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Abstract
Flight control clearance and flight envelope certification are vital steps for guaranteeing flight safety. While
there exist numerical techniques for flight dynamics analysis, these tend to be limited in their predictive
capabilities given their dependence to either linearized system dynamics or their conservativeness. This
paper proposes a new method contributing to the roadmap toward flight certification that expands the
safe flight envelope by incorporating multiple Shape Functions within the sum-of-squares optimization
framework. The technique, formulated using polynomial Lyapunov functions, ensures controller stability
and performance. The proposed approach achieves a larger region of attraction estimation. The method is
validated via the estimation of a region of attraction for closed-loop polynomial dynamics of the Vought
F-8 Crusader aircraft. The effectiveness of the method is demonstrated through extensive simulations,
illustrating its applicability in flight control system analysis and providing an expanded safe, and stable
operating region. The enhanced region of attraction offers improved operational flexibility, as well as
safety margins and system performance.

1. Introduction

The utilization of advanced control techniques in aerospace systems has gained significant attention due to their po-
tential to enhance safety, efficiency, and overall performance. Closed-loop systems, which integrate feedback control
mechanisms, are particularly prevalent in aircraft dynamics, enabling precise manoeuvring, stability, and response
characteristics. A fundamental aspect of closed-loop systems is the determination of the region of attraction (ROA),
which defines the set of initial states where the system is guaranteed to converge to a stable equilibrium point, Khalil.1

The presence of a ROA in a closed-loop system paves the way for validating the designed controller. Enlarging the
ROA is of paramount importance as it allows for greater operational flexibility, improved safety margins, and enhanced
system performance. The estimation of the ROA for complex nonlinear dynamical systems is a challenging task, often
requiring sophisticated mathematical and computational methods.

One effective approach to estimating the region of attraction (ROA) is through the utilization of sum-of-squares (SOS)
optimization method. SOS optimization enables the estimation of the ROA for the closed-loop system, providing
guarantees on the stability and performance of the controller by formulating a polynomial Lyapunov function (LF). In
this article, we demonstrate the advantages of the SOS optimization technique in estimating an enhanced ROA for a
polynomial closed-loop system of the Vought F-8 Crusade aircraft, which validates and provides a safe operating area
for the controller.

SOS optimization method is based on the SOS polynomial. An SOS polynomial is characterized as a non-negative
polynomial expressed as the sum of squares of other polynomials. Due to the non-negativity of both Lyapunov func-
tions (LFs) and SOS polynomials, an LF can be represented as an SOS polynomial. The SOS methodology expands
the applicability of linear matrix inequality (LMI) techniques. A comprehensive understanding of LMIs and their use
for approximating the region of attraction (ROA) can be found in VanAntwerp2 and Tibken.3 In Powers,4 the authors
present an algorithm that determines whether a real polynomial is an SOS polynomial and discovers its representa-
tion if applicable. As a relaxation technique, SOS investigates the necessary conditions for expressing a non-negative
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polynomial as a relaxed SOS polynomial, as discussed in Parrilo5 and Parrilo.6 Resources providing instruction on
the SOS optimization method, including MATLAB code for calculating the ROA, are available in Balas,7 Peet,8 and
Papachristodoulou.9 In Cunis,10 the authors propose an algorithm that effectively addresses nonconvex SOS problems.
Software tools such as SOSOPT [Seiler11], BiSOS [Cunis10], and SOSTOOLS [Papachristodoulou12] are specifically
designed to handle challenges related to SOS optimization. For further details on the SOS optimization technique,
interested readers can refer to Ahmadi,13 Lall,14 and Kunisky.15

The application of the SOS optimization technique for controller design and ROA estimation is demonstrated in the
works of Wloszek,16 Tan,17 Jarvis-Wloszek,18 and Tan.19 In Chakraborty,20 Khrabrov,21 and Li,22 the authors utilized
the SOS optimization method to estimate the ROA for aircraft attractors. These studies incorporated a Shape Function
(SF) approach to obtain a larger ROA. However, if the actual ROA is non-symmetric, the method still yields conserva-
tive results. In order to overcome these constraints, Biswas23 introduced the Union Theorem as a solution to estimate
the ROA for polynomial dynamical systems with non-symmetric or constrained actual ROA. The Union Theorem en-
ables the utilization of multiple SFs to obtain an enhanced ROA.

