
 

 

Single and Multi-Agent Reinforcement Learning Approach to
Optimize Aircraft Ground Trajectories at Airports

Maxime Szymanski, Georges Ghazi†, and Ruxandra M. Botez†
École de technologie supérieure (ÉTS)

Laboratory of Applied Research in Active Controls, Avionics, and AeroServoElasticity (LARCASE)
Montreal, QC, Canada

georges.ghazi@etsmtl.ca · ruxandra.botez@etsmtl.ca
†Corresponding author

Abstract
This paper presents a methodology for routing aircraft at airports using a reinforcement learning approach.
For this purpose, an aircraft was considered as an agent, while the airport in which the aircraft moves
was considered as the environment. The airport was modeled as an undirected graph, composed of nodes
(taxiway junctions) and segments (taxiways). The objective of the agent was to learn how to move from
a departure node to a destination node by taking an optimal path. The optimal path within the scope of
this study was assumed to be the shortest path, avoiding sharp turns (i.e., turns over 90◦) while limiting
the number of turns along the way. The agent was trained using the Proximal Policy Optimization (PPO)
algorithm by considering a single-agent environment. The trained agent was tested for different airports
and over 400 different scenarios were designed by randomly selecting a departure node and a destination
node. The results showed that the agent was able to find the optimal path with an average success rate
of 98%. Then, the agent was tested in a multi-agent environment by considering multi-aircraft moving
in the same airport. Similar results were obtained. The results obtained in this study have shown that
reinforcement learning methods can provide a very good solution to the problem of aircraft routing at
airports.

1. Introduction

Airports are essential nodes in the aviation ecosystem, connecting countries and people worldwide. However, with
air traffic expected to double to 8.2 billion by 2037 [1], this ecosystem may experience negative changes over the
next decade. Indeed, most major airports are currently operating near their maximum capacity, and an increase in the
number of aircraft will significantly amplify their demand for runway and terminal capacity, leading to congestion and
delays [2]. This congestion will result in extended taxiing times, longer turnaround periods for aircraft, and reduced
scheduling flexibility. Consequently, the overall efficiency of airport operations may be compromised, impeding the
ability to accommodate additional flights, and limiting the potential for growth.

Airport congestion not only causes operational problems, but also adversely affects the environment. Indeed, increas-
ing the number of aircraft will inevitably lead to excessive fuel consumption. This problem is even more critical at
airports, since aircraft engines are designed to operate efficiently at cruising speeds and altitudes, whereas their perfor-
mance is not optimal during low-speed ground operations. Taxiing at congested airports accounts for 6% of aircraft
fuel consumption for short-haul flights. By burning fuel, aircraft engines release substantial quantities of pollutants,
such as carbon dioxide (CO2), nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM), and volatile
organic compounds (VOCs), which contribute to the deterioration of local air quality [3] These emissions also lead to
the formation of ground-level ozone, which has harmful effects on human health [4].

Recognizing this dual operational and environmental challenge, efforts are being made to optimize aircraft ground
operations by exploring innovative strategies and technologies, such as advanced air traffic management systems and
intelligent ground operations, with the aim of minimizing fuel consumption and associated emissions. Within this
context, it becomes imperative to investigate new solutions to revolutionize traffic management and move towards a
more flexible and sustainable air transport system.

Copyright© 2023 by M. Szymanski, G. Ghazi, and R. Botez. Posted on line by the EUCASS association with permission.

DOI: 10.13009/EUCASS2023-713

Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

In recent years, extensive research has been conducted to propose new efficient flight procedures (i.e., above 1500
ft). Continuous Descent Operations (CDOs) are one of the most notable examples of how fuel consumption and as-
sociated emissions can be reduced by improving flight procedures. Unlike the Standard Step-Down Approach (SDA),
CDO enables aircraft to descend continuously with idle thrust setting while avoiding level-off segments [5]. In this
way, CDO allows for a smoother and more efficient approach to landing, ultimately leading to a more sustainable and
cost-effective operation for airlines [6]. Another promising approach to improve flight efficiency is based on flight tra-
jectory optimization. By considering various factors, such as aircraft performance and atmospheric conditions, airlines
can determine the most efficient trajectory for a given flight using different optimization techniques, which can result
in reduced fuel consumption, which not only lowers operating costs but also reduces aircraft emissions. The most
common way to improve flight efficiency is to optimize the speed [7, 8] and the altitude [9, 10] during the cruise phase,
using highly accurate models [11–13]. However, with the intention of moving towards a more flexible airspace, recent
research has seen a trend in the concept of free flight. The concept of free flight refers to a paradigm shift in air traffic
management aimed at providing aircraft with greater flexibility and autonomy in their flight paths. By reducing or
eliminating the traditional dependency on fixed airways and predefined routes, aircraft can navigate more freely within
the airspace while maintaining their safety and efficiency. These concepts paved the way for the development of new
flight procedures aimed at optimizing the vertical [14], the lateral [15, 16], or a combination of both [17–19] profiles,
leading to a more flexible, dynamic and cost-effective air transport system.

