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Abstract 
This paper considers a closed loop reference model architecture for an adaptive control system and 

analyses its robustness in the presence of bounded disturbances. The traditional architecture is modified 

by an e-modification adaptive law and its bounded stability is proven using concepts of uniform ultimate 

boundedness. Furthermore, this work proposes a strategy for calculating the size of the bounded set, 

showing the influence of the CRM architecture in the overall robustness of the system. Finally, the 

results are applied to a satellite launcher attitude control, illustrating how different controller choices 

influence the robustness metrics. 

1. Introduction

Reference model adaptive control systems are a class of controllers capable of adjusting its own parameters by 

monitoring the performance on a feedback loop and comparing the output to a reference model. This behaviour makes 

adaptive systems particularly interesting when dealing with problems with uncertainties on the system dynamics or 

external disturbances, as it is often true in aeronautics and space applications [1, 2]. 

However, due to the nonlinear nature of the system, the future use of such controllers in critical systems is still 

dependent on the development of performance and stability metrics capable of leading to a certifiable control system, 

and the study of stability and robustness metrics have been a very active field in the past decade [2]. A relevant part of 

such effort concerns the transient response of such systems. 

Even in situations where it is possible to prove the overall system stability, the plant behaviour during the transient 

may be very different from the reference model [3]. One of the modifications proposed to address these concerns uses 

the tracking error as a feedback signal to the reference model to maintain fast adaptation while improving transient 

behaviour [4]. 

This paper presents a closed loop reference model (CRM) architecture for an adaptive control system and analyses its 

robustness in the presence of bounded disturbances. The original CRM architecture is modified by an e-modification 

adaptive law and its bounded stability is proven using concepts of uniform ultimate boundedness (UUB) [5]. 

Furthermore, this work proposes a strategy for calculating the size of the bounded set based on the bounds of the 

solution of algebraic matrix equations [6], showing the influence of the CRM architecture gains in the overall 

robustness of the system. Finally, the results are applied to a satellite launcher attitude control, illustrating how different 

controller choices influence the robustness metrics for a real critical system. 

2. Model reference adaptive control

Model reference adaptive control (MRAC) is a class of adaptive control where the controlled system response is 

compared to the response of a given reference model, usually assumed linear and time invariant. The goal of the 

controller is, therefore, for the system response to follow the reference model as close as possible [7]. 

Figure 1 shows a concept diagram for a MRAC controlled system. As described by [8], one may interpret this 

configuration as two separate loops: the internal loop mirrors the traditional controller, while the outer loop represents 

the adaptation loop attempting to drive the error between the reference model and the plant to zero.  

If the plant was completely known, finding the control parameters required to match the plant behaviour to the desired 

reference model would be an algebraic problem. However, since real systems have uncertain parameters, the goal of 

an adaptive system such as this is to change the controller parameters as the system develops [5]. 

A well-known issue with this approach is how the adaptive system behaves in the transient period. As mentioned by 

[3], while it is often possible to prove the stability of model reference adaptive controllers, its performance during the 
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transient phase may be widely different than the desired reference. In order to improve such issues, several 

modifications in the original scheme have been proposed. 

 

Figure 1: Model reference adaptive control scheme 

2.1 Closed-loop model reference adaptive control  

Initially proposed by [8], the closed-loop reference model (CRM) is an adaptive control scheme modification that has 

shown interests results with respect to the transient dynamics of adaptive systems. This configuration, shown in Figure 

2, consists of an error feedback loop not only on the adaptive law, but also on the reference model itself. 

 

Figure 2: Closed-loop model reference adaptive control scheme 

The stability and overall transient properties of this configuration have been explored in several different works [4, 5, 

9, 10,11]. 

 

Consider a plant modelled by Equation (1), where xp is the n-dimensional state (fully available), u is the control signal, 

A is an unknown matrix, B is the control matrix, fully known and Λ is a positive defined diagonal matrix responsible 

for modelling potential control failures. It is assumed that the pair (A, B Λ) is controllable [5]. 

  

�̇�𝑝 = 𝐴𝑥𝑝 + 𝐵Λ𝑢 (1) 

 

The behaviour desired for the plant under a limited signal input r is modelled by a reference model represented by 

Equation (2). The state error is multiplied by a matrix gain L. 