The objective of this paper is to employ the Union Theorem within the SOS optimization framework to estimate
an enhanced ROA for the complex closed-loop polynomial dynamics of the Vought F-8 Crusader aircraft, specifically
focusing on its short-period mode. By leveraging the Union Theorem, it becomes possible to incorporate multiple SFs
within the SOS optimization framework, resulting in an enhanced ROA estimation. This estimation aims to validate
the controller and identify an improved safe operating region for the aircraft.

This paper is organized as follows: Section 2 presents the aircraft’s polynomial dynamics, background on SOS op-
timization, and problem formulation. Section 3 explains the method to estimate the enhanced ROA, utilizing the Union
Theorem within the SOS optimization framework. In Section 4, the numerical resolution process is detailed. Section 5
describes the selection process of the necessary SF. Simulation outcomes are showcased in Section 6. Finally, Section
7 offers concluding remarks.

2. Preliminaries and Problem Formulation

2.1 The Vought F-8 Crusader Aircraft Polynomial Dynamics Model

For this study, the selected nonlinear polynomial aircraft model focuses on the nominal closed-loop short-period dy-
namics of the Vought F-8 Crusader aircraft as referenced in Zhao.24 Disregarding drag, the essential nonlinear equations
that illustrate the closed-loop short-period mode are,

α̇ = −0.878α + q − α2q − 0.0896αq − 0.019θ2 + 0.473α2 + 3.813α3 − 0.216δe (1a)
θ̇ = q (1b)

q̇ = −4.209α − 0.396q − 0.408α2 − 2.137α3 − 20.991δe (1c)

where, δe = −0.60357α + 0.51918θ + 2.6414q + 1.1853α2 − 0.0039012θ2 + 0.15242q2 − 0.2542αθ − 0.58084αq

+ 0.15914θq + 8.0966α3 + 0.07795θ3 + 0.25808q3 − 1.9417α2θ − 4.2947α2q + 0.5879αθ2 + 0.34048αq2

+ 0.077199θ2q − 0.13242θq2 + 0.69357αθq (1d)

Let us consider,

ẋ =

 α̇θ̇q
 ; f0(x) =

 −0.878α + q − α2q − 0.0896αq − 0.019θ2 + 0.473α2 + 3.813α3

q
−4.209α − 0.396q − 0.408α2 − 2.137α3

 ; g0(x) =

 −0.216
0

−20.991

 (2)

The Eq. (1) can be represented as below,

ẋ = f0(x) + g0(x)u = f (x), where, u = δe (Elevator Deflection) (3)

Here, the trim point x = 0 is an equilibrium point (EP). The objective is to estimate an enhanced ROA of this closed-
loop system such that the angle of attack (α), pitch angle (θ), and pitch rate (q) come to the EP within a large range of
disturbances.
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2.2 SOS Optimization

Some important definitions related to SOS optimization,Wloszek,16

Definition 1 (Positive Semi-definite Polynomial) A polynomial, f (x), is called Positive Semi-definite Polynomial if
f (x) ≥ 0 for all x ∈ Rn

Definition 2 (Sum-of-Squares (SOS) polynomial) A polynomial, s(x) ∈ Rn is a SOS polynomial if there exist poly-
nomials f (x)i ∈ Rn such that

s(x) =
t∑

i=1

f 2
i , fi ∈ Rn, i = 1, ..., t

Again, s(x) is an SOS if there exists Q ≥ 0 such that s(x) = ZT QZ, where Z is the vector of monomials. The set of SOS
polynomials in n variables is defined as

∑
n

:=
{
s(x) ∈ Rn

∣∣∣∣ s(x) =
t∑

i=1

f 2
i , fi ∈ Rn, i = 1, ..., t

}
Now, always s(x) ≥ 0 if s(x) ∈

∑
n ∀ x ∈ Rn.