The concept of free flight has attracted considerable attention in the air traffic management community where research
primarily focused on airborne flight phases. However, extending this concept to airport environments offers the po-
tential for addressing and improving the challenges associated with airport ground movement. Indeed, transposing
free flight principles to ground operations enables airports to explore innovative approaches to enhance the efficiency,
safety, and overall management of aircraft movement on taxiways and runways. This problem, known as Airport
Ground Movement (AGM) optimization, involves moving an aircraft from a gate to a runway (or vice versa) within a
given time window while minimizing fuel consumption and complying with safety constraints to avoid conflicts with
other aircraft. From an optimization point of view, this problem can be seen as a combination of routing and scheduling
problems, such as the gate/stand allocation problem [20, 21], and runway sequencing problems [22, 23].

For small- and medium-sized airports with low traffic density, routing aircraft between gates and runways can be ad-
dressed using typical shortest-path algorithms. Earlier studies in this field were conducted by Gotteland and Durand
[24], who used the Branch & Bound algorithm to generate a list of predetermined shortest routes between different
points for a given airport. The authors then used a genetic algorithm to assign, from the generated list, the most appro-
priate route and waypoints for each aircraft. Similarly, Brownlee et al. [25] used an A∗ algorithm to determine optimal
ground paths that minimize taxi time. They combined their shortest taxi-time algorithm with a rolling window approach
and a genetic algorithm to optimize aircraft allocation order. Dabachine et al. [26] applied and compared three routing
algorithms, including Dijkstra, bidirectional Dijkstra, and A∗. According to the results, the Dijkstra variants were able
to find the optimal solution, but the cost in computation time remained relatively high. Conversely, the A∗ was able to
find a solution faster, but its convergence did not guarantee that the optimal solution was always obtained. A hybrid A∗

algorithm was then proposed to take advantage of each algorithm to reduce computation time and optimize the search
for the shortest path. The A∗ algorithm was also explored by Lesire [27] and Zhou and Jiang [28] for optimizing air-
craft paths while minimizing conflict probability. In [29], Ravizza et al. proposed a new algorithm called the QPPTW
(Quickest Path Problem with Time Window) to solve the multi-aircraft routing problem. The algorithm proposed in
this study was designed based on the Dijkstra algorithm by incorporating a segment reservation principle imposed by
previously routed aircraft. This approach enabled the routing of multiple aircraft while guaranteeing the absence of
conflicts by ensuring that two aircraft do not occupy the same route segment.

One of the drawbacks of shortest-path algorithms, such as those applied in the previous studies, is that they cannot
optimize several objectives simultaneously. In most cases, an optimization algorithm is required to find the optimal
aircraft path, while other constraints or objectives must be incorporated by modifying the nature of the optimization
problem. As a result, these methods are limited to optimizing one trajectory at a time and do not guarantee to find all
optimal solutions for multiple aircraft routing problems. Another solution would be to run these algorithms several
times for each aircraft, but this approach is time-consuming, and convergence is not necessarily guaranteed.

In recent years, Artificial Intelligence (AI) has revolutionized trajectory planning in robotics by enabling intelligent
decision-making and adaptive behavior. Using AI algorithms, and more specifically Reinforcement Learning (RL)
algorithms, robots can be trained to learn through trial and error how to dynamically select optimal trajectories based
on a set of target goals in an environment of dynamic constraints. This iterative learning process allows robots to adapt

2

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

to changing environments, avoid obstacles, and navigate complex terrain efficiently. Within this context, it would be
interesting to transpose these concepts to solve the airport ground movement problem. In this case, an aircraft can be
considered as a robot, while the airport can be considered as the environment in which the aircraft must find the most
efficient route from a departure node (i.e., gate) to an arrival node (i.e., runway entry point), while avoiding conflicts
with other aircraft. The main objective of this paper is, therefore, to present a study conducted at the Laboratory of
Applied Research in Active Controls, Avionics, and AeroServoElasticity (LARCASE) to investigate the possibility of
using Reinforcement Learning for solving the routing aircraft problem. To this end, the airport was modeled as an undi-
rected graph, where the edges represent taxiways, and the nodes represent intermediate junctions. Aircraft were trained
to move from one node to another by selecting the node that leads to the optimal trajectory based on a probabilistic
score. As a first step, the optimal trajectory in the context of this study was assumed to be the shortest path. However,
this concept of aircraft routing based on a probabilistic score could be generalized to include other constraints such as
conflict probability, fuel consumption, or emissions.

This paper is organized as follows: Section 2 introduces general concepts such as airport representation and the concept
of reinforcement learning. Section 3 deals with the various steps of the proposed methodology. Section 4 presents the
results obtained and an example of an application with several aircraft at Montreal Airport. Finally, the paper ends with
conclusions and remarks on future work.

