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Abstract
Capillary forces govern the spreading of liquids on solid walls. These forces play a crucial role in micro-
gravity conditions, impacting liquid transport, liquid location in tanks, and the design of fuel systems for
space missions. While Computational Fluid Dynamics (CFD) can provide valuable insights on the fluid
behaviour, challenges persist in anticipating the gas-liquid interface dynamics in microgravity, especially
for low viscosity and volatile cryogenic fluids such as space propellants. In this study, the accuracy of two-
phase Volume Of Fluid (VoF) simulations is assessed against a new experimental data-set for a test case
involving liquid interface reorientation and capillary rise in a U-shaped divergent tube. The simulations
are also compared with an analytical model for the interface motion. The results show that the model and
the CFD predict the same macroscopic fluid behaviour. Moreover, the available experimental data allow
identifying and tuning the most relevant parameters of the CFD model for a capillary-inertia dominated
flow.

1. Introduction

Engineering the wetting behaviour of a liquid in the absence of gravitational forces presents significant challenges
[25, 26, 32]. The knowledge of the location of the free liquid/gas interface’s in these conditions [27, 39] and the
understanding of the wall-to-fluid heat transfer dynamics [29, 36] are fundamental for the design and optimization of
cryogenic upper stage tanks and capillary-based propellant management devices (PMDs) [15, 22].

Currently, computational fluid dynamics (CFD) is the primary tool for evaluating PMD performance and pre-
dicting the sloshing dynamics in partially filled tanks. One of the simplest approaches to model the gas-liquid interface
relies on interface capturing methods, which are formulated for eulerian meshes, and use an advection equation that
governs the evolution of an interface function. One of the most popular technique within this framework is the Volume
of Fluid (VoF) method, which locates the interface through an indicator function known as the liquid volume Fraction
(α). In the algebraic version of VoF solvers, there is no geometrical reconstruction of the interface, and this is why
the latter is prone to numerical diffusion. In that sense, VoF methods are often referred to as "diffuse-interface meth-
ods". For the computation of the surface tension term, the Continuum-Surface-Force (CSF) model provides a widely
accepted methodology [3, 17] while Flux-Corrected Transport (FCT) schemes are used to address the dynamics of the
contact line and regulate the interface thickness. In this framework, the accurate computation of the interface curvature
plays a key role in the accuracy of the predictions [7].

Despite the conceptual simplicity of diffuse-interface methods, several works [6, 14, 16] have shown that the
mixing region of finite thickness at the interface may generate non-physical artefacts, such as parasitic currents, which
lead to incorrect predictions of instability growth rates in viscous interfacial flows. Another challenge in VoF simu-
lations of capillary-dominated phenomena is the high sensitivity to mesh resolution. For example, Afkhami et al. [1]
show that increased resolutions lead to divergence of the shear stress at the contact line between the free surface and
the solid. This is due to the difficulties of discretized techniques to handle the well-known ’non-slip paradox’ [20]
that must reconcile the no-slip boundary condition at the wall with the relative motion between the contact line and the
wall. This numerical issue can be mitigated by replacing the conventional no-slip boundary condition with a partial slip
condition allowing a tangential velocity near the contact line, parametrized by the so-called "slip length". However,
this adds one more numerical parameter in the computations, whose value cannot always be related to a fully physical
scale.
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Because of “free” parameters such as the slip length or the level of interface compression, numerical tools for
simulating wetting phenomena are usually calibrated against prototype case studies. One such case is the capillary
rise of liquid in small vertical capillary tubes. It constitutes an ideal test case because it is geometrically simple and
because the macroscopic motion of the interface can be described by well-established ordinary differential equation
(ODE) models [37]. Building upon this, several authors have investigated experimentally the capillary rise of perfectly
wetting liquids in cylindrical tubes subjected to step reductions in gravity within drop-tower setups [11, 33]. However,
these experimental works do not provide quantitative information on the interface shape and dynamics. This prevents
a detailed validation of CFD simulations.