Definition 3 (Region of Attraction) Let us consider ϕ(x) as the solution of the system expressed by Eq. (3). The ROA
of origin, x = 0 (EP) is, Khalil,1

RA = {x ∈ Rn : ϕ(x) is ∀ t ≥ 0 and lim
t→∞

ϕ(x)→ 0}

Lemma 1 Let us consider that ẋ represents the closed-loop dynamics of the system. If there exist a continuously scalar
function V(x) : Rn → R and a positive scalar γ ∈ R+, such that,

V(x) > 0 ∀ x ̸= 0 and V(0) = 0 (4a)

Ωγ = {x : V(x) ≤ γ} is bounded (4b)

Ωγ ⊆ {x :
∂V
∂x

ẋ < 0} ∪ {0} (4c)

Then the origin is asymptotically stable and Ωγ ⊆ RA, Vidyasagar.25

If the value of γ is unbounded, it implies that the system is globally asymptotically stable. The mentioned lemma
establishes a bounded LF, denoted as V(x), by constraining the value of γ. By optimizing the level of γ, the largest
possible estimation of Ωγ can be obtained. The SOS optimization method is one approach that can be used to optimize
γ. This method allows for the simultaneous determination of the Lyapunov function, V(x), which is expressed as a
sum-of-squares function, and the optimized value of γ.

2.2.1 SOS Optimization form of the ROA

The objective is to expand the ROA, denoted asΩγ, for the system described by Equation (3). The approach for estimat-
ing the maximized ROA can be formulated within the following SOS optimization framework, [Biswas,23 Wloszek16],

γ∗ = max
s0∈
∑

n
γ

Subject to : V(x) − l1 ∈
∑

n
(5a)

−
[∂V
∂x

f (x) + l2
]
+ (V(x) − γ)s0 ∈

∑
n

(5b)

Here, l1 and l2 are SOS polynomials. The above equation estimates a very small ROA, as discussed and demonstrated in
Biswas.23 To improve the ROA estimation, a new function called shape function (SF) has been introduced in Wloszek16

along with Eq. (5), and we will discuss this further in the next section.

3

DOI: 10.13009/EUCASS2023-853



REGION OF ATTRACTION ESTIMATION USING MULTIPLE SHAPE FUNCTIONS IN SUM-OF-SQUARES
OPTIMIZATION FOR AIRCRAFT FLIGHT CONTROL SYSTEM

2.2.2 Shape Function

The Shape function (SF) represents a function with an enclosed region that is circumscribed by the bounded LF. It
prompts the bounded LF to grow by enlarging the size of the SF itself in each iteration until a portion of the LF makes
contact with the unstable region. In other words, the SF establishes the concluding form and scale of the bounded
LF. The integration of the SF into the SOS optimization method can be achieved in the following manner, [Biswas,23

Wloszek16],

Definition 4 (Shape Function) SF is a positive definite function. The variable size region under it is defined as,

Pβ := {x : p(x) ≤ β} ⊆ Ωγ (6)

If we introduce the SF in the Eq. (5) then we get the following modified optimization form of Eq. (5),

β∗ = max
s0, s1∈

∑
n, V(x) ∈ Rn, γ ∈ R+

β

Subject to : V(x) − l1 ∈
∑

n
(7a)

−
[∂V
∂x

f (x) + l2
]
+ (V(x) − γ)s0 ∈

∑
n

(7b)

−(V(x) − γ) + (p(x) − β)s1 ∈
∑

n
(7c)

Eq. (7) illustrates the process of maximizing the variable β, which in turn leads to the determination of optimal values
for both V and γ. It should be noted that the introduction of an SF does not modify the existing equation expressed by
Eq. (5), but rather imposes an additional constraint. The incorporation of a single SF alongside Eq. (5) yields superior
outcomes compared to utilizing Eq. (5) alone. However, it is important to recognize that Eq. (7) only estimates a portion
of the actual ROA, particularly for systems with non-symmetric or unbounded actual ROA. This topic is thoroughly
discussed and demonstrated in Biswas.23 To address this concern, the Union Theorem is proposed by Biswas,23 and its
details are discussed in the subsequent section.

3. Enhanced ROA Estimation Using Multiple Shape Functions

Eq. (7c) indicates that the region enclosed by the SF must be limited within the boundaries defined by the LF and its
associated γ value. An SOS optimization tool, such as SOSOPT, gradually increases the parameter β in each iteration,
allowing more regions to fall under the SF. Consequently, a new LF is generated, ensuring full coverage of the SF’s
area while maintaining a constant γ. This iterative process, known as the V-S iteration, will be discussed in detail in a
subsequent section.