2. Airport Layout and Background

Before presenting the methodology to manage aircraft ground trajectories between departure and arrival points, it is
necessary to introduce several notations and fundamental concepts. For this purpose, this section first presents the
approach considered for modeling an airport and its main components, and includes collecting cartographic data and
generating a graph reflecting the airport topology. Subsequently, the section focuses on the concept of reinforcement
learning.

2.1 Airport Layout Modelling

For modeling purposes, an airport is represented in this study by an undirected graph consisting of a set of nodes
connected by edges. As most airports have relatively complex topologies, manually creating a graph to reproduce their
structure can be challenging. Thus, to simplify this aspect, a tool was developed in a previous study at the LARCASE
laboratory [30] to automatically generate an airport graph using mapping information from the OpenStreetMap (OSM)
website1. The OSM is a collaborative project to create a free and editable cartographic database worldwide. This
database was used to collect all the elements that constitute an airport, such as runways, taxiways, gates, and parking
positions.

(a) Airport Representation in OSM

Legend:
Taxiways
Runways
Map nodes
Gate Positions
Parking Positions

−73.76 −73.75 −73.74 −73.73 −73.72

45.455

45.46

45.465

45.47

45.475

45.48

45.485

Longitude - [deg]

La
ti
tu

de
-
[d

eg
]

(b) Airport Graph Layout

Figure 1: Representation of Montreal Trudeau International Airport (Montreal, QC, Canada)

Figure 1a shows a typical example of a map representation of Montreal Airport (CYUL, Trudeau International Airport)
obtained from OSM, where the airport area is highlighted in blue.

1https://www.openstreetmap.org/

3

DOI: 10.13009/EUCASS2023-713

https://www.openstreetmap.org/


REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

All OSM data located in the blue area in Fig. 1a can be exported into an *.xml file. After downloading the *.xml file,
a graph of the airport can be constructed by retrieving all nodes belonging to a runway or a taxiway. A connectiv-
ity (or adjacency) matrix is then defined. This connectivity matrix is the mathematical representation of the airport
layout, and is composed of 0 and 1, where 1 indicates that two nodes are connected by a taxiway or runway (i.e.,
a segment). All other nodes corresponding to gates, parking, or holding positions are also saved, as they may be re-
quired for detailed analyses. Figure 1b shows the result of the graph layout generated for the Montreal Airport (CYUL).

Once the graph has been designed, attributes are associated with each segment that composes it. An attribute is
a characteristic that qualifies a segment (i.e., a portion of a taxiway or runway). The attributes considered in this
study for a segment are the way type (i.e., runway or taxiway), the reference name, the length, the bearing, and the
speed limit. It should be noted that speed limits may change depending on airports, airlines, or aircraft manufacturer
recommendations. For simplicity, it was assumed that an aircraft should not exceed 30 kts on straight segments while
turning segments were restricted with a maximum turning speed of 10 kts. These values are user-defined parameters
and can be modified to estimate better the taxi time between a departure node and an arrival node.

2.2 Reinforcement Learning

An optimization problem can be very difficult to solve, especially when there are no data sets to model the cost function
to be optimized, or when the cost function is difficult to quantify mathematically. Reinforcement Learning (RL) is a
branch of Artificial Intelligence (AI) that uses the art of “learning by trying” to solve complex optimization problems.
This approach is mainly based on an iterative process in which an agent learns to interact with a dynamic environment
in order to improve its actions through trial and error and using feedback from the environment.

Figure 2 schematically illustrates the action-feedback principle of a typical RL model [31].

Figure 2: Generic Reinforcement Learning (RL) Model

The model shown in Fig. 2 can be described as a Markov decision process involving two main elements: the envi-
ronment and the agent. The environment is a mathematical representation of the physical world in which the agent
evolves, while the agent is a system that can act on the environment in order to modify its characteristics or state.

The interactions between the agent and the environment are done in discrete steps. At a given iteration (or step) k, the
agent receives a set of observations O[k] , reflecting certain characteristics of the environment, and a reward R[k] . Based
on these two elements, the agent performs an action A[k] . The aim of this action is to change the environment state
S [k] to a new state S [k+1] . A new reward R[k+1] associated with the transition S [k] → S [k+1] is then determined using a
“reward function”. This reward represents the degree of effectiveness of the agent action. Basically, the more effective
the action, the higher the reward. The process is then repeated with these new observations and the new reward over
several iterations, which constitute an episode.

Depending on the complexity of the problem, the agent can be modeled by one or more neural networks. The neural
network receives the observations O[k] and the reward R[k] as inputs, processes the data, and then generates an action
A[k] as an output. This operation defines the “agent policy” and depends on the weights of the neural network, which
are updated at each iteration based on the collected rewards. The agent policy performance is highly dependent on
the values of the neural network weights. Thus, the objective of a reinforcement learning problem is to optimize the
weights of the neural network to enable the agent to learn an optimal policy that maximizes the expected cumulative
reward over the iterations.

