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Abstract 
This paper presents a model, which is based on the combination of the shell model of turbulence and 

aero-optics for the case of the buoyancy driven turbulence and turbulence in the vibrationally non-

equilibrium flow. It is shown that the refractive index spectrum generated using the shell model reflects 

experimentally observed structure functions of temperature. Analysis of the fluctuating part of the 

refractive index for the vibrationally non-equilibrium flow has been performed. Changes in the spectrum 

and irradiance profiles are controlled by the rate of dissipation of the temperature variance, which 

depends on the level of the vibrational non-equilibrium.  

1. Introduction

The effects of turbulence have been studied for a long period of time and much progress has been made, but many 

phenomena associated with turbulence are still difficult to predict, especially for large Reynolds numbers. One such 

phenomenon is the laser beam propagation through atmospheric turbulence.  At high Reynolds numbers, aero-optical 

effects cause beam spreading and attenuation1-3. The aero-optical effects are connected with the turbulent pulsations 

of the temperature, pressure and humidity and they strongly affect performance of laser beam systems4-5. We can 

analyze properties of aero-optical distortions in the Fourier space by introducing a spectrum of the refractive index6. 

Tatarskii in his classical book7 has formulated an analytical theory of aero-optical effects based on a statistical 

description of turbulence leading to predicted amplitude and phase fluctuations of the propagating electromagnetic 

wave.  It was shown that scattering of electromagnetic wave in a turbulent atmosphere and refractive index fluctuations 

for isotropic turbulence follow a -11/3 law in the inertial subrange. To characterize the refractive index fluctuation 

spectrum we need to know both the kinetic energy and temperature cascade behaviour.  

For the considered range of Reynolds numbers, methods based on Direct Numerical Simulations (DNS) still cannot 

resolve the dissipative subrange of the spectrum. As an alternative, statistical properties of isotropic and homogeneous 

turbulence have been studied using shell models of turbulence. The basic idea of any shell model is a transition from 

the physical space to the Fourier space. The next step is a construction of the discrete set of shells and an appropriate 

choice of the interaction and coupling between neighboring shells to take into account the main properties of the 

original Navier-Stokes (NS) equations. Finally, the formed system of non-linear differential equations describing the 

time evolution of amplitudes of the velocity pulsations can be solved numerically using standard methods for stiff 

equations. The most comprehensive review of properties of shell models related to the turbulent kinetic energy cascade 

is presented in a paper by Biferale 8. Depending on the chosen nonlinear coupling the shell model can preserve the total 

energy and volume in a phase space as  in  the Desnyansky and Novikov model9 or additionally preserve the total 

helicity as in the Gletzer-Okhitani-Yamada (GOY) shell model10,11 and in its improved version Sabra shell model12.  A 

generalization of the helical shell models is presented in the paper by Benzi et al13, where the authors used a helical 

decomposition of the Navier-Stokes equations in the Fourier space. Despite the evident disadvantage of shell models, 

such as an absence of any space geometry factors, most of the shell models reproduce the Kolmogorov’s turbulence 

scaling and some of them10-12 show intermittency behavior. It worth noting that the shell intermittency is a temporal 

intermittency in contrast to the spatial intermittency in a real three-dimensional turbulent flow14,15.  

Another class of shell models has been used to study the temperature spectrum in a turbulent flow. Depending on 

the Rayleigh or the Richardson number, temperature can be the passive or active scalar. In the former case at low Ri 

numbers, a temperature spectrum can be formally obtained using shell models for passive scalars16-18. The resulting 

shell equation describes the time evolution of a scalar field (temperature amplitude 𝜃) which is passively carried by 

the fluid flow down to high wavenumbers where the energy is dissipated due to viscosity. The shell model for the 

passive scalar additionally to the conservation of energy and volume in the absence of forcing, viscosity and diffusivity 

must conserve a variable 
1

2
∑ 𝜃𝑘

2
𝑘 , which reflects a conservation of entropy.  It was shown, that for Prandtl numbers 

𝑃𝑟 =
𝜈

𝐷
≥ 1  there is the inertial convective subrange in the temperature spectrum E𝜃, which coincides with the