On the numerical side, Gründing et al. [14] conducted a detailed study of the capillary rise, performing a code-
to-code comparison that included an algebraic Volume of Fluid method, among others. For all methods, the authors
analyzed the effects of mesh resolution and partial slip boundary conditions, considering various levels of ’numerical
slip’ and ’real slip’. By ’numerical slip’, one refers to the practice of setting the non-slip condition on a mesh which
has no centroids at the exact wall location, thus tolerating that no cells experiences an exact non-slip. Conversely, in
the case of ’real-slip’, the slip condition is imposed in a strict sense. The authors conclude that the ‘numerical slip’
fails to yield mesh-converging results, in contrast to the ‘real-slip’ condition. However, the latter theoretically requires
slip lengths of the order of the nano-scale, which would demand prohibitively fine meshes.

In this study, we present a new capillary rise test case designed to produce a capillary-dominated flow only in
microgravity conditions. This test case is a variant of the capillary tube, in which the tube is U-shaped to avoid the
penetration of liquid at the entrance like in classical capillary rise configurations, and whose radius increases linearly
along the axis to accelerate the flow. The test case was investigated during the 78th ESA parabolic flight campaign and
characterized using a combination of high-speed quantitative visualization and image velocimetry [9]. The campaign
collected detailed data on the gas-liquid interface reorientation and capillary rise. We replicate the experiments with
the VoF solver from the OpenFOAM finite volume libraries. Our investigation explores the relationship between
mesh resolution and interface compression while incorporating slip-length models to compensate for viscous stress’s
divergence and mitigate mesh sensitivity. The relatively long experiment duration and the varying external acceleration
provide a unique test case to calibrate the relevant numerical parameters for capillary-dominated simulation.

2. Test case description and model

2.1 Test case

Figure 1a shows on the left a 3D model of the Divergent U-Tube (DUT) configuration considered in this work. On the
right, Figure 1b shows the installation of the DUT quartz tube on a robust aluminium structure. The structure consists
of two plates joined by four cylindrical beams via M8 screws. A resin is poured into two pockets of the structure to
clamp the tube. The system is designed to allow optical access while having sufficient rigidity to avoid vibration, which
could result in the cracking of the quartz.

The tube is symmetric with respect to the x-axis and is described using an equivalent cylindrical coordinate
system as illustrated by Figure 2. Both the internal and external radius of the tube increase linearly with respect to the
curvilinear axis of the tube, identified with ζ, except for the curved part where |ζ | < Du/2 with Du = 40 mm being the
distance between the tube vertical axis. The two sides of the tube are connected with a flexible junction. This prevents
leakages and creates a closed environment in which saturated conditions are reached before the experiments begin. The
tube is partially filled with a test liquid and in normal gravity conditions a gas-liquid interface is visible on each side of
the tube at the same height z.

The DUT configuration holds several advantages both on the experimental and numerical side. The liquid reser-
voir used in classic capillary rise experiments is replaced by the larger side of the DUT. This minimizes the impact
of liquid sloshing occurring during the parabolic flight and the capillary forces on both sides affect the motion of the
liquid. The lack of a tube entrance reduces viscous losses due to sudden tube constriction, minimizing the effect of
viscous forces on the interface motion and reducing the duration of the viscous-dominated phase of the capillary rise
as identified by Stange et al. [33]. On the numerical side, the self contained aspect of the experiments allows imposing
boundary conditions unambiguously and the substitution of the tube entrance with a tube bend allows to decrease the
uncertainties linked to the identification of the extra viscous losses.