In order to estimate the ROA using a single SF in SOS optimization, as described by Eq. (7), the V-S iteration al-
gorithm is employed to expand the estimation of the ROA through an increased number of iterations. However, this
approach is not universally applicable. For instance, in cases of early convergence during optimization and/or nu-
merical infeasibility, especially for systems with unbounded or irregular ROA, this method may prove ineffective.
Additionally, the limitation of the estimation arises from the fixed or adaptive placement of the geometric center of the
SF at the origin, particularly when dealing with non-symmetric or unbounded ROA. The issue is that after a certain
number of iterations, the SF may approach the boundary of a non-symmetric ROA in a particular direction. Subsequent
increments of β may not yield new LF that fully enclose the region under the SF, as the SF is on the verge of touching
the boundary in that particular direction. While the estimated ROA may closely align with the true ROA in certain
regions of the boundary, it ceases to expand in other regions. To address this issue, Union Theorem has been proposed
in Biswas.23

Theorem 1 (Union Theorem) Let us consider the given polynomials V, p1, p2,...,pn define sets AV , A1, A2,...,An such
that,

AV = {x ∈ Rn : V − γ ≤ 0}

A1 = {x1 ∈ Rn : p1 − β1 ≤ 0}

A2 = {x2 ∈ Rn : p2 − β2 ≤ 0}
...

An = {xn ∈ Rn : pn − βn ≤ 0}

4
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Here,
{
γ, β1, β2, ...βn

}
∈ R+. Now if there exit polynomials s1 ∈

∑
n, s2 ∈

∑
n,...,sn ∈

∑
n, such that,

− (V − γ) + (p1 − β1)s1 ∈
∑

n

− (V − γ) + (p2 − β2)s2 ∈
∑

n...
− (V − γ) + (pn − βn)sn ∈

∑
n

Then, A1 ∪ A2 ∪ ... ∪ An ⊆ AV .

The Union Theorem tells us that if we introduce multiple SFs (p1,..,n) in different places then we can get an LF (V),
which will encircle all of them. If we incorporate the Union Theorem with the Eq. (7), then the modified form of the
Eq. (7) can be expressed in the following way,

[
β∗1, β

∗
2, ..., β

∗
n
]
= max

s0,s1,s2,...,,sn∈
∑

n, ,V(x)∈Rn, γ∈R+
β1, β2, ..., βn

Subject to: V − l1 ∈
∑

n
(8a)

−

[
∂V
∂x

f (x) + l2

]
+ (V − γ)s0 ∈

∑
n

(8b)

− (V − γ) + (p1 − β)s1 ∈
∑

n
(8c)

− (V − γ) + (p2 − β2)s2 ∈
∑

n
(8d)

...
− (V − γ) + (pn − βn)sn ∈

∑
n

(8n)

Remark 1. Eq. (8a) ensures the positive definiteness of V , which is the 1st condition for a LF.
Remark 2. Eq. (8b) tells us that the region enclosed by V ≤ γ should be always inside the stable region as V̇ ≤ −l2.
Remark 3. Eq. (8c)-(8n) make sure that the regions enclosed by p1 ≤ β1, ..., pn ≤ β1 should be always inside the
region enclosed by V ≤ γ.

The V-S iteration algorithm is applied to resolve Eq. (8). With each iteration, the algorithm elevates the value of
all β for every SF, leading to an accompanying LF, which encompasses additional regions by encircling all of the SFs.
Although the algorithm employing multiple SFs might cease if a specific SF comes into contact with the unstable area
in one direction, by then it has already produced an expanded ROA. This growth results from the increase of all SFs in
various directions, thereby broadening the ROA in multiple ways.

4. Numerical Algorithm

The V − s iteration algorithm solves Eq. (8) by employing three steps, namely the γ-step β-step, and V-step, [Biswas,23

Wloszek16]. The first two steps named γ-step, β-step involve optimizing γ and βi, respectively, while the third step
named V-step is a feasibility problem that finds a new LF V that satisfies all constraints under it. The algorithm is
outlined as follows,

V-s Iteration Algorithm:

1. γ-step: Solve for s0 and γ∗ for a given V and fixed l2 :

γ∗ = max
s0∈
∑

n

γ s.t. : −
[∂V
∂x

f (x) + l2
]
+ (V − γ)s0 ∈

∑
n

(9)
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2. β-step: Solve for s1, s2, ..., sn and β∗1, β
∗
2, ..., β