4

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

Proximal Policy Optimization

The Proximal Policy Optimization (PPO) is a model-free policy gradient learning algorithm proposed by Schulman et
al. [32] to train an agent. This algorithm was introduced by OpenAI to overcome the limitations observed in conven-
tional policy gradient algorithms by providing a more stable and efficient approach during the training process. For this
purpose, the algorithm alternates between sampling data through environmental interaction and optimizing a surrogate
objective function using stochastic gradient descent. This aspect enhances training stability by constraining the size of
the policy change at each step of the optimization of the weights of the agent neural network, thus ensuring a controlled
and gradual evolution of the policy.

The PPO is a stochastic algorithm, wherein the decision-making process of the agent relies on a probability distribution
rather than a deterministic value. This feature improves the exploration of the environment by enabling the selection
of sub-optimal actions. In addition, the PPO algorithm uses an “on-policy” approach, meaning that it adjusts the agent
policy based on previous policies, thereby effectively leveraging past actions to enhance its convergence properties.

When using the PPO algorithm, the agent must be characterized by two neural networks, comprising an actor-network
and a critic-network. The actor-network, denoted as π

(
A[k]|O[k]; θ

)
, receives the input observations, and generates the

probability of taking actions based on the weights θ. Conversely, the critic-network, denoted as V
(
A[k]|O[k]; φ

)
, receives

the input observations, and predicts the anticipated long-term reward associated with the specific state under consider-
ation based on the weights φ.

The use of actor-critic architecture has several advantages over simple neural network architecture. The first advantage
is its stability. Indeed, the actor-critic architecture stabilizes the learning process by decoupling exploration policy
(actor) from reward estimation (critic). This decoupling prevents policy changes from affecting reward estimates,
resulting in a more stable process. Another advantage is that this dual architecture enables better convergence, as the
critic provides the agent with an estimate of the quality of the action, thus helping it to take the right decision. In this
case, the actor can use the estimate and the actual reward to modify and adapt better its policy.

Multi-Agent Reinforcement Learning

A Multi-Agent Reinforcement Learning (MARL) model is an extension of a Single-Agent Reinforcement Learning
(SARL) model, in which many agents act in a shared environment and have partial or complete knowledge of the state
or actions of other agents. In addition, each agent can access collective and private rewards, thus enabling a compre-
hensive understanding of the overall environment dynamics.

There are two types of policy in MARL that reflect the way in which the agents should behave with each other. The
first one is the collaboration policy, wherein agents collaborate with each other to accomplish complex tasks. In this
case, agents receive information from other agents, enabling efficient teamwork to maximize a collective reward. Con-
versely, the second policy type is the competition policy, where agents interact with others in a competitive manner. In
this case, each agent tries to maximize its own reward while minimizing those of others.

For path-planning problems, a collaborative type of policy should be preferred. Indeed, within the context of aircraft
routing at airports, it is imperative to ensure smooth and conflict-free aircraft movements between gates and runways.
It is therefore necessary for all aircraft to coordinate their actions in order to avoid potential conflicts and maintain a
smooth traffic flow.

3. Methodology

This section presents the methodology for controlling the movements of several aircraft at an airport using reinforce-
ment learning methods. All development and implementation were done using RLlib2, an open-source Python library
developed for reinforcement learning problems. RLlib can be used to train agents in a single-agent or multi-agent
environment. Thus, the strategy used in this study was to first train an agent in a single-agent environment, and then to
enhance its performance using a multi-agent environment. This strategy enabled the agent to learn individual charac-
teristics, while improving them later in a collaborative environment with other agents. In addition, starting the training
process with a pre-trained agent simplifies the complexity associated with the multi-agent problem, accelerates conver-

2https://docs.ray.io/en/latest/rllib/index.html

5

DOI: 10.13009/EUCASS2023-713

https://docs.ray.io/en/latest/rllib/index.html


REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

gence, and enables optimal results to be achieved faster.

An agent is an aircraft, while the environment is the airport in which the aircraft must move from a gate (or stand)
to a runway (or vice versa). The objective of the agent is, therefore, to learn how to move from a departure node
to a destination node by taking the shortest path while complying with displacement constraints. For this purpose, it
was assumed that an agent (i.e., an aircraft) can move from one node to another in the graph (i.e., the airport) at each
iteration. In addition, at each iteration, the agent receives a set of observations that reflect the current situation and
evaluates the best neighboring node to take to reach its destination.

Figure 3 shows an example of a scenario in which an agent follows the optimal shortest path between a departure node
and a destination node.