 

�̇�𝑚 = 𝐴𝑟𝑒𝑓𝑥𝑚 + 𝐵𝑟𝑒𝑓𝑟 − 𝐿(𝑥𝑝 − 𝑥𝑚) (2) 

 

The controller follows a feed-forward structure given by Equation (3). K̂x

T
 and K̂𝑟

T
 are the estimated controller gains 

and it is assumed that exists ideal gains Kx
T and Kr

T so that 𝐴 + 𝐵ΛKx
T = 𝐴𝑟𝑒𝑓  and 𝐵ΛK𝑟

T = 𝐵𝑟𝑒𝑓 . 

 

𝑢 = 𝐾𝑥
𝑇𝑥𝑝 + 𝐾𝑟

𝑇𝑟 (3) 
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3. Robustness analysis in the presence of bounded disturbances 

In this paper, we are interested in studying the robustness properties of such system in the presence of bounded 

disturbances. Equation (4) represents the plant in this case, where ξ represents a bounded external disturbance where 

|ξ(t)|
l∞

≤ ξ
max

 ≥ 0. 

 

�̇�𝑝 = 𝐴𝑥𝑝 + 𝐵Λ𝑢 + ξ (4) 

 
Considering the same reference model as Equation (2), the state error dynamics is given by Equation (5), where 

ΔKx=K̂x-Kx and ΔKr=K̂r-K𝑟 . 

 
�̇� = (𝐴𝑟𝑒𝑓 + 𝐿)𝑒 + 𝐵Λ[Δ𝐾𝑥

𝑇𝑥𝑝 + Δ𝐾𝑟
𝑇𝑟] + ξ (5) 

 
We shall consider a quadratic Lyapunov function candidate with adaptation gains such as that Γx=Γx

T>0 and Γ𝑟=Γ𝑟
T>0 

given by Equation (6) [5]. 

 
𝑉(𝑒, Δ𝐾𝑥 , Δ𝐾𝑟) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟(ΛΔ𝐾𝑥

𝑇Γ𝑥
−1Δ𝐾𝑥) + 𝑡𝑟(ΛΔ𝐾𝑟

𝑇Γ𝑟
−1Δ𝐾𝑟) (6) 

 

Here, P=PT>0 solves the Riccati equation (Aref+L)TP+P(Aref+L)+Q=0 for a given Q=QT>0. The temporal derivative 

of the Lyapunov function candidate may be calculated by the expression in Equation (7). 

 

�̇� =
∂𝑉

∂𝑒
�̇� +

∂𝑉

∂Δ𝐾𝑥

Δ𝐾�̇� +
∂𝑉

∂Δ𝐾𝑟

Δ𝐾�̇�  
(7) 

 
Where, 

 
∂𝑉

∂𝑒
�̇� = 2𝑒𝑇𝑃�̇� 

∂𝑉

∂Δ𝐾𝑥

Δ𝐾�̇� = 2𝑡𝑟 (ΛΔ𝐾𝑥Γ𝑥
−1𝐾𝑥

̇ ) 

∂𝑉

∂Δ𝐾𝑟

Δ𝐾�̇� = 2𝑡𝑟 (ΛΔ𝐾𝑟
𝑇Γ𝑟

−1𝐾𝑟
̇ ) 

(8) 

 
Therefore, considering the error dynamics in Equation (5), 
 

�̇� = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃ξ + 2𝑡𝑟 (Λ [Δ𝐾𝑥
𝑇𝑥𝑝𝑒𝑇𝑃𝐵 + Δ𝐾𝑥

𝑇Γ𝑥
−1𝐾𝑥

̇ ]) + 2𝑡𝑟 (Λ [Δ𝐾𝑟
𝑇𝑟𝑒𝑇𝑃𝐵 + Δ𝐾𝑟

𝑇Γ𝑟
−1𝐾𝑟

̇ ]) (9) 

 

The presence of the 2𝑒𝑇𝑃ξ term here means that traditional adaptation laws are not enough to guarantee stability 

under external bounded disturbances [5, 12]. 