Obukhov-Corrsin law19.20  E𝜃 = 𝐶𝜃𝜒𝜀−1/3𝑘−5/3, where k is the wavenumber, 𝐶𝜃 ≅ 0.68 is the Obukhov-Corrsin

constant, 𝜒 is the scalar dissipation rate and 𝜀 is the energy dissipation rate. 
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For turbulent convection caused by the buoyancy force, which is one of the main sources of the temperature 

fluctuations in the atmosphere, the system of NS equations additionally includes the buoyancy term in the Boussinesq 

approximation. It is important for shell models because an effect of compressibility and changes in density are 

connected only with the changes of temperature, when incompressibility condition 𝑑𝑖𝑣�⃗� = 0  is still valid. In the 

Fourier space it transforms to the relation �⃗⃗�(𝑘) ∙ �⃗⃗� = 0 , thus the Fourier amplitude of the velocity �⃗⃗�(𝑘) is 

perpendicular to �⃗⃗�. As a result, NS equations being projected onto a plane perpendicular to �⃗⃗� in the Fourier space, 

allows us to remove the pressure term.   

Changes in the scaling exponent observed in the highly stratified atmosphere and transition from the Kolmogorov 

scaling to the Bolgiano-Obukhov  (BO) scaling due to the effects of the buoyancy forces, were initially explained by 

Bolgiano and Obukhov21,22.  The buoyancy force provides forcing at all length scales and as a result in the buoyancy 

subrange temperature fluctuations are scaled as 𝑘−7/5 compared with 𝑘−5/3 in the Kolmogorov scaling. Shell models 

for the buoyancy-driven stratified turbulence were introduced by Brandenburg 23 and Suzuki et al 24.  A dual scaling 

effect was discussed in the paper by Ching16  in the frame of the Brandenburg shell model, which can be considered as 

a modification of the Desnyansky and Novikov model9  by the inclusion of the buoyancy term. In this shell model, 

nonlinear terms in the equation for the velocity pulsations include both the direct kinetic energy transfer to smaller 

scales and the inverse transfer from the smaller scales to the larger scales. The main conclusion is that the BO scaling 

is closely connected with the inverse transfer of the kinetic energy. For the case of the weak stratification the model 

shows, that the temperature behaves like a passive scalar and being modified24 can capture intermittency effects.   

In the more recent publication25 the authors explored the applicability of shell models based on complex variables 

(GOY based shell models) and the Brandenburg shell model to study the confined Rayleigh–Taylor turbulent 

convection. It was shown that the dual BO and Kolmogorov scaling depends on the buoyancy force and this effect is 

better reproduced by the Brandenburg shell model. Furthermore, for the study of confined turbulent convection the 

scale of the geometrical confinement determines the Bolgiano length scale, which is usually defined by matching the 

fluxes of the viscous dissipation rate from both scaling regimes.  

The goal of this paper is to understand the effect of the buoyancy driven turbulence and turbulence in the 

vibrationally non-equilibrium flow on aero-optical disturbances. The model has been developed to study the refractive 

index spectrum behaviour and optical distortions of the laser beam, propagating in atmosphere. The model is used for 

the analysis of the refractive index structure parameter 𝐶𝑛
2. The 𝐶𝑛

2 parameter is based on the 2/3-law for the structure 

function7 and characterizes the strength of turbulence in aero-optics.  

2. Formulation of the problem 

Using the Oberbeck-Boussinecq approach, when changes in density are included only in the gas state equation, but 

not in the continuity equation, the main system of equations for a buoyancy driven flow and flow in the vibrational 

non-equilibrium has the form (1)-(3) 

 

𝜌0 (
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗�) = −∇𝑃 + 𝜇∆�⃗� + 𝜌0𝑔𝛼𝜃�⃗⃗�,                                                     (1) 

𝑐𝑝𝜌0 (
𝜕𝑇

𝜕𝑡
+ (�⃗� ∙ ∇)𝑇) = 𝜆∆𝑇 + 𝜌0

𝜀−𝜀∗(𝑇)

𝜏𝑉𝑇
,                                                           (2) 

𝜌0 (
𝜕𝜀

𝜕𝑡
+ (�⃗� ∙ ∇)𝜀) = 𝜆𝑉

′ ∆𝜀 − 𝜌0
𝜀−𝜀∗(𝑇)

𝜏𝑉𝑇
,                                                             (3) 

 

where  𝑃 = 𝑝 − 𝜌0𝑔𝑧,  𝜆𝑉
′ = 𝜆𝑉

𝜕𝑇𝑉

𝜕𝜀
  , 𝜏𝑉𝑇 is the vibrational-translational relaxation time, 𝜀, 𝜀∗, 𝑇𝑣 are the vibrational 

energy, equilibrium vibrational energy and vibrational temperature, respectively, g is the acceleration due to gravity, 

𝜆𝑉  is the vibrational thermal conductivity, the α, ν,𝜒 are the volume expansion coefficient, kinematic viscosity and 

thermal conductivity of the gas, respectively.    