(a) Aircraft Trajectory over the Airport (b) Zoom around the Aircraft Trajectory

Figure 3: Example of Scenario – The Agent (in black) must reach the Destination Node (in green) from the Departure
Node (in orange) by taking the Optimal Path (in red)

3.1 Environment and Observations

The environment is the space in which the agent evolves. In this study, the environment can be any airport represented
as an undirected graph. However, for the sake of simplicity, the agent was always trained at the Airport of Montreal
(CYUL), which is considered a medium-sized airport. This strategy was used in order to simplify the reinforcement
learning problem and to obtain a good agent in an acceptable number of training episodes. However, the agent was
tested at other airports, and it was found that, whatever the airport, the agent was able to find the shortest path with a
high success rate.

At each iteration k, the agent is assumed to be at a node in the graph, denoted by P[k], and to move to one of the
neighboring nodes, denoted by N i

[k] for i ∈ {1, . . . ,N[k]}, where N[k] is the number of neighboring nodes. As the number
of neighboring nodes can vary according to the agent position in the graph, a maximum number of neighboring nodes
was imposed at Nmax = 5. This number was chosen in order to cover all possible scenarios, even for large airports with
multiple possible intersections.

Similarly, at each iteration, the agent is assumed to receive information from the environment in the form of obser-
vations. These observations, denoted by Oi

[k] for i ∈ {1, . . . ,Nmax}, correspond to the shortest path distance of each
neighboring node to the destination node. It should be noted that taking the shortest path distance instead of the direct
distance between the neighboring node and the destination node prevents the agent from being blocked. Indeed, locally,
a neighboring node may be the closest to the destination node, however, taking this node could lead the agent to follow
a path that will never lead to the destination node. In this case, the agent would be blocked in an area of the airport, and
the only possible solution would be to return to a previous node, which is not allowed as aircraft cannot go backward.
This aspect can also lead the agent to oscillate between two nodes. However, taking the shortest path distance as an
observation ensures that the agent will always be able to reach the destination node.

6

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

The algorithm used to determine the shortest path between a neighboring node and the destination node was based
on a modified A* algorithm. Indeed, it was found that the shortest path calculated by a conventional A* algorithm
was not always representative of a feasible trajectory. This algorithm finds the shortest path without taking constraints
into account and, in most cases, the optimal solution obtained included turning segments of more than 90◦, which is
not recommended. To avoid this aspect, a penalty has been added to the calculated path based on the change in the
direction between two consecutive segments. The greater the change in direction, the greater the penalty. In addition,
another penalty was added, based on the taxi time. As the aircraft ground speed is limited to 10 kts for turning segments
(instead of 30 kts), the taxi time increases when the agent uses turns. Thus, by modifying the A* algorithm to take
these two penalties into account, the agent was able to avoid sharp turns and limit the number of turns along the path.

Finally, to force the agent to not go backward, a value of −1 is always assigned to the node where the agent comes
from. Moreover, if the number of neighboring nodes N[k] is less than Nmax, then all observation values Oi

[k] for i > N[k]
are set to −1.

Figure 4 shows an example of observations for two consecutive iterations, k and k + 1. In this example, each segment
has a unit distance, so that the path distance between two nodes is the sum of the segments separating them.

(a) The Agent (in red), the Destination Node (in green), and the
Possible Nodes to reach at the Next Iteration (in blue) at k

(b) The Agent (in red), the Destination Node (in green), and the
Possible Nodes to reach at the Next Iteration (in blue) at k + 1

(c) Observations at Iteration k (d) Observations at Iteration k + 1

Figure 4: Examples of Observations for two Consecutive Iterations

3.2 Agent and Actions

As explained in Section 2.2, when using the PPO algorithm, the agent must be characterized by two neural networks:
an actor-network and a critic-network. The actor-network is responsible for orienting the action of the agent, while
the critic-network is responsible for estimating the reward for a given action. Although actor and critic networks have
different objectives, they were assumed to have the same structure. Both networks were modeled by a feedforward
neural network with 5 neurons on the input layer, and 15 neurons on the single hidden layer. In addition, a linear
activation function was used for the input and output layers, while a ReLU activation function was used for the hidden
layer. Figure 5 illustrates the structure of the two neural networks.

The action of the agent represents its choice at a given iteration based on the observations it has received from the
environment. For the purposes of this study, it has been assumed that the agent can return through the actor-network

7

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

5 values, which refer to the probabilities of taking each of the possible neighboring nodes. Thus, for the five possible
neighboring nodes, the actor-network will return an output Āi

[k] for i ∈ {1, . . . , 5} with −1 < Āi
[k] < 1. The value of

−1 means that the node should not be considered a viable solution, while a value of 1 means that the node is the best
among all others.

(a) Actor-Network (b) Critic-Network

Figure 5: Illustration of the Agent Neural Networks (i.e., Actor and Critic)

In a complementary way, the critical network receives observations from each neighboring node and outputs the esti-
mated reward.