∗
n for a given V , pi and using obtained γ∗ from γ-step:[

β∗1, β
∗
2, ...,β

∗
n
]
= max

s1,s2,...,sn∈
∑

n
β1, β2..., βn s.t. :

− (V − γ∗) + (p1 − β1)s1 ∈
∑

n
(10a)

− (V − γ∗) + (p2 − β2)s2 ∈
∑

n
(10b)

...
− (V − γ∗) + (pn − βn)sn ∈

∑
n

(10n)

3. V-step: Using the obtained γ∗,s0, s1, s2, ..., sn and β∗1, β
∗
2, ..., β

∗
n from previous two steps, solve for a new V which

satisfies the following :

V − l1 ∈
∑

n
(11a)

−
[∂V
∂x

f (x) + l2
]
+ (V − γ∗)s0 ∈

∑
n

(11b)

− (V − γ∗) + (p1 − β
∗
1)s1 ∈

∑
n

(11c)

− (V − γ∗) + (p2 − β
∗
2)s2 ∈

∑
n

(11d)
...

− (V − γ∗) + (pn − β
∗
n)sn ∈

∑
n

(11n)

4. Scale V: Replace V with V/γ∗ after each V-step. This scaling process roughly normalizes V and tends to keep the
γ∗ computed in the next step (γ-step) close to unity.
5. Repeat all the steps from 1 − 4 using the scaled V from step 4 to the γ-step as an input. Continue the process until
the final feasible LF V is obtained.

Stopping Criteria of the Algorithm: The algorithm can be stopped in the following ways,
A. Numerical Infeasibility:- This criterion stops the algorithm by indicating that it is not possible to obtain any new LF
that satisfies all the constraints of step 3 (V-step).
B. Negligently Increment of β:- This condition in the program terminates the algorithm if any two consecutive estima-
tions of all βi are less than a pre-defined tolerance value. This criteria can be used if the SF is fixed.
C. Fixed Iteration Number:- The algorithm comes to an end after running through all the specified iteration numbers.
The algorithm may also stop for other reasons, like if it does not get the value of any βi and related si in the β-step.
This problem can be solved by changing the SF or placing the center of the SF in a new location.
Some discussions about the V-s algorithm are as follows:
Remark 1. In order to implement the V − s algorithm during the γ-step, an initial LF, denoted as V0, is necessary.
Various techniques can be employed to obtain V0, such as the Lyapunov Equation (LE) based on linearized dynamics
(LD) of the system, [Biswas,23 Li26]. According to the proposal by Li,26 conducting multiple iterations can improve
the estimation of the ROA. Upon completion of the algorithm, a final LF V1R and increased β values for all SFs are
obtained. However, even with the use of multiple SFs, V1R may not fully encompass the entire potential ROA. To
expand the coverage, the algorithm is restarted with V1R as the initial LF for the subsequent iteration round, potentially
resulting in an enlarged ROA. Different types of SFs may be employed in each round, and employing different types
can sometimes yield better outcomes. However, it is important to note that the LF may become saturated after a certain
number of iteration rounds, reaching its maximum coverage and unable to capture additional areas, even with addi-
tional rounds. Furthermore, there may be situations where no new LF satisfying constraint (11) can be found, despite
the existence of a substantial stable region outside the already captured region of V .
Remark 2. The following degrees are required to satisfy for a feasible solution of (9)-(11), (Wloszek,16 Biswas,23

Li26),

deg(V) ≥ deg(l1)

deg(pi) + deg(si) ≥ deg(V), [i = 1, ..., n]

deg(V) + deg(s0) ≥ max{deg(
∂V
∂x

f ), deg(l2)}
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5. Selection of Shape Function

The utilization of the Shape Function (SF) plays a vital role in obtaining an improved estimation of the region of
attraction (ROA). The overall duration of the iteration process is also influenced by the choice of SF. Various types
of SFs will yield distinct LFs with different ROAs and total computational times. As per the definition, any positive
definite function can be employed as an SF. The below SF with a shifting center x∗ is proposed in Li,26

p(x) = (x − x∗)T N(x − x∗) (12)