3.1 e-modification  

In order to ensure the system stability under these circumstances, several modifications have been proposed in 

literature. This paper will consider an adaptation law with the e-modification [13], shown in Equation (10). Here, σ > 0 

is a scalar constant. 

 

𝐾𝑥
̇ = −Γ𝑥(𝑥𝑒𝑇𝑃𝐵 + 𝜎||𝑒𝑇𝑃𝐵||𝐾�̂�) 

𝐾𝑟
̇ = −Γ𝑟(𝑟𝑒𝑇𝑃𝐵 + 𝜎||𝑒𝑇𝑃𝐵||𝐾�̂�) 

(10) 

 

Therefore, Equation (9) becomes 

 

�̇� = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉 − 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑥
𝑇𝐾�̂�) − 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑟

𝑇𝐾�̂�) (11) 
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Since ΔKx=K̂x-Kx and ΔKr=K̂r-K𝑟 , the derivative of the Lyapunov function is given by Equation (12). 

 
�̇� = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉 − 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑥

𝑇Δ𝐾𝑥) − 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑥
𝑇𝐾𝑥)

− 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑟
𝑇Δ𝐾𝑟) − 2𝜎||𝑒𝑇𝑃𝐵||𝑡𝑟(ΛΔ𝐾𝑟

𝑇𝐾𝑟) 

(12) 

 
Considering the definition of trace, we may write Equations (13) and (14), where|| . ||𝐹  represents the Frobenius 

norm [5]. 

 

𝑡𝑟(ΛΔ𝐾𝑥
𝑇Δ𝐾𝑥) ≡ ∑ ∑ Δ𝐾𝑥𝑖𝑗

2

𝑚

𝑗=1

𝑛

𝑖=1

Λ𝑗𝑗 ≥ ||Δ𝐾𝑥||𝐹
2 Λ𝑚𝑖𝑛  

(13) 

 

𝑡𝑟(ΛΔ𝐾𝑟
𝑇Δ𝐾𝑟) ≡ ∑ Δ𝐾𝑟𝑗𝑗

2

𝑚

𝑗=1

Λ𝑗𝑗 ≥ ||Δ𝐾𝑟||𝐹
2 Λ𝑚𝑖𝑛 

(14) 

 
Finally, we may use the Schwarz inequality and the trace cyclic property on the other elements. 

 
𝑡𝑟(ΛΔ𝐾𝑥

𝑇𝐾𝑥) ≤ ||Δ𝐾𝑥
𝑇𝐾𝑥||𝐹||Λ||𝐹 ≤ ||Δ𝐾𝑥||𝐹||𝐾𝑥||𝐹||Λ||𝐹 

𝑡𝑟(ΛΔ𝐾𝑟
𝑇𝐾𝑟) ≤ ||Δ𝐾𝑟

𝑇𝐾𝑟||𝐹||Λ||𝐹 ≤ ||Δ𝐾𝑟||𝐹||𝐾𝑟||𝐹||Λ||𝐹 

(15) 

 
Thus,  

 
�̇� ≤ −𝜆𝑚𝑖𝑛(𝑄)||𝑒||2 + 2||𝑒||𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥 − 2𝜎||𝑒𝑇𝑃𝐵||||Δ𝐾𝑥||𝐹

2 Λ𝑚𝑖𝑛

+ 2𝜎||𝑒𝑇𝑃𝐵||||Δ𝐾𝑥||𝐹||𝐾𝑥||𝐹||Λ||𝐹 − 2𝜎||𝑒𝑇𝑃𝐵||||Δ𝐾𝑟||𝐹
2 Λ𝑚𝑖𝑛

+ 2𝜎||𝑒𝑇𝑃𝐵||||Δ𝐾𝑟||𝐹||𝐾𝑟||𝐹||Λ||𝐹 

(16) 

 
Using a similar technique as [5], we may complete the squares, so that Equation (17) represents the derivative 

inequality. 

