎𝑦 , 𝑤𝑝,𝜓 ∈ [0,1] - the weights by which each type of penalty is multiplied.

The sum of all these weights is, of course, 1, allowing us to either increase or decrease the impact of each parameter

during the training.

𝑤𝑝,𝑑𝑒𝑙𝑎𝑦 + 𝑤𝑝,𝜓 = 1 (19)

3.3 The PPO Solution Architecture

The PPO solution architecture, which is specific to each agent, is illustrated in Figure 6 . It is important to note that

both the training and testing operations were conducted in a simulation environment. Therefore, the diagram represents

simulated sensors and actuators.

Figure 6: UAV PPO Solution Architecture

The agent is represented by the PPO, which incorporates a policy, performs actions, and retrieves rewards. The

simulated communication layer acts as an interface that handles data packets from the sensors and transmits control

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 7

inputs to the actuators. The characteristics of the simulated environment depend on the configuration selected by the

user, who can be choose between an open-space, obstacle-free environment or an urban environment, populated with

random obstacles.

4. Multi-Agent PPO Solution Architecture

4.1 Multi-Agent PPO Solution Architecture

In this Multi-Agent Proximal Policy Optimization (MAPPO) approach, each agent accumulates rewards and updates

its policy individually. It is important to note that while each classical single UAV agent is described by a Markov

decision process, our multi-agent PPO solution is based on a Markov game [18].
Our MAPPO implementation utilizes a Centralized Training and Decentralized Execution (CTDE) approach [19],

allowing for collection of individual experiences from each agent and parallel execute of actions. Similar to [20], the

experiences gathered from each agent, specifically the rewards, are utilized to train the shared network. Consequently,

the reward obtained as a result of one agent's action has an impact on all other agents, raising concerns regarding the

overall convergence of our solution [21].

4.2 Integration approach of the Individual PPO Agents into the Shared Network

In our simulation setup, sixteen UAV agents are concurrently operating in various scenarios. Each scenario consists of

the same checkpoints arranged in a predetermined order (Figure 7). At the start of the simulation, each UAV, along

with its corresponding agent, initiates from the same initial checkpoint. However, a crucial distinction arises after the

first training episode. If a UAV experiences a crash or reaches a timeout, it restarts its training from a new, random

checkpoint. This approach prevents the UAV from learning a specific trajectory. The same methodology is employed

during the testing procedure, as depicted in Figure 8 .

Figure 7: Decentralized UAV agents training in obstacle-free environments

Figure 8 : Decentralized UAV agents training in urban environments

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 8

5. Simulation Results

The training has been performed for a number of 100 million episodes. The values of the parameters which have been

used are in Table 2.

Table 2: Parameters used during the training process

Parameter Value Unit

Number of checkpoints 𝑁𝑐ℎ𝑒𝑐𝑘 11 -

Delay penalty 𝛼𝑝,𝑡 0.002 -

Direction penalty 𝛼𝑝,𝜓 𝜋/2 rad

Time limit 𝜏𝑚𝑎𝑥 5 s

Delay penalty weight 𝑤𝑝,𝑑𝑒𝑙𝑎𝑦 1 -

Yaw penalty weight 𝑤𝑝,𝜓 0 -

Figure 9 illustrates the evolution of the cumulative reward per each episode, demonstrating how the cumulative reward

changes over the course of training.

Figure 9: Environment Cumulative Reward

Additionally, Figure 10 showcases the evolution of the loss function as the training process advances, providing
insights into the improvement or convergence of the learning algorithm.

Figure 10: Loss function

Figure 11 shows the length of each episode, expressed in millions of steps, shedding light on the duration of the

episodes throughout the training process.

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 9

Figure 11: Episode Length

6. Conclusions

The Multi-Agent PPO solution has demonstrated stability during the training procedure, as evident from the cumulative

rewards and loss function graphs (Figure 9 and Figure 10). The training process has exhibited significant improvement

in the agent's performance with an increase in the number of episodes, as indicated by the rise in the overall reward.

Additionally, the loss function has been successfully minimized to values below 0.02. Moreover, as the number of

training episodes increases, the length of each episode, measured in steps, also increases (Figure 11). This is a positive

indicator for the agent's performance, implying that as training progresses, the UAV avoids crashes and timeouts until

all checkpoints are reached.

Considering that the overall reward values tend to stabilize around 95 million episodes and that the loss function shows

a slight increase around the same number of episodes, we can conclude that, for this UAV configuration, a training

process comprising 95 million episodes is sufficient to achieve the desired performance for our agent.