Two problems are considered such as a) flow generated by the buoyancy force (equations (1-2), without the last 

term in the eq.(2)) and b) the vibrationally non-equilibrium flow (eq.(1)-(3)). 

 It is clear, that buoyancy force can cause anisotropy of the flow, but as was shown in [26], stably stratified flows 

at low Richardson numbers and turbulent flows in the regime of Rayleigh–Bénard convection are nearly isotropic. 

Thus, for the inertial range of isotropic homogeneous turbulence, the Kolmogorov’s hypothesis of the energy spectrum 

independence of fluid properties is still valid. The formal procedure for the derivation of any shell model includes the 

Fourier transform of the Navier-Stokes equations to the wave space and shell averaging, which results in the system 

of equations (4)-(6) for Fourier amplitudes of the velocity 𝑢2(𝑡, 𝑘) = ⟨∑ 𝑣𝑗(𝑡, 𝑘′⃗⃗⃗⃗
′
)𝑣𝑗(𝑡, −𝑘′⃗⃗⃗ ⃗)𝑘

√2
 ≤ |𝑘′| ≤ √2𝑘

⟩, the Fourier 

components of the translational temperature 𝜃𝑛 = 𝜃(𝑘, 𝑡) and vibrational energy 𝜀𝑛 = 𝜀(𝑘, 𝑡).   
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,     
𝜕 𝒖(𝒌,𝒕)

𝜕𝑡
= 𝑘 (𝑢2 (𝑘 − 1, 𝑡) − 2𝑢(𝑘, 𝑡)𝑢(𝑘 + 1, 𝑡)) −

1

𝑅𝑒
𝑘2𝑢(𝑘, 𝑡) + 𝑅𝑖 𝜃(𝑘, 𝑡),                            (4) 

 
𝜕𝜽(𝑘,𝑡)

𝝏𝑡
= 𝑘(𝑢(𝑘 − 1, 𝑡)𝜃(𝑘 − 1, 𝑡) − 2𝑢(𝑘, 𝑡)𝜃(𝑘 + 1, 𝑡)) −

1

𝑅𝑒 𝑃𝑟
𝑘2𝜃 + 𝛽𝑢𝑛 + 𝑅𝑣𝑖𝑏(𝜃(𝑘, 𝑡)𝜃(𝑘, 𝑡) −

𝜀(𝑘, 𝑡)𝜃(𝑘, 𝑡)), (5) 

 
𝝏𝜺(𝒌,𝒕)

𝜕𝑡
= 𝑘(𝑢(𝑘 − 1, 𝑡)𝜀(𝑘 − 1, 𝑡) − 2𝑢(𝑘, 𝑡)𝜀(𝑘 + 1, 𝑡)−𝐴𝑣𝑖𝑏𝑘2𝜃(𝑘, 𝑡) − 𝑅𝑣𝑖𝑏(𝜃(𝑘, 𝑡)𝜃(𝑘, 𝑡) − 𝜀(𝑘, 𝑡)𝜃(𝑘, 𝑡)), (6)  

   

where 𝑣𝑗(𝑡, �⃗⃗�) is the Fourier components of the velocity, wavenumbers  𝑘𝑖 = 𝑘0ℎ𝑖,  i=0,1,….N-1,  h=2 is the distance 

between shells, N is the total number of shells , 𝑘0 is the wavenumber corresponding to the largest scale,  

𝑅𝑖 =
𝑔𝛼∆𝑇𝑙0

𝑣0
2  is the Richardson  number, 𝑅𝑣𝑖𝑏 =

∆𝜀

𝑐𝑝0(𝑇𝑠−𝑇0)
 is the parameter, which characterises the level of the 

vibrational non-equilibrium, 𝐴𝑣𝑖𝑏 =
𝜆𝑣

𝑣0𝑙0𝜌0
  is the parameter which characterizes diffusivity of the vibrational energy. 

The non-linear convective terms in eq. (4)-(6) includes only the nearest neighbour shell interactions as in the dyadic 

shell model. The last term in eq. (5),(6) is the proposed closure for the vibrational-translational energy exchange term.  
 