The shape matrix N, being a positive definite matrix, plays a significant role in shaping the SF, determining the ROA
size, and calculating V. It should be noted that relying on a single fixed value for N might not yield optimal outcomes.
As a result, during each iteration round, it is recommended to test various N values and compare the estimated ROA
to select the most suitable one. To obtain the SF’s shifting center, x∗, we employ a technique introduced in Li.26 This
approach implies that x∗ can be calculated by solving the equation of a straight line that passes through the center and
intersect the bounded LF. We have given the mathematical expression to choose the shifting center for the 2-D case
only. However, the method can be applied for 3-D case also. Let us consider the equations of bounded LF and 2-D

straight line are,
V(x1, x2) = γ∗ (13a) x2 = tan θ1x1 (13b)

Here, θ1 is the pre-defined inclination angle of the line, and for every shifting center, there is a fixed θ1. Consider the
solution point or intersection point of the above equations to be (x∗1I , x

∗
2I). The distance from the center to the point

(x∗1I , x
∗
2I) is given by ρα =

√
x∗1I + x∗2I . So, the shifting center is,

x∗1 = σρα cos θ1 (14a) x∗2 = σρα sin θ1 (14b)

Where, σ ∈ (0, 1). More discussion about the selection of the value of σ can be found on Biswas23 and Li.26 For the
3-D case, we need to consider the following equation for the straight line,

x1 = r cos θ1 cosψ1 (15a) x2 = r cos θ1 sinψ1 (15b) x3 = r sin θ1 (15c)

Here, θ1 and ψ1 are the pre-defined elevation and azimuth angles of the line. We can obtain the shifting center (x∗1, x
∗
2, x
∗
3)

for the 3-D case using the same procedure as in the 2-D case.

6. Simulation Results

Extensive simulations are performed to assess the effectiveness of the suggested approach on the closed-loop dynamics
of the Vought F-8 Crusader aircraft, represented by Eq. (1), using the SOSOPT Toolbox.11 In order to conduct these
simulations, an initial LF is required. It is important to note that a new initial LF is needed for each iteration round. In
the first round of iteration, the LF is obtained by solving the Lyapunov equation for the linearized dynamics (LD). For
subsequent rounds, the LF estimated from the previous round is used as the initial LF for the new round. Moreover, we
selected deg(V) → [min(2),max(6)], deg(s0) → [min(2),max(4)], deg(s1,...,n) → [min(0),max(4)], l1 = l2 = 10−6(x′x)
and σ = 0.8 to start the simulation. The simulation is terminated by simultaneously employing the stopping criteria A
and B.

The selection of the SF and its center, denoted as x∗ in Eq. (14), is essential for initiating the simulation in each
new iteration round due to their dynamic nature. In the chosen system dynamics described by Eq. (1), which consists
of three states, a 3D SF is required. The calculation of the shifted SF’s center involves utilizing the 3D linear equation
presented in Eq. (15). This equation emphasizes the need for determining the azimuth angle ψ and the elevation angle
θ for center calculation. To derive these angles, we consider a unit cuboid with its center located at the system’s equi-
librium point (0, 0, 0). From the center of the cuboid, lines are drawn to the vertices and midpoints of each surface. By
considering the known edge lengths (1 unit in all directions) of the cuboid, we can calculate the azimuth and elevation
angles for these vertices and midpoints. The cuboid comprises eight vertices and six surfaces, resulting in a total of 14
angles. The ellipsoidal SF and the corresponding angles (given in degrees) are provided below.

p =

x1 − x∗1
x2 − x∗2
x3 − x∗3

N
x1 − x∗1
x2 − x∗2
x3 − x∗3

 ; N =

1 0 0
0 0.5 0
0 0 0.5

 (16)
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[
ψ
θ

]
=

[
−45 −45 −135 −135 45 45 135 135
−35 35 −35 35 −35 35 −35 35

0 90 180 −90 0 0
0 0 0 0 90 −90

]
(17)

The primary eight angles correspond to the vertices of the unit cuboid, while the last six angles correspond to the
middle points of its surfaces. In order to demonstrate the simulation results, we conducted three rounds of iteration. In
the first round, a single ellipsoid centered at the origin (x∗1 = x∗2 = x∗3 = 0) was utilized, with a shape matrix given by
Eq. (16). During the second and third rounds of the simulation, we utilized a total of 16 SFs, all of which are identical
to the SF described in Eq. (16). Additionally, we calculated the centers of these SFs using the corresponding angles
outlined in Eq. (17).