The PPO then calculates a probability distribution from all the probabilities Ā[k]. The action taken by the agent will be
chosen using a sample of this distribution. Using a probability instead of the highest probability allows the agent to
better explore the environment.

3.3 Stop Conditions and Reward

An episode is composed of several iterations and corresponds to a simulation in which the agent starts moving from a
departure node and tries to reach a destination node. Two conditions must be met to end an episode.

The first condition is associated with the agent success. If the agent has reached the destination node within a predeter-
mined maximum number of iterations, then the episode is terminated, and another one is initiated with another random
departure and destination nodes.

Conversely, the second condition is associated with the agent failure. To determine this aspect, the number of nodes of
the shortest path between the departure and the destination nodes is computed, and denoted as SPdist. If the agent has
not reached the destination node after α × SPdist iterations, then the episode stops, and another is initiated. The param-
eter α is called the “difficulty coefficient” and decreases over the episodes. This coefficient was introduced to enable
better learning, as it adjusts the difficulty during training and then improves the convergences of the neural networks
defining the agent. It was set at 10 at the beginning of the training process and gradually decreased to 1 as the agent
improved.

In order to encourage the agent to reach the destination node using the minimum number of steps, a negative reward
function was used. This function was designed in order to penalize the agent according to its decision (i.e., the node
it has selected). Different levels of negative reward were implemented according to the quality of the agent’s decision.
Table 1 lists the rewards considered in this study, along with their descriptions.

It should be noted that the reward function always has a negative output. Thus, maximizing the reward in this case
means obtaining a cumulative reward close to 0.

8

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

Table 1: Reward Value and Description

Reward Description
-0.5 The agent has selected the optimal node, defined as being the node leading to the

shortest path.
-1.0 The agent has selected the sub-optimal node, characterized as a viable node that leads

to the destination node but does not belong to the shortest path.
-1.5 The agent has selected the worst node among the sub-optimal nodes leading to the

destination node.
-5.0 The agent has selected an invalid node (i.e., with an observation of −1).

4. Results and Validation

This section presents the results obtained for the proposed methodology. The agent was trained over 600,000 iterations.
In addition, the hyperparameters required to train the actor and critic networks, such as the learning rate, batch size,
and weights update frequency, were chosen according to the values given in Table 2.

Table 2: Hyperparameters used for the Training of the Agent

Reward Description
Lrcritic 4 × 10−5 Learning rate for the critic-network
Lractor 4 × 10−5 Learning rate for the actor-network

BatchS ize 6000 Number of iterations for one update
τ 12,000 Number of iterations between updates

The values shown in Table 2 were obtained by trial and error, in order to find the best compromise between calculation
time and results efficiency.

4.1 Evolution of the Reward

Figure 6 shows the average number of iterations per episode (Fig. 6a) and the total reward (Fig. 6b) as a function of
the total number of training iterations.

(a) Number of Iterations per Episode as a Function of the Total
Number of Training Iterations

(b) Total Reward per Episode as a Function of the Total Number
of Training Iterations

Figure 6: Evolution of Average Episode Length and Reward over the Training Process

As shown in Fig. 6a the general trend of the curve indicates that the number of iterations per episode decreases with the
number of training iterations. This trend indicates that, as training progresses, the agent became increasingly efficient,
requiring fewer iterations to complete an episode. In other words, the agent was able to reach the destination node
with fewer iterations by following the shortest path. Regarding the result in Fig. 6b, it is interesting to note that the
total reward per episode increased logarithmically to reach a constant value of around -80. It is worth noticing that the
reward is always negative. Therefore, during the training process, the PPO tried to maximize the reward by approaching
the limit value of 0. The maximum reward value was obtained after 150,000 (150 K) training iterations. For a typical

9

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

reinforcement learning problem, this number of iterations is relatively low, demonstrating that the strategy of using an
airport as an environment with a single-agent approach allows to obtain a pre-trained agent very rapidly.

4.2 Validation for Different Scenarios

Once the agent trained over the airport of Montreal, an analysis was conducted in order to evaluate it reliability and
robustness. For this purpose, multiple scenarios were done by varying the departure node and arrival node, as well as
the airport. Figure 7 shows two examples of scenario at Montreal Airport (Fig. 7a) and Toronto Airport (Fig. 7b).