 

�̇� ≤ −λ𝑚𝑖𝑛(𝑄) [||𝑒|| −
λ𝑚𝑎𝑥(𝑃)ξ𝑚𝑎𝑥

λ𝑚𝑖𝑛(𝑄)
]

2

+
λ𝑚𝑎𝑥

2 (𝑃)ξ𝑚𝑎𝑥
2

λ𝑚𝑖𝑛(𝑄)
− 2σ||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛 [||Δ𝐾𝑥||𝐹 −

||𝐾𝑥||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

]
2

+ σ||𝑒𝑇𝑃𝐵||
||𝐾𝑥||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

− 2σ||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛 [||Δ𝐾𝑟||𝐹 −
||𝐾𝑟||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

]
2

+ σ||𝑒𝑇𝑃𝐵||
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

. 

(17) 

 
Therefore, �̇�(𝑒, Δ𝐾𝑥 , Δ𝐾𝑟) < 0 if at least one out of Equations (18), (19) or (20) is true. 

 

 

𝜆𝑚𝑖𝑛(𝑄) [||𝑒|| −
𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥

𝜆𝑚𝑖𝑛(𝑄)
]

2

>
𝜆𝑚𝑎𝑥

2 (𝑃)𝜉𝑚𝑎𝑥
2

𝜆𝑚𝑖𝑛(𝑄)
+ 𝜎||𝑒𝑇𝑃𝐵||

||𝐾𝑥||𝐹
2 ||Λ||𝐹

2

2Λ𝑚𝑖𝑛

+ 𝜎||𝑒𝑇𝑃𝐵||
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

 (18) 

 

2σ||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛 [||Δ𝐾𝑥||𝐹 −
||𝐾𝑥||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

]
2

>
λ𝑚𝑎𝑥

2 (𝑃)ξ𝑚𝑎𝑥
2

λ𝑚𝑖𝑛(𝑄)
+ σ||𝑒𝑇𝑃𝐵||

||𝐾𝑥||𝐹
2 ||Λ||𝐹

2

2Λ𝑚𝑖𝑛

+ σ||𝑒𝑇𝑃𝐵||
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

 

(19) 

 

2σ||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛 [||Δ𝐾𝑟||𝐹 −
||𝐾𝑟||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

]
2

>
λ𝑚𝑎𝑥

2 (𝑃)ξ𝑚𝑎𝑥
2

λ𝑚𝑖𝑛(𝑄)
+ σ||𝑒𝑇𝑃𝐵||

||𝐾𝑥||𝐹
2 ||Λ||𝐹

2

2Λ𝑚𝑖𝑛

+ σ||𝑒𝑇𝑃𝐵||
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

 

(20) 
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These expressions represent limiting conditions, so that V̇< 0 outside a compact set Ω⊂(Rn×Rn×m×Rm×m), closed and 

bounded, where c1, c2 and c3 are defined by Equations (22), (23) and (24). 

 

 
Ω = {(𝑒, Δ𝐾𝑥 , Δ𝐾𝑟): (||𝑒|| ≤ 𝑐1) ∧ (||Δ𝐾𝑥||𝐹 ≤ 𝑐2) ∧ (||Δ𝐾𝑟||𝐹 ≤ 𝑐3)} (21) 

 

𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥

𝜆𝑚𝑖𝑛(𝑄)
+ √

𝜆𝑚𝑎𝑥
2 (𝑃)𝜉𝑚𝑎𝑥

2

𝜆𝑚𝑖𝑛
2 (𝑄)

+
𝜎||𝑒𝑇𝑃𝐵||

𝜆𝑚𝑖𝑛(𝑄)
[
||𝐾𝑥||𝐹

2||Λ||𝐹
2

2Λ𝑚𝑖𝑛

+
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

] ≡ 𝑐1 (22) 

 

||𝐾𝑥||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

+ √
𝜆𝑚𝑎𝑥

2 (𝑃)𝜉𝑚𝑎𝑥
2

2𝜎||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛𝜆𝑚𝑖𝑛(𝑄)
+

1

2Λ𝑚𝑖𝑛

[
||𝐾𝑥||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

+
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

] ≡ 𝑐2 (23) 

 

||𝐾𝑟||𝐹||Λ||𝐹

2Λ𝑚𝑖𝑛

+ √
𝜆𝑚𝑎𝑥

2 (𝑃)𝜉𝑚𝑎𝑥
2

2𝜎||𝑒𝑇𝑃𝐵||Λ𝑚𝑖𝑛𝜆𝑚𝑖𝑛(𝑄)
+

1

2Λ𝑚𝑖𝑛

[
||𝐾𝑥||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

+
||𝐾𝑟||𝐹

2 ||Λ||𝐹
2

2Λ𝑚𝑖𝑛

] ≡ 𝑐3 (24) 

 
Equation (21) shows the ultimate uniform boundedness of all signals in the closed-loop dynamics. 