The next step is the transition to aero-optics, the refractive index spectrum and the refractive index structure 

parameter 𝐶𝑛
2  [7]. By definition the second order structure function  𝐷𝑛  of the refractive index is the mean-square 

average of the refractive index measured at two points separated by the distance R. Introducing the outer scale L as the 

size of the largest turbulent eddies in the flow and the inner scale  𝑙0, the structure function  𝐷𝑛 of the refractive index,  

is related to the refractive index structure parameter 𝐶𝑛
2 as follows   

 

 𝐷𝑛(𝑥 + 𝑅, 𝑥) = 〈[𝑛(𝑥 + 𝑅) − 𝑛(𝑥)]2〉 = 𝐶𝑛
2𝑅

2

3    𝑙0 ≤ 𝑅 ≤ 𝐿   𝑎𝑛𝑑                                   (7) 

 

𝐷𝑛(𝑥 + 𝑅, 𝑥) = 〈[𝑛(𝑥 + 𝑅) − 𝑛(𝑥)]2〉 = 𝐶𝑛
2𝑅2𝑙0

−4/3
    0 ≤ 𝑅 ≤ 𝑙0  .                                (8) 

 

The inner scale of turbulence 𝑙0 is the size of the smallest inhomogeneities in the temperature distribution, and it is the 

intercept point of two asymptotes of the temperature structure function in the viscous-diffusive and inertial range of 

the temperature spectrum7. For air the inner scale is 𝑙0  = (
27∙𝐶𝜃Γ(

1

3
)

5∙𝑃𝑟
)

3/4

𝜂 ≅ 7.4 𝜂, where 𝜂 = (
𝜈3

𝜀
)

1/4

 is the 

Kolmogorov’s scale. The refractive index is 𝑛 = 1 + 𝐾𝐺𝐷
𝑝

𝑅𝑇
, where 𝐾𝐺𝐷 is the Gladstone-Dale (GD) constant. In a 

general case,  𝐾𝐺𝐷 is not constant due to the polarizability dependence on the translational and vibrational temperature. 

This effect is important  for the analysis of the interferometry results in the hypersonic flow [27-29]. Following the 

standard procedure 𝑝 = �̅� + 𝑝′, 𝑇 = �̅� + 𝑇′, 𝐾𝐺𝐷 = 𝐾𝐺𝐷 + 𝐾𝐺𝐷
′ , 𝑛 = �̅� + 𝑛′,  where �̅�, �̅�, 𝐾𝐺𝐷  , �̅� and 𝑝′, 𝑇′, 𝐾𝐺𝐷

′ , 𝑛′    
are the mean and fluctuating parts of the pressure, temperature, Gladstone-Dale constant and refractive index.   

Assuming that 
𝑇′

�̅�
≪ 1  the fluctuating part of the refractive index has a form 

 

𝑛′ ≅ 𝐾𝐺𝐷 (−
�̅�𝑇′

𝑅�̅�2 +
𝑝′

𝑅�̅�
−

𝑝′𝑇′

𝑅�̅�2) +
�̅�

𝑅�̅�
(𝐾𝐺𝐷

′ −
𝐾𝐺𝐷

′ 𝑇′

�̅�
+

𝐾𝐺𝐷
′ 𝑝′

�̅�
−

𝐾𝐺𝐷
′ 𝑝′𝑇′

�̅�
). 

 

Neglecting by the second and third order terms, the final expression for the fluctuating part of the refractive index is 

as follows 

𝑛′ ≅ 𝐾𝐺𝐷
2 (−

�̅�𝑇′

𝑅�̅�2 +
𝑝′

𝑅�̅�
) +

�̅�𝐾𝐺𝐷
′

𝑅�̅�
,                                                             (9) 

 

A three-dimensional spectrum 𝛷(�⃗⃗�) of any scalar field is a Fourier transform of the correlation function  𝐵(𝑟), i.e. 