−73.76 −73.75 −73.74 −73.73 −73.72

Longitude - [deg]

45.455

45.460

45.465

45.470

45.475

45.480

45.485

L
at

it
u
d
e

-
[d

eg
]

Airport Taxiway

Departure Node

Destination Node

Agent (i.e., Aircraft)

Optimal Shortest Path

(a) Aircraft Trajectory at the Montreal Airport (CYUL)

−79.66 −79.65 −79.64 −79.63 −79.62 −79.61 −79.60

Longitude - [deg]

43.660

43.665

43.670

43.675

43.680

43.685

43.690

43.695

L
at

it
u
d
e

-
[d

eg
]

Airport Taxiway

Departure Node

Destination Node

Agent (i.e., Aircraft)

Optimal Shortest Path

(b) Aircraft Trajectory at the Toronto Airport (CYYZ)

Figure 7: Examples of Validation Scenarios for Two Different Airports

In order to determine if the agent was successful or if it failed in finding the optimal path, a comparison was done
between the path estimated by the agent and the one determined using the modified A* algorithm and based on the
following success coefficient:

δ =
Noptimal

Nagent
× 100 (1)

where Noptimal is the number of nodes composing the optimal path determined using the modified A* algorithm, and
Nagent is the number of nodes composing the path found by the agent. As the modified A* algorithm always finds the
optimal path, the following inequality is always satisfied: Noptimal ≤ Nagent. Consequently, the coefficient δ can never be
greater than 100%, and this value means that the agent has found the same optimal path as the modified A* algorithm.
Conversely, when δ is lower than 100% this means that the agent has found a sub-optimal solution.

75

80

85

90

95

100

105

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Su
cc

es
s C

oe
ff

ic
ie

nt
 𝛿

Test Number

Success Coefficient Average Value

Figure 8: Variation of the Success Coefficient for 400 Scenarios

10

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

Figure 8 shows the variation in the success coefficient over 400 test scenarios. As it can be seen in this figure, the
success coefficient varied mainly between 90% and 100%, with only three scenarios where the coefficient was equal
to 80%. It was found that the mean value of the success coefficient was around 98%, with a standard deviation of 4.15%.

It should be noted that for the scenarios where the success coefficient was less than 100%, meaning that the agent has
failed to find the shortest path, the path length determined by the agent has remained very close to its optimal path
length. Consequently, even if the solution found by the agent was sub-optimal, it can be considered an acceptable
solution, as the difference in terms of length cost was negligible.

4.3 Validation for a Multi-Agent Environment

Once the agent has been validated in a single-agent environment, it was next trained into a multi-agent environment
with other agents (i.e., aircraft). It should be noted that, as a first study, all agents were trained to move within the en-
vironment in order to reach their destination nodes using the shortest path. Since the ground speed was not considered
a possible action, conflict management between two agents has not been taken into account. Nevertheless, this aspect
will be added in a future study in order to improve the agent policy for adjusting ground speed to avoid a potential
conflict.

Figure 9 shows an example of simulation results obtained for 5 agents (i.e., aircraft) at the Montreal airport. In this
figure, each agent path is represented by a different color, with departure nodes represented by an orange square and
destination nodes by a green square. All agents had the same policy, meaning that they were all defined using the same
actor- and critic-network.

−73.76 −73.75 −73.74 −73.73 −73.72

Longitude - [deg]

45.455

45.460

45.465

45.470

45.475

45.480

45.485

L
at

it
u
d
e

-
[d

eg
]

Airport Taxiway

Agent #1

Agent #2

Agent #3

Agent #4

Agent #5

Figure 9: Validation Scenario for Multi-Agent (i.e, Multi-Aircraft) at the Montreal Airport

Overall, it is interesting to note that all agents were able to reach their destination nodes by following an optimal path
that corresponds to the shortest path without taking sharp turns, and avoiding turn segments as much as possible. It
should be noted that when an agent arrives at its destination node before the others, it does not move and remains in
this position, waiting for the other agents to reach their destination nodes. It is also interesting to notice that Agent #1
(in red) and Agent #2 (in black) followed the same trajectory when they arrived at the same node. This aspect is very
important, as it demonstrates the consistency of the agents in providing the same optimal path from the same departure
node.

The results obtained in this section are therefore very good, as they demonstrate that using a multi-agent reinforcement
learning approach can be a very good solution for controlling aircraft movements and improving aircraft routing at
airports.

11

DOI: 10.13009/EUCASS2023-713



REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

5. Conclusion

This paper presents an innovative methodology for managing aircraft ground trajectories at airports using reinforce-
ment learning methods. An agent is represented by an aircraft, while the environment is assumed to be an airport
modeled as an undirected graph. The agent was first trained in a single-agent environment, assuming that only one
aircraft could move in the airport. Then, it was trained using the PPO (Proximal Policy Optimization) algorithm, which
is a model-free gradient learning algorithm that teaches the agent to take the optimal path between a departure node and
a destination node. The optimal path was defined as the shortest path with the fewest turning segments by avoiding all
non-recommended turns (i.e., turns with a change of direction greater than 90◦). Results have shown that after 100,000
training episodes, the agent was able to find the optimal path with an average success rate of 98%.

The agent was then tested in a multi-agent environment, considering several aircraft moving in the airport. Here again,
it was found that the agents were able to move freely around the airport and reach their destination nodes using the
optimal path. These results are very interesting, as they demonstrate that an agent that has been trained in a single-agent
environment can also perform very well in a multi-agent environment.