3.2 Closed-loop reference model influence 

Equations (21) – (24) show that the compact sets defining the ultimate uniform boundedness of all signals are 

influenced by the eigenvalues of the P and Q matrices. 

 
Considering the same Q for both cases, the main difference between both cases will be in the algebraic equation solved 

for P. Equation (25) shows the equation for the traditional, “open-loop”, reference model, while Equation (26) presents 

the equation used for the CRM case. Here, the subscript O is used to differentiate the open-loop reference model. 

 
𝐴𝑟𝑒𝑓

𝑇 𝑃𝑜 + 𝑃𝑜Aref = −𝑄 (25) 

 

(𝐴𝑟𝑒𝑓 + 𝐿)
𝑇

𝑃 + 𝑃(𝐴𝑟𝑒𝑓 + 𝐿) = −𝑄 (26) 

 
According to [6, 12], for a given Q, there is a single symmetric definite positive solution for each of these equations. 

Therefore, if αomax
≥αo2

≥…≥αon
>0 are the eigenvalues for Po, there is a lower bound on the maximum eigenvalue of 

Po, described by Equation (27). 

 

λ𝑚𝑎𝑥(𝑃𝑜) = α𝑜𝑚𝑎𝑥
≤

1

−λ𝑚𝑎𝑥{(𝐴𝑟𝑒𝑓 + 𝐴𝑟𝑒𝑓
𝑇 )𝑄−1}

 (27) 

 
For the closed-loop reference model, we have an equivalent expression, given by Equation (28). 

 

λ𝑚𝑎𝑥(𝑃) ≤
1

−λ𝑚𝑎𝑥{[𝐴𝑟𝑒𝑓 + 𝐿 + (𝐴𝑟𝑒𝑓 + 𝐿)
𝑇

] 𝑄−1}
 (28) 

 
Comparing Equations (27) and (28), we see that the closed loop reference model also directly affects the size of the 

ultimate uniform boundary as long as λmax(P) < λmax(Po). That is, if the largest eigenvalue of the matrix 

[Aref+L+(Aref+L)T]Q-1 is smaller than the largest eigenvalue of the matrix (Aref+Aref
T )Q-1 for a given Q. This result is 

valid as long as the denominator in Equations (27) and (28) is positive. 
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4. Closed-loop model reference adaptive control for satellite launcher 

As a way to illustrate the control system studied in this paper, let us consider a thrust vector controlled (TVC) 

symmetric satellite launcher. The following assumptions are made: 

1. The axial velocity u (t) is considered an independent parameter, since it is assumed the vehicle flies under a 

designed trajectory. 

2. The vehicle has independent roll control, so that its roll velocity is null. 

3. The velocity u (t) is much larger than the wind velocities vvz and vvy, so that α ≈ (w-vvz)/u and β ≈ (v-vvy)/u. 

4. The yaw angle ψ is small, so that sin(ψ) ≈ ψ and cos(ψ) ≈ 1. 

5. Euler angle rotations follow the sequence (θ,ψ,ϕ). 

 

Under these, the system attitude dynamics in pitch and yaw are independent. Assuming slow parametric variations 

with respect to the process time constants, the longitudinal motion of a satellite launcher may be modelled as a transfer 

function shown in Equation (30) [15], where β𝑧 is the deflection of the thrust vector angle and θ is the deflection angle. 