The results presented in Fig. 1(a), Fig. 1(b), and Fig. 1(c) demonstrate the growth of estimated ROA from the ini-
tial round to the subsequent round. This growth is attributed to the utilization of multiple SFs in different locations.
With each iteration, these SFs expand, and the algorithm generates a new Lf to encompass all the enlarged SFs. This
process continues until the algorithm becomes infeasible. To maintain the visibility of the SFs, only the final results
from each round are shown in the figures. Fig. 1(d) compares the estimated ROAs from all rounds with the result
obtained from the linearized dynamics. Moreover, Fig. 1(e), Fig. 1(f), and Fig. 1(g) illustrate the projection of the
estimation on the α − θ, α − q, and θ − q planes at q = 0, θ = 0, and α = 0, respectively.

The paper by Zhao24 designed a controller with ROA estimation based on a single SF in the sum-of-squares opti-
mization method. They presented a projection of the ROA estimation on the α − θ plane at q = 0. In our study,
we utilized their controller in a closed-loop system and estimated the ROA using multiple SFs. The comparison of
the ROA estimated with multiple SFs and the result presented in Zhao24 is shown in Fig.1(h), demonstrating that the
designed controller has a larger ROA than previously reported.

Additionally, Fig. 1(i) presents a plot of the responses of the closed-loop F-8 aircraft dynamics with a total of 12
initial conditions, including 8 inside and 4 outside of the estimated ROA. The inside initial conditions are α(0) =
[−0.5;−0.5; 0.5; 0.5; 0.1;−0.1; 0.7;−0.7], θ(0) = [2;−3; 2,−3; 2.9;−3.5; 0.1;−0.1], and q(0) = [5;−3; 2.8;−5.5; 1.8;
−3; 3;−3], while the outside initial conditions are α(0) = [−0.1;−0.9; 0.9; 0.1], θ(0) = [−5;−1; 1; 5], and q(0) =
[−7;−7; 6; 6]. It is evident that the trajectories converge to the EP/origin for all the inside initial conditions, indicating
that the obtained ROA provides a safe and stable operating region. However, the first of the outside initial conditions
yields a stable trajectory, while the other three results in unstable trajectories, suggesting the presence of a stable region
outside the estimated ROA. The estimation process was terminated after the third round, but it can be further continued
to achieve even larger ROA estimations. Notably, the existing methods [Wloszek,16 Chakraborty,20 Khrabrov21] that
rely on a single SF produce similar results to those obtained from the first round, where only one SF was used. A
comparison of the results depicted in Fig. 1(d) reveals that the suggested approach offers superior outcomes. The entire
simulation process lasted 6004 seconds, encompassing 123, 28, and 32 iterations in the first, second, and third rounds,
respectively.

7. Conclusion

This paper demonstrated the effectiveness of employing multiple Shape Functions (SFs) within the SOS optimization
framework. Extensive simulations were conducted on the closed-loop polynomial dynamics of the Vought F-8 Crusader
aircraft, highlighting the applicability of this approach in analyzing the ROA for the aircraft’s flight control system.
One notable advantage of this technique is its capability to estimate a larger ROA, thereby providing an expanded
safe and stable operating region for the controller. However, it is important to acknowledge certain limitations of the
current method. The outcomes are influenced by factors such as the type (N) and quantity of SFs utilized, as well as the
selection of SF centers, which can significantly impact the results. In this study, the SFs and their corresponding angles
for center positioning were manually chosen. Adopting a more structured approach in selecting these components has
the potential to enhance the obtained results.
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(a) Estimated ROA from 1st Round (b) Estimated ROA from 2nd Round

(c) Estimated ROA from 3rd Round (d) Comparison Among Results from all the Rounds

(e) Cross Section of Estimated ROA for q = 0 (f) Cross Section of Estimated ROA for θ = 0
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(g) Cross Section of Estimated ROA for α = 0 (h) Cross-Sectional Comparison of the Estimated ROA for q = 0

(i) Estimated ROA and Trajectories of the Closed-loop System

Figure 1: Estimated ROA Using Multiple Shape Functiions
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