The experiment recordings start with the announcement of the plane being at 40 degrees inclination. Shortly
after the announcement, the gravity levels drop from approximately 1.8g to approximately 0g, and the two liquid
interfaces begin moving along the axis of the tube due to the unbalanced capillary action of the interfaces. The motion
of each interface is recorded with a high-speed camera (model JAY SP-12000-CXP4), acquiring grey-scale images at
300 fps. The active region of the camera sensors is restricted to the central region of size 4096 × npx pixels where
the lateral size npx is optimized according to the tube geometry to achieve the highest possible acquisition frequency.
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(a) CFD model. (b) Experimental set-up.

Figure 1: The Figure on the left shows on the left the numerical model of the DUT and on the right the experimental
configuration. The latter is enclosed on a rigid structure to avoid resonance vibrations in the quartz.

All cameras mount objectives with 105mm focal lenses and are positioned to capture the full motion of the interface
while spanning the largest possible tube length. The meniscus shape is corrected for the optical distortions using the
procedure developed by Fiorini et al. [8]. The final pixel size corresponds to 0.013µm.

The test liquid is HFE7200, a perfect wetting liquid used as model fluid for the study of cryogenic propellants.
Table 1 reports the fluid properties considered in this work [30]. The reader is referred to [9] for more details on the
experimental campaign.

Table 1: Fluid physical properties.

density (ρ) dynamic viscosity (µ) surface tension (σ)
1423.00 kg/m3 0.64 mPa · s 13.62 mN/m

2.2 1D Integral Model of the Liquid Column

We describe the motion of the liquid’s center of mass in the DUT with a 1D integral model balancing the acceleration
of the center of mass with friction, gravity and the interface capillary pressure drop. We derive the model assuming a
gentle curvature of the tube and a cylindrical coordinate system (ζ, η) with ζ aligned with the tube axis and η aligned
along the tube radius as illustrated in Figure 2. We integrate along the liquid domain the contributions of all forces to
obtain the following second-order non-linear ODE:

ρVlŸ = −Fg(Y, a(t)) + Fv(Ẏ ,Y) + Fc(Ẏ ,Y) , (1)

where Y , Ẏ and Ÿ are respectively the position, the velocity and the acceleration of the liquid column’s center of mass
along the tube axis ζ ∈ [−L/2, L/2]. On the right-hand side, Fg denotes the gravitational force acting on the center
of mass of the liquid column, Fv denotes the viscous shear that applies to the liquid column, and Fc denotes the net
result of the capillary pressure due to the two gas-liquid interfaces on the opposite sides of the liquid column. Vl is the
volume of liquid within the tube and a(t) = [ax(t), ay(t), g(t)] is the local acceleration of the tube.

We denote with zA(Y) and zB(Y) the position of the two interfaces along the curvilinear coordinate ζ, with
zA(Y) corresponding to the smallest side of the tube and zB(Y) to the largest. The gravity term in (1) results from the
contribution of both the height difference |zA(Y)| − |zB(Y)| and the local acceleration a(t).
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Figure 2: On top, the figure shows the evolution of the internal radius of the tube along with the curvilinear axis ζ.
Below, the sketch illustrates the equivalent cylindrical coordinate system for the DUT where gentle curvature of the
tube is assumed, i.e. we consider straight streamlines and neglect small variations due the curvature of the tube bend.

The viscous force term in (1) results from the integration of the viscous term in the Navier-Stokes equations,
here denoted as τ, both across the liquid column length zB(Y) − zA(Y) and the radial direction η:

Fv(Ẏ ,Y) =
∫ zB(Y)

zA(Y)

∫ R(ζ)

0
τ 2πη dη dζ +CU . (2)

CU accounts for the viscous losses in the U-bend. Ghobadi and Muzychka [12] provides an extensive list of
empirical correlations for laminar flow in curved ducts. In this work, the value of CU was calculated from the correction
proposed by Itō [21]. Assuming axisymmetric flow, the viscous term τ can be written as