Although the current training process has shown promising results, there may still be room for algorithmic

improvements. Exploring different variants of the PPO algorithm or other state-of-the-art reinforcement learning

algorithms could potentially yield better performance, faster convergence, or improved stability. Also, evaluating the

trained agent's performance in real-world scenarios or simulations that closely mimic real-world conditions can provide

valuable insights. Factors such as dynamic obstacles or harsh weather conditions, along with the use of Light Detection

and Ranging (LIDAR) sensors can be incorporated to create a more realistic training and evaluation environment.

References

[1] Hwangbo, J., Sa, I., Siegwart, R. and Hutter, M., 2017. Control of a quadrotor with reinforcement learning. IEEE

Robotics and Automation Letters, 2(4), pp.2096-2103.
[2] Joshi, T., Makker, S., Kodamana, H. and Kandath, H., 2021. Twin actor twin delayed deep deterministic policy

gradient (TATD3) learning for batch process control. Computers & Chemical Engineering, 155, p.107527.

[3] Fujimoto, S., Hoof, H. and Meger, D., 2018, July. Addressing function approximation error in actor-critic

methods. In International conference on machine learning (pp. 1587-1596). PMLR.

[4] Nuñez, L., Regis, R.G. and Varela, K., 2018. Accelerated random search for constrained global optimization

assisted by radial basis function surrogates. Journal of Computational and Applied Mathematics, 340, pp.276-

295.

[5] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Pieter

Abbeel, O. and Zaremba, W., 2017. Hindsight experience replay. Advances in neural information processing

systems, 30.

[6] Achiam, J., Knight, E. and Abbeel, P., 2019. Towards characterizing divergence in deep q-learning. arXiv
preprint arXiv:1903.08894.

[7] Dabney, W., Rowland, M., Bellemare, M. and Munos, R., 2018, April. Distributional reinforcement learning with

quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).

DOI: 10.13009/EUCASS2023-907

RL FOR UAV TRAJECTORY CONFIGURATION

 10

[8] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.

and Levine, S., 2018. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.

[9] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347.

[10] Wang, Y., He, H. and Tan, X., 2020, August. Truly proximal policy optimization. In Uncertainty in Artificial

Intelligence (pp. 113-122). PMLR.

[11] Zhao, W., Chu, H., Miao, X., Guo, L., Shen, H., Zhu, C., Zhang, F. and Liang, D., 2020. Research on the

multiagent joint proximal policy optimization algorithm controlling cooperative fixed-wing UAV obstacle

avoidance. Sensors, 20(16), p.4546.

[12] Lopes, G.C., Ferreira, M., da Silva Simões, A. and Colombini, E.L., 2018, November. Intelligent control of a
quadrotor with proximal policy optimization reinforcement learning. In 2018 Latin American Robotic

Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education

(WRE) (pp. 503-508). IEEE.

[13] Kabas, B., 2022, May. Autonomous UAV Navigation via Deep Reinforcement Learning Using PPO. In 2022

30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

[14] Bøhn, E., Coates, E.M., Moe, S. and Johansen, T.A., 2019, June. Deep reinforcement learning attitude control of

fixed-wing uavs using proximal policy optimization. In 2019 International Conference on Unmanned Aircraft

Systems (ICUAS) (pp. 523-533). IEEE.

[15] Zhao, X., Yang, R., Zhang, Y., Yan, M. and Yue, L., 2022. Deep reinforcement learning for intelligent dual-UAV

reconnaissance mission planning. Electronics, 11(13), p.2031.

[16] Koch, W., Mancuso, R., West, R. and Bestavros, A., 2019. Reinforcement learning for UAV attitude
control. ACM Transactions on Cyber-Physical Systems, 3(2), pp.1-21.

[17] Pham, T.H., Ichalal, D. and Mammar, S., 2019. LPV and Nonlinear-based control of an Autonomous Quadcopter

under variations of mass and moment of inertia. IFAC-PapersOnLine, 52(28), pp.176-183.

[18] Littman, M.L., 1994. Markov games as a framework for multi-agent reinforcement learning. In Machine learning

proceedings 1994 (pp. 157-163). Morgan Kaufmann.

[19] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A. and Wu, Y., 2022. The surprising effectiveness of

ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems, 35, pp.24611-24624.

[20] Bai, X., Lu, C., Bao, Q., Zhu, S. and Xia, S., 2021. An improved PPO for multiple unmanned aerial vehicles.

In Journal of Physics: Conference Series (Vol. 1757, No. 1, p. 012156). IOP Publishing.

[21] Zhan, G., Zhang, X., Li, Z., Xu, L., Zhou, D. and Yang, Z., 2022. Multiple-UAV Reinforcement Learning

Algorithm Based on Improved PPO in Ray Framework. Drones, 6(7), p.166.

DOI: 10.13009/EUCASS2023-907