 

𝛷(�⃗⃗�) =
1

(2𝜋)3 ∫ 𝐵(𝑟) exp(−𝑖𝑟 ∙ 𝑘) 𝑑𝑟,                                                         (10) 

 

where 𝑟 = �̅�1 − �̅�2   is the displacement vector, and the correlation function for the refractive index is  𝐵𝑛(�̅�1 − �̅�2) =

𝑛′(�̅�1)𝑛′(�̅�2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Using relations (9),(10), the general formula for the refractive index spectrum in the vibrationally non-

equilibrium flow is 
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Φ𝑛(�⃗⃗�) =
𝐾𝐺𝐷

2

𝑅2�̅�2 [Φ𝑝(�̅�) +
�̅�2Φ𝑇(�̅�)

�̃�2 −
2�̅�𝑅𝑒(Φ𝑇𝑝(�⃗⃗�)

�̃�
+

�̅�2Φ𝐾𝐾(�̅�)

𝐾𝐺𝐷
2 −

2Re(Φ𝐾𝑇(�̅�))�̅�2

𝐾𝐺𝐷�̅�
+

2Re(Φ𝐾𝑝(�̅�))�̅�

𝐾𝐺𝐷
],                        (11) 

where Φ𝑝(�̅�), Φ𝑇(�̅�), Φ𝐾𝐾(�̅�) are pressure, temperature, and  𝐾𝐺𝐷 constant spectra. Additional terms include Φ𝑇𝑝, 

Φ𝐾𝑇 and Φ𝐾𝑝, which are the temperature-pressure,  𝐾𝐺𝐷 constant –temperature and 𝐾𝐺𝐷 constant-pressure co-spectra, 

respectively.  

In this paper the dependence of the Gladstone-Dale constant on the vibrational temperature and the pressure 

contribution to the refractive index fluctuations are neglected compared with the temperature spectrum contribution 

[30,31]. Thus, the refractive index spectrum depends only on the temperature spectrum, which is taken from the shell 

model (4)-(6) a) for the flow generated by the buoyancy force and b) for the vibrationally non-equilibrium flow.  The 

dimensionless refractive index parameter  𝐶𝑛
2  is found from the relation for the refractive index spectrum in the inertial 

subrange Φ𝑛
∗ (𝑘) = 𝐶𝑛

2∗𝑘∗
−

11

3 , which follows 𝑘∗
−

11

3    dependence. When the mean temperature gradient in the vertical 

direction 𝛽 = 𝑎𝑏𝑠 (
𝑑𝑇

𝑑𝑧
)  ≠ 0 is not small, and buoyancy feeds the kinetic energy, to provide adequate forcing eq. (5) 

includes the term proportional to  𝛽. In this case changes in the 𝐶𝑛
2∗ parameter are controlled by the mean temperature 

gradient 𝛽. Dividing the turbulent layer into sub-layers with a constant temperature gradient gives 𝐶𝑛
2∗  dependence on 

the coordinate.  

 

2. Numerical results and analysis 

The system of equations (4)-(6) is stiff due to a wide range of time scales covering the inertial and viscous intervals 

of the spectrum. To obtain an accurate estimation of the energy and temperature spectrum at the steady case the code 

was running several times with different total time and time steps until the average results coincided. Input parameters 

include  𝑘0 =
1

𝐿
 , which is inversely proportional to the integral length scale, and values of 𝑢0, 𝜃0, 𝜀0 at the first shell. 

Additional dimensionless parameter �̃�𝑣 =
𝜀0

𝐸𝑡𝑜𝑡𝑎𝑙_0
  describes the initial level of the vibrational non-equilibrium in the 

first shell.  Calculations were run at parameters typical for air, thus kinematic viscosity, thermal diffusivity and thermal 

expansion coefficients were taken at atmospheric pressure as   𝜈 = 1.6 ∙ 10−5 𝑚2

𝑠
;   χ =

𝜆

𝜌𝑐𝑝
= 22.2 ∙ 10−6  

𝑚2

𝑠
; 𝛼 =

3.4 ∙ 10−3𝐾−1, 𝑅𝑒 = 106, 𝑁 = 25, 𝑘0 = 0.0628, 𝑢0 = 1.  
First, the results for the flow generated by the buoyancy force are presented. Figure 1 shows the refractive index 

spectrum calculated using the shell model (4)-(5), the Tatarskii model [7] for the inertial subrange and von Karman 

model. For the latter, the refractive index spectrum is    

𝛷𝑛(𝑘) = 0.033𝐶𝑛
2exp (−

𝑘2

𝑘𝑚
2 ) /(𝑘2 + 𝑘0

2)11/6,                                              (12) 

and 𝑘0 =
2𝜋

𝐿
;  𝑘𝑚 =

5.92

𝑙0
 ,  inner scale 𝑙0 = 4.27 ∙ 10−5𝑚. It is seen that the shell model predicts the behavior of the 

spectrum in the inertial and dissipative subranges, and it is in a good agreement with the von Karman model, which is 

often used in aero-optics. 
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Figure 1: Refractive index spectrum 

 

Changes in the structure function parameter  𝐶𝑛
2∗ depending on the temperature gradient are shown in Fig.2. The 

range of 𝐶𝑛
2∗ varies in limits 10−16 to 10−11 with the increase of  𝐶𝑛

2∗ with the increase of  𝛽, which reflects the 

enhancement in the turbulence strength with the increase of the temperature gradient.   