In this study, the agent policy did not take conflict management into account. It would therefore be interesting to extend
the study by adding speed management to the list of actions that the agent can undertake. This would make it possible
to adjust the agent speed or, in extreme cases, to stop it in order to avoid a potential conflict with other agents. The
addition of speed control as an action would also make it possible to take into account constraints related to the time of
arrival at a destination node, in order to better plan aircraft movements on the ground.

References

[1] International Air Transport Association (IATA), “IATA Forecast Predicts 8.2 billion Air Travelers in 2037,” ,
2020. [Online] https://www.iata.org/en/pressroom/pr/2018-10-24-02/.

[2] International Air Transport Association (IATA), “International Air Transport Association Annual Review 2022,”
, 2022. [Online] https://www.iata.org/en/publications/annual-review/.

[3] Owen, B., Anet, J. G., Bertier, N., Christie, S., Cremaschi, M., Dellaert, S., Edebeli, J., Janicke, U., Kuenen, J.,
Lim, L., and Terrenoire, E., “Review: Particulate Matter Emissions from Aircraft,” Atmosphere, Vol. 13, No. 8,
2022, p. 1230. https://doi.org/10.3390/atmos13081230.

[4] Quadros, F. D. A., Snellen, M., and Dedoussi, I. C., “Regional Sensitivities of Air Quality and Human Health
Impacts to Aviation Emissions,” Environmental Research Letters, Vol. 15, No. 10, 2020, p. 105013. https://doi.
org/10.1088/1748-9326/abb2c5.

[5] Ma, L., Tian, Y., Zhang, Y., and Chu, P., “Trajectory Optimization of Aircraft for A Continuous Descent Con-
tinuous Procedure,” IEEE, Shanghai, China, 2020, pp. 2063–2067. https://doi.org/10.1109/CAC51589.2020.
9326515.

[6] Alharbi, E. A., Abdel-Malek, L. L., Milne, R. J., and Wali, A. M., “Analytical Model for Enhancing the
Adoptability of Continuous Descent Approach at Airports,” Applied Sciences, Vol. 12, No. 3, 2022, p. 1506.
https://doi.org/10.3390/app12031506.

[7] Liv, A., Dancila, R., and Botez, R. M., “Trajectory Optimization Algorithm for a Constant Altitude Cruise Flight
with a Required Time of Arrival Constraint,” American Institute of Aeronautics and Astronautics, Dallas, TX,
2015. https://doi.org/10.2514/6.2015-2282.

[8] Jensen, L., Hansman, R. J., Venuti, J. C., and Reynolds, T., “Commercial Airline Speed Optimization Strategies
for Reduced Cruise Fuel Consumption,” American Institute of Aeronautics and Astronautics, Los Angeles, CA,
USA, 2013. https://doi.org/10.2514/6.2013-4289.

[9] Murrieta-Mendoza, A., Botez, R. M., and Félix Patrón, R. S., “Flight Altitude Optimization Using Genetic Algo-
rithms Considering Climb and Descent Costs in Cruise with Flight Plan Information,” 2015, pp. 2015–01–2542.
https://doi.org/10.4271/2015-01-2542.

[10] Jensen, L., Hansman, R. J., Venuti, J., and Reynolds, T., “Commercial Airline Altitude Optimization Strategies
for Reduced Cruise Fuel Consumption,” American Institute of Aeronautics and Astronautics, Atlanta, GA, USA,
2014. https://doi.org/10.2514/6.2014-3006.

12

DOI: 10.13009/EUCASS2023-713

https://www.iata.org/en/pressroom/pr/2018-10-24-02/
https://www.iata.org/en/publications/annual-review/
https://doi.org/10.3390/atmos13081230
https://doi.org/10.1088/1748-9326/abb2c5
https://doi.org/10.1088/1748-9326/abb2c5
https://doi.org/10.1109/CAC51589.2020.9326515
https://doi.org/10.1109/CAC51589.2020.9326515
https://doi.org/10.3390/app12031506
https://doi.org/10.2514/6.2015-2282
https://doi.org/10.2514/6.2013-4289
https://doi.org/10.4271/2015-01-2542
https://doi.org/10.2514/6.2014-3006


REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

[11] Ghazi, G., and Botez, R. M., “Aircraft Mathematical Model Identification for Flight Trajectories and Performance
Analysis in Cruise,” Journal of Aerospace Information Systems, Vol. 19, No. 8, 2022, pp. 530–549. https://doi.
org/10.2514/1.I011050.

[12] Ghazi, G., Botez, R. M., and Domanti, S., “New Methodology for Aircraft Performance Model Identification for
Flight Management System Applications,” Journal of Aerospace Information Systems, Vol. 17, No. 6, 2020, pp.
294–310. https://doi