 
𝜃(𝑠)

𝛽𝑧(𝑠)
=

−𝑀𝛽𝑠 + 𝑀𝛼𝑍𝛽/𝑢 − 𝑀𝛽𝑍𝛼/𝑢

𝑠3 + (
𝑍𝛼

𝑢
+ 𝑀𝑞) 𝑠2 + (

𝑀𝑞𝑍𝛼

𝑢
− 𝑀𝛼) 𝑠 + 𝑔

𝑀𝛼

𝑢

 
(29) 

 

Equation (25) represents the different efficiency coefficients used in Equation (29), where T is the thrust, m is the 

vehicle mass, I is the moment of inertia, lc is the control lever, la is the static margin, Q is the dynamic pressure, S is 

the reference area, Cnα
is the normal force coefficient and xe is the distance between the centre of gravity and the nozzle. 

 

𝑀β =
𝑇𝑙𝑐

𝐼
 

 

𝑀α =
𝐶𝑛α

𝑄𝑆𝑙𝑎

𝐼
 

 

𝑍β =
𝑇

𝑚
 

 

𝑍α =
𝐶𝑛α

𝑄𝑆

𝑚
 

 

𝑀𝑞 =
𝐼̇

𝐼
+

𝐶𝑀𝑞
𝑄𝑆𝑙𝑟2

2𝐼𝑢
+

�̇�𝑥𝑒
2

𝐼
 

(30) 

 

If the velocity u is very large and 𝑀α ≫ 𝑀𝑞, the system may be represented by the following transfer function. 

 
𝜃(𝑠)

𝛽𝑧(𝑠)
=

−𝑀𝛽

𝑠2 − 𝑀𝛼

 (29) 

 

Therefore, assuming external bounded disturbances as defined in the previous sections, the plant dynamics may be 

written as [16,17] 

 

�̇�𝑝 = [
0 1

𝑀𝛼 0
] 𝑥𝑝 + [

0
−𝑀𝛽

] 𝑢 + ξ 
(29) 

 

For this paper, we will compare the different reference models using the vehicle modelled in [17] and considering 

frozen poles at t=55s. The reference model will be the one described by Equation (2) and designed so that the reference 

model converges to a second order model in the traditional form with ωn=4 and ζ = 0.7 as the feedback error goes to 

zero. 

 

Figure 3 shows the response of this system to a step command of 5 degrees with both model reference adaptive control 

configurations with the same Q = 100I2, where I2 represents the identity matrix. Here, ORM represents the open loop, 

traditional, reference model and CRM represents the closed loop reference model. In both cases, σ𝑥 = σ𝑟 = 0.1, Γ𝑟 =
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1000, Γ𝑥 = 1000𝐼2 and the initial conditions were set to zero on the reference model and [-1deg 1 deg/s] for the plant 

state. In the closed loop reference model, the controller feedback gain was defined as 𝐿 = -0.8𝐼2. 

 

Figure 3: System response comparison to a 5 degree step input 

Figure 3 shows how the closed loop reference model, under the same design parameter Q, responds faster to the step 

control signal. 

Figure 4 shows the same comparison under a bounded disturbance. In this case, the external disturbance was modelled 

as a pulse impulse of 3 degrees, applied at t=2s. 

 

Figure 3: System response comparison to a 5 degree step input and external bounded disturbance 

As seen, since the closed loop system was already close to the reference input when the disturbance occurred, there is 

a considerable peak, but the system is able to recover. Interestingly, it is possible to see when comparing Figures 3 and 

4 that, as expected, the reference model adapted to the larger error, changing the reference the controller was following 

for a brief moment and softening the control effort. 
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5. Conclusions 

This paper considered a closed loop reference model for a model reference adaptive controller with e-modification. 

The architecture’s robustness with respect to external bounded disturbances was shown and stability was proven with 

respect to uniform ultimate boundedness (UUB) arguments, presenting boundaries for all signals in the system. The 

limits presented on the compact set were considered and a way to calculate relevant variables on the bounds was shown 

for a class of systems. Finally, the results of the CRM architecture were demonstrated considering a satellite launcher. 

The study showed how, for the same design parameters, the closed loop reference model provided a faster response to 

a step input. In the presence of the modelled disturbances, the simulations also demonstrated how the feedback loop 

influences the reference model when adapting to undesired external perturbations. 

Future works should expand on the analysis with respect to time variant systems, as well as considering how a time 

invariant closed loop reference model could be integrated to a slow varying system such as a satellite launcher.1 
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