 

 
Figure 2: The structure function parameter as a function of the temperature gradient 𝛽. 

 

To understand the behavior of 𝐶𝑛
2∗ as a function of the temperature gradient 𝛽  an additional analysis of the 

dissipation rates of the kinetic energy of turbulence, the rate of dissipation of the temperature variance and structure 

functions of temperature is carried out. The dissipation rate of the kinetic energy of turbulence is  𝜀 = 2𝜈⟨(𝛻𝜐)2⟩ , 
which in the shell model equals to = 𝜈 ∑ 𝑘𝑛

2𝑢𝑛
2𝑛=𝑁

𝑛=1  . The dissipation rate of the temperature variance is  𝜀𝜃 = 2𝜒⟨(𝛻𝑇)2⟩ 
and in the shell model it is defined as  𝜀𝜃 = 𝜒 ∑ 𝑘𝑛

2𝜃𝑛
2𝑛=𝑁

𝑛=1 .  Figure 3 shows dependence of 𝜀 and 𝜀𝜃 on the temperature 

gradient. After comparison of results in Fig.2-3 it is clear, that the dependence of the structure function parameter on 

the temperature gradient follows the same tendency as the dissipation rate of the temperature variance, thus the 

enhancement of the temperature dissipation rate at the high temperature gradient causes the increase of the structure 

function parameter. 
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Figure 3: Dissipation rate of the kinetic energy and temperature variance as a function of 𝛽 

 

 

Going back to the standard definition of 𝐶𝑛
2 given by (7) the behavior of the structure functions of the refractive 

index and accordingly the structure functions of temperature must follow the 𝑅
2

3    law in the inertial subrange. The 

second order structure functions of velocity and temperature in the shell model can be defined as follows  

 

𝐷𝑣(𝑘𝑛) = 〈⌈𝑢𝑛⌉2〉;    𝐷𝜃(𝑘𝑛) = 〈⌈𝜃𝑛⌉2〉.                                                          (13) 

 

Figure 4 shows dependence of the structure functions of temperature on the wavenumber at the various temperature 

gradient 𝛽.  The black line in Fig.4 represents the classical scaling in the inertial subrange of the spectrum, which is  

proportional to 𝑘−2/3. 

 

 
Figure 4: Structure functions of temperature as functions of the temperature gradient  𝛽  

 

It is seen that the structure functions of temperature follow the same slope corresponding to classical scaling in the 

inertial subrange of the spectrum, and values of the structure functions are changed depending on 𝐶𝑛
2∗, which in turn 

changes depending on the temperature gradient. It is noteworthy that because of non-dimensional units in shell models, 

the relations are scaled with some empirical constant. But having one value of 𝐶𝑛
2 at the specific temperature gradient 
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the temperature gradient in the model can be adjusted as follows. Changes in the  𝐶𝑛
2∗ values are closely related to the 

temperature variance dissipation rate 𝑁 = 𝜒 (
𝜕𝑇′

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅
 (in the shell model 𝜀𝜃 = χ ∑ 𝑘𝑖

2𝜃𝑖
2𝑁

𝑖=1 )  showing 𝜀𝑘
−1/3

𝜀𝜃𝑘−5/3 

scaling for the fluctuation spectrum of temperature. In the shell model at the fixed Reynold number  𝜀𝜃 is controlled 

by the value of 𝜃0 in the first shell. Using the measured temperature dissipation rates from [32]  and Eq.(14) for the 

temperature variance dissipation rate 𝑁,  the values of 𝜃0 in the first shell depending on the temperature variance 

dissipation rate 𝜀𝜃 can be defined. 