τ = µ

[
1
η

∂v
∂η
+
∂2v
∂η2 +

∂2v
∂ζ2

]
(3)

where v = v(ζ, η, t) is the axial velocity of the liquid at the coordinate ζ, η. In normal gravity conditions (g = 9.8m/s2)
and for small diameters, classic capillary rise models assume a Poiseuille velocity profile at each axial position of the
channel (see for example [40]). Consequently, the velocity profile v can be written as

v(ζ, η, t) = 2V(ζ, t)
(
1 −

η2

R(ζ)2

)
, (4)

where V denotes the mean velocity and R(ζ) the radius of the channel as a function of the channel axial coordinate.
The capillary term in (1) is modelled as the net sum of the pressure drop at the two interfaces. The latter results

from the integration of Laplace equation at each interface, for which we assume spherical cap with constant curvature
2/Rs with Rs(ζ) ≈ R(ζ)/cos(θD). Thus, the capillary pressure term reads:

Fc(Ẏ ,Y) = 2πσ(R(zA)cos(θA) − R(zB)cos(θB)), (5)

where θ is the contact angle between the gas-liquid interface and the solid surface of the tube. The contact angle results
both from the thermodynamics of the system [13, 31] and the kinematic properties of the contact line (dynamic contact
angle, θD) [5]. Numerous investigations have characterized the dynamic contact angle in steady viscous dominated
configurations [3, 4, 19, 23, 24, 34, 35]. However, the validity of these formulations for inertia dominated test-cases
is still under debate [8]. In this work, a preliminary characterization showed that the contact angle varies very little
compared to the static value. Consequently, as a first approximation we use a zero contact angle for both interfaces.

We use a fifth-order explicit Runge-Kutta method to solve the integral model (1) using Python’s initial value
problem solver (scipy.integrate.odeint) starting from the equilibrium position Yeq (obtained by setting Ÿ = Ẏ = 0 in
(1)), due to the balance between gravity and capillary forces, and Ẏ = 0. We thus compare experiments and CFD in
terms of the average height of the liquid column, defined as

h̄(t) = −(za(Y(t)) − za(Yeq)) . (6)
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3. CFD Methodology

We use the open-source CFD package OpenFOAM to simulate the test case described in this work and reproduce the
experimental behavior. The core of the model consists in the VoF solver interFoam modified to read an input file for
the accelerations experienced by the DUT for each experimental recording. The solver includes also a user defined
dynamic contact angle model. However, in this work the contact angle is kept constant and equal to zero (perfect
wetting fluid) to reduce the number of free parameters under investigation.

InterFoam 2112 solves the incompressible, two-phase Navier-Stokes equations, accounting for mass and mo-
mentum conservation in each phase. The governing equations are discretized using a finite volume approach. We
consider here an unsteady, laminar, isothermal and incompressible two-phase flow. The Volume of Fluid (VoF) method
is employed to capture the fluid interface and the interaction between different phases. Following discretization, the
local fluid properties are computed as a weighted average of the properties of the liquid and the gas, depending on α,
and the volume fraction transport is solved by an advection Equation 7 [18, 38]. Therefore, the cells intersected by
the interface are characterized by a value of α between 0 and 1. The surface tension contribution is computed using
Continuum-Surface-Force (CSF) model, wherein the surface tension force is regularized by a delta function derived
from the volume fraction

∂α

∂t
+ ∇ · (Uα) + ∇ · (Ucα(1 − α) = 0 , (7)

with U = Ulα +Ug(1 − α) and Ul being the velocity of the liquid phase and Ug the velocity of the gas phase. The third
term of (7) is an additional artificial compression term which depends on the parameter Uc defined as:

Uc = Cα|U|
∇α

|∇α|
. (8)

This term reduces the numerical diffusion of the volume fraction field by introducing an artificial compression
in the volume fraction equation and compressing the α profile in the direction normal to the fluid interface. The
Interface Compression (IC) coefficient Cα adjusts the compressive effect, with no compression for Cα = 0. However,
the magnitude of the compression depends also on the mesh resolution. There is no universal strategy to set the value
of Cα. Deshpande et al. [6] noted parasitic currents produced by the IC method in surface tension dominated flows. In
this work, we observed also that high values of Cα (≈ 1) introduce an additional (small) pressure drop at the interface
which in turns alters the dynamics of the flow. Consequently, for the simulations here presented we kept a small value
for Cα = 0.01.

The essence of the VoF method implemented in the solver interFoam lies in the fact that the interface is not
computed explicitly, but is captured based on the volume fraction field. Since the volume fraction values are between
0 and 1, the interface boundary is not located accurately, however, it occupies a thin region in the vicinity of which
a sharp interface boundary must exist. The effect of surface tension is modeled with a singular source term in the
momentum balance at the interface and is computed based on the continuous surface force model adapted from [2]
which reads as:

fσ = σκ∇ · α , (9)

where σ is the liquid-vapor surface tension and κ is the curvature of the interface defined as:

κ = −∇ ·

(
∇α

|∇α|

)
. (10)

Table 2 summarizes the discretization schemes used for this test case. Second-order discretization schemes
were used for the spatial terms and a second-order scheme for the time discretization. To ensure a stable solution an
adjustable time step was used with a maximum Courant number of 0.5. This gives a typical time step of ∆t = 10−4 s.
The pressure-velocity coupling is resolved using a PIMPLE algorithm with three non-orthogonal correctors.

The computations were run in parallel in 64 Intel Xeon Ice Lake 8352Y CPUs at the Centro de Supercomputacion
de Galicia (CESGA). The time required for 10 s of real flow computation ranges between 50 and 100 h according to
the mesh.

3.1 Test case discretization

The base grid consists in a structured mesh, which is graded towards the pipe walls. We use a standard O-grid con-
figuration transversal to the tube axis to achieve a high degree of mesh orthogonality. In order to capture accurately
the interface shape, we use Adaptive Mesh Refinement (AMR) based on the Volume Fraction scalar field. The mesh
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Table 2: Discretization schemes used.

Term Discretization scheme
∂/∂t Cranck-Nicholson 0.5
∇() Gauss linear

∇ · (ρϕU)† Gauss linearUpwind grad(U)
∇ · (ϕα) Gauss vanLeer

∇ · (α(1 − α)ϕr) Gauss vanLeer
∇2() Gauss linear corrected

interpolation linear
normal gradient corrected
† ϕ surfaceScalarField

Table 3: Solution method for α, pressure and velocity.

Parameter Solver Smoother Tolerance
α smooth solver Gauss-Seidel 1.e − 8
P GAMG DIC 1.e − 8
U smooth solver Gauss-Seidel 1.e − 6

is refined dynamically in the regions with 0.01 < α < 0.99. The refinement is performed using 3 refinement steps
and 2 buffer layers. Based on an initial mesh sensitivity study, Table 4 shows the 3 mesh configurations used for the
performed simulations. We characterize each mesh by the resolution (before AMR) in the axial, peripheral and ra-
dial direction ζ, β, η. Consequently, we define the respective cell dimensions adjacent to the wall boundary δζ , δβ, δη
with δβ, δη holding a variable size along the tube axis. To characterize each mesh, we use a normalized notation with
δ∗β = δβ/R(ζ) and δ∗η = δη/R(ζ). The axial resolution in the curved part of the tube is kept at δζ,bend = 0.5 mm for all
test cases. A picture of the mesh layout at the gas-liquid interface is shown in Fig. 3 before mesh refinement in Fig. 3a
and after mesh refinement in Fig. 3b.

Figure 3: Simulation setup for the simulation for Mesh n◦2 before AMR (a) and after (b).

3.2 Simulation conditions

Assuming that the solid wall boundary condition applies to each wall of the tube, we use a no-penetration boundary
condition and a 0◦ liquid-solid contact angle for the wall boundaries. We use a partial slip boundary condition at the
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Table 4: Mesh configurations analized†.

δ∗η · 100 δ∗β · 100 δζ [mm]
Mesh n◦1 4.9 16 0.6
Mesh n◦2 3.7 14 0.5
Mesh n◦3 2.4 11 0.4
†Before AMR

wall. In the OpenFOAM source code, this is imposed by defining the parameter Value Fraction (VF) as:

VF =
δη/2
δη/2 + L

, (11)

where L is the Navier slip length and L = 0 (VF = 1) corresponds to the usual no-slip boundary condition. In this
work, we characterize each test case by using the dimensionless ratio L∗ = L/R, which is kept constant for the entire
geometry. Recalling the definitions of the previous section, this is calculated as:

L∗ =
δ∗η(1 − VF)

2VF
. (12)

At the two tube entrances, a zero gradient boundary condition for the α scalar field and fixed value for the pressure
are imposed. For the outflow, a zero-gradient condition is set for the velocity, while for the inflow the velocity is
obtained from the patch-face normal component of the internal-cell value (pressureInletOutletVelocity). The simulation
begins with the liquid phase occupying the bottom part of the tube, and with the gas-liquid interface on each side having
an initial position of respectively zA = −69.5 mm and zB = 68.7 mm. The micro gravitational acceleration is oriented
vertically and downwards, from the tube entrances towards the bottom part of the bend. The simulation starts when
the measured vertical acceleration reaches the value of az = 5.10−1 g, with g = 9.81 m/s2. This allows reducing the
computational time since the experimental interface starts oscillating only when az < 10−1 g, with the main capillary
rise impulse occurring when az < 10−3 g.

4. Results

We present the test case and a preliminary analysis of the models in section 4.1. Section 4.2 focuses on the analysis of
the sensitivity of the CFD to the mesh and the imposed slip length.

4.1 Test case overview and preliminary analysis

Fig. 4 shows the envelope of the experimental acceleration profiles a(t) = (ax(t), ay(t), az(t)) corresponding to the
≈ 40s of recording across the selected parabola. The Figure shows the vertical gravitational acceleration starting at
hyper-gravity conditions with az ≈ 2g at the beginning of the recordings and then dropping to the microgravity level
for the majority of the experiment. The experiment terminates when hyper-gravity is reestablished towards the end of
the parabola. On the same plot, Fig. 4 shows also the lateral accelerations due to the parabolic flight. The strongest
variations occurs in ay(t) while the ax(t) appears as a relatively flat profile. With the DUT aligned with the x-axis,
the component ay(t) appears to play a negligible role on the motion of the liquid interface and hence is neglected
by the model (1). On the other hand, the component ax(t) cannot be discarded. In the CFD-VoF simulations the
three components of external acceleration are considered. For the following analysis we consider the portion of the
experiment highlighted in Fig. 4. This region starts at az = 0.5g, considered to be the initial instant t0 = 0s, and ends
at t = t0 + 10s where the gas liquid interface leaves the Field of View (FoV) observed by the camera. The chosen t0
allows capturing the relevant dynamics of the simulation and leaves enough time for the interface shape to adapt to the
gravitational field before any motion is triggered.

The comparison between the predictions of the integral model in (1), the CFD and the experimental data is
shown in Figure 5 in terms of average column height in (6). Interestingly, model and CFD agree remarkably well but
strongly disagree with the experimental results. The departure between numerical predictions and experiments become
particularly evident after t ≈ 3s, once the microgravity is well established. Both models fail to predict the inception of
the liquid rise and end up predicting the opposite evolution.

A meticulous sensitivity analysis was conducted on the various terms of (1) to explain the reason for the miss-
match. This will be reported in the extended version of this work [10]. Remarkably, this investigation revealed that
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Figure 4: Test-case acceleration as measured during the experimental campaign. The region highlighted shows the
simulated time of the experiment.
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Figure 5: Comparison of the experimental position of the rising gas liquid interface with the CFD and the 1D-ODE
model results in absence of corrective term for the capillary effects.

the only solution to restore the agreement was to double the surface tension of the fluid, thus de facto doubling the
role of capillary forces. This revealed essential on the initial stages of the flow and particularly in the motion onset;
once the motion is established, this artificial correction becomes irrelevant. The fact that both the CFD and the integral
model agree with the need for this artificial correction is particularly puzzling and no justification has been currently
found. To verify that such correction is indeed artificial, additional measurements of surface tension were performed
using 0.1 mm quartz capillary tubes (HR6-128 Hampton Research) and the same HFE7200 sample employed in the
experiment. Comparing the steady height of the liquid with the established Jurin’s law [28] demonstrated that the
surface tension of HFE7200 is the one provided in Table 1. Furthermore, extensive testing of the models’ sensitivity
confirmed that variations of liquid properties within the range of ±10% from those listed in Table 1 cannot explain
the behavior observed in the experiment. Finally, pressure measurements acquired during the experiment using AMS
5812-0015-D pressure transducers were sufficient to discard the presence of any additional pressure gradient in the gas
phase.

While a more detailed focus on the origin of this discrepancy is left to future works, we here focus on the impact
of numerical parameters such as slip length and mesh resolution on the dynamics of the liquid column. To maintain a
comparison with the experimental data the surface tension is doubled in all computations.

Fig. 6 shows an overview of the CFD simulation through snapshots of the region of the tube occupied by the
fluid at selected time steps. The boundary of the interface is identified with the isosurfaces α = 0.5. The Figure shows
that even a few seconds after the gravity level dropped below 0.5g, the hydrostatic pressure gradient still dominates the
liquid flow. Later, the capillary pressure gradient appears clearly visible and shows a decreasing pressure moving from

8

DOI: 10.13009/EUCASS2023-804



ON THE CAPILLARY RISE OF CRYOGENIC LIQUIDS IN MICROGRAVITY

the large side of the tube towards the small side. Towards the end of the simulation, the pressure gradient in the liquid
partially reduces; this is probably linked to the progressive flattening of the interface due to the acquired inertia as the
liquid accelerates in the small side of the tube, while the interface on the largest side moves slower and keeps a more
concave shape yielding a higher pressure drop.

t=2s. t=5s. t=8s.

Figure 6: Snapshots of the simulation and pressure field where α > 0.5.

4.2 Calibration of the simulation

A mesh dependence study was conducted for the three meshes summarized in Table 4. Figure 7 shows a comparison
between the rise of the experimental interface in the small tube side against the rise predicted by the model (1) and the
VoF simulations with no-slip boundary condition, i.e. the effective slip length is proportional to the mesh size [14].
Fig. 7 shows the rising height based on the α = 0.5 iso-surface, while the uncertainty on the interface position is shown
with the corresponding upper and lower limits obtained for α = 0.05 and α = 0.95.

The comparison shows a substantial dependency of the CFD simulations on the mesh resolution. The finest mesh
n◦3 clearly introduces an additional source of viscous dissipation at the contact line and hence a higher resistance to
the capillary motion. The meshes n◦1 and n◦2 yield similar results. The mesh n◦1 displays a much larger numerical
diffusion which appears in the larger range of uncertainty on the interface location. However, all computations appear
to follow closely the capillary rise profile predicted by means of the 1D model (1) during the first 4s of the simulation.
After t = 4, each simulation develops differently as the balance of the capillary forces with external accelerations
becomes dominant.

Following Gründing et al. [14], we now investigate the mesh sensitivity with the Navier slip condition at the solid
wall. The results are displayed analogously to Fig. 7 in Fig. 8. As expected, the mesh dependency is reduced when
the Navier slip model is employed. Mesh convergence seems to be reached with the finest mesh n◦3, which shows a
much reduced viscous dissipation. The results are also in better agreement with the experimental interface position.
Interestingly, the prediction of the ODE model follows closely the results of the CFD simulation.

To quantitatively compare the simulations with the experiment, the error on the unsteady evolution of the inter-
face height in each simulation is computed by defining an error metric as in (13):

J =
1

t(nt)

√√ nt∑
i=1

(
h̄CFD(t(i)) − h̄EXP(t(i))

)2
+

( ˙̄hCFD(t(i)) − ˙̄hEXP(t(i))
)2

t(i)2 . (13)

Where h̄CFD and h̄EXP are defined according to (6). nt represents the number of time step compared. In contrast to
similar metrics, (13) compares also the slopes of both the experimental and numerical capillary rise profiles, allowing
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Figure 7: Comparison of capillary rise profile with CFD results obtained with different meshes.
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Figure 8: Comparison of capillary rise profile with CFD results obtained with different Value Fraction.

to better visualize ambiguous comparisons. This is the case of Fig. 7 where the comparison of the mesh n◦3 and
n◦2 yields similar results when assessed only in terms of interface position. Using (13), Fig. 9 shows an overview
of the simulations performed for each of the meshes in Table 4 and for different slip lengths L∗. Fig. 9 shows that
the agreement of the simulation with the experimental data improves with increasing slip length for all the meshes
analyzed.

For the following analysis, we consider the simulation obtained for the mesh n◦3 with L∗ = 5.10−3. Fig. 10
compares the experimental and numerical interfaces. On top, the figure shows the experimental interface (after optical
correction) observed on the small tube side and on the bottom the numerical result obtained at the corresponding time
step. The latter shows also the velocity field in the liquid phase and the velocity vectors computed in a moving reference
frame with the velocity of the interface. Both series shows that the interface shape is qualitatively well predicted.
Concerning the velocity fields, a parabolic velocity profile is visible a few millimeters below the interface. The distance
from the interface where the velocity profile ceases to be parabolic increases as the liquid column accelerates. Near the
interface, the computed velocity fields appears often strongly disturbed, which is due to the influence of the interface
itself, but also to the numerical dissipation caused by the transition from a relatively coarse mesh in the core of the
liquid column towards the refined mesh in the vicinity of the interface.

Finally, Figure 11 compares the numerical interface shape for α = 0.5 against the experimental one. Both series
are fitted with a spherical cap model with zero contact angle. The different cases show an almost constant shape during
most of the simulation, with the exception of the last snapshots. As the interface accelerates, a slight flattening of the
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Figure 9: Comparison of capillary rise profile with CFD result.

interface starts occurring at t = 9.5 s. This is due to the increased inertia of the flow which dominates the interface
behaviour at the later stages of the experiment. Additionally, the numerical interface shows also a slight difference with
respect to the experiment due to the different position along the tube predicted by the simulation.

5. Conclusions

In this study, we analyzed the dynamics of a capillary rise in a novel divergent U-tube configuration under microgravity
conditions. This test case was designed to produce a capillary driven flow due to the different radii on the two sides of
the tube. We assessed the performances of OpenFoam’s VoF solver interFoam and a 1D integral model in reproducing
the experimental results collected in a dedicated parabolic flight campaign. The objective of this study was to quantify
the impact of "free" numerical parameters, such as mesh resolution and the slip length, in the prediction of VoF
simulations with no interface reconstruction.

The results showed that the CFD agrees with the integral model but not with the experimental data unless the
weight of capillary forces is artificially doubled. A Value Fraction of 0.7 for partial slip was shown to lead to mesh
convergent solutions and a good matching with the integral model. Additionally, it was observed that higher Value
Fractions (indicative of smaller slip lengths) led to a noticeable reduction in the dynamics of liquid rise, progressively
making the CFD solution deviate from the integral model. Future work will investigate the discrepancy with experi-
mental data while also testing the impact of the imposed slip length and dynamic contact angle boundary condition.
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