 

𝑁 = −
𝜕

𝜕𝑧
(�̅�𝜔′𝑇′̅̅ ̅̅ ̅̅ ) + 𝛽(�̅��̅�) + 𝛽(𝜔′𝑇′̅̅ ̅̅ ̅̅ ) = 𝜅𝑡

𝜕�̅�

𝜕𝑧
+ 𝛽(�̅��̅�) + 𝛽(𝜔′𝑇′̅̅ ̅̅ ̅̅ ).                        (14) 

 

This dependence is shown in the insert in Fig.5.  Using this profile of  𝜃0  the refractive index structure parameter Cn
2 

as a function of the height (Fig.5) is calculated and compared with the experimental data from [35]. It is seen that the 

model yields good agreement with the experimental data from the ground level through the troposphere (≤ 13 𝑘𝑚). 
Summarizing all the above, shell models can be used as a fast and computationally unexpensive tool for preliminary 

analysis and prediction of the main properties of aero-optical effects for thermal convective turbulence.  

 

 

 
Figure 5: Refractive index structure parameter Cn

2 as a function of the height: red line- the calculation data, squares- 

the experimental data from [32]. Agreement is good up to ~13 km. The plot in the insert shows the dependence of the 

shell temperature variance dissipation rate on the values of 𝜃0 for the first shell. 

 

For the vibrational non-equilibrium flow the temperature spectrum is controlled by two additional parameters such 

as 𝑅𝑣𝑖𝑏, which defines the level of vibrational non-equilibrium of the flow and �̃�𝑣 =
𝜀0

𝐸𝑡𝑜𝑡𝑎𝑙_0
,   which describes the 

initial level of the vibrational non-equilibrium in the first shell. The temperature spectrum dependence on the parameter 

𝑅𝑣𝑖𝑏 is shown in Fig.6. Straight lines in Fig.6 correspond to the classical Kolmogorov’s scaling. It is seen that the effect 

of the vibrational non-equilibrium is more pronounced at the lower wave numbers (at large scales). The increase   of  

𝑅𝑣𝑖𝑏  causes the more postponed transition to the Kolmogorov’s scaling regime. The parameter �̃�𝑣 shows the similar 

effect but in the temporal development of the cascade.  The more energy is in the vibrational mode in the first shell, 

the less is the local maximum of the energy dissipation rate considering that internal energy in the first shell is constant. 

With the increase of the level of the initial non-equilibrium the formation of the similarity regime moves to the later 

time. This qualitative analysis is effective for visualizing the physics of observed wave-front distortions, caused by the 

laser beam propagation through turbulence. The effect of the vibrational non-equilibrium can be easily captured in the 

beam irradiance profiles, which are constructed using the split step method and the temperature spectrum from (4)-(6) 
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as in [27].  Figure 7 shows the beam irradiance profiles for equilibrium case �̃�𝑣 = 0 , and for two vibrationally non-

equilibrium flows with the different initial level of the vibrational non-equilibrium in the first shell �̃�𝑣 = 0.5; 1.  It is 

seen that the strength of the fluctuations in each case vary, showing the effect of the vibrational non-equilibrium on 

local focusing, refraction and diffraction of the beam, when light propagates through the turbulent region.  

This analysis of the effects of the vibrational non-equilibrium on aero-optics using shell models is preliminary, and 

needs the additional study of effects associated with the inverse cascade, types of closure in (4)-(6)... etc.  For example, 

previous analysis of the beam irradiance profiles in [27] showed that the magnitude of the beam irradiance changes 

with the inclusion of the “shell” intermittency effect. 

 

 

Figure 6: Temperature spectrum (steady state) as a function of R_vib 

 

 

Figure 7: Beam irradiance profiles: a) �̃�𝑣 = 0, b) �̃�𝑣 = 0.5, c) �̃�𝑣 = 1.  

 

Conclusions 

A mathematical model, which combines a shell model of turbulence and aero-optics has been developed. The model 

is used to analyse behaviour of the refractive index spectrum and structure function parameter in thermal convective 
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turbulence and in the vibrationally non-equilibrium flow. The proposed approach agrees well with the observations of 

the refractive index, showing classical scaling in the inertial sub-range of the temperature and refractive index spectra. 

It is shown, that changes in the refractive structure parameter correlate well with the temperature variance dissipation 

rate, controlled by the initial values of temperature pulsations in the first shell. It is shown that the effect of the 

vibrational non-equilibrium is more pronounced at the lower wave numbers, and an increase of the vibrational non-

equilibrium causes the more postponed transition to the Kolmogorov’s scaling regime. Future work is needed to 

determine how the intermittency and inverse energy cascade, variations of the Gladstone-Dale constant in non-

equilibrium flows, and different closures for the shell model affect aero-optics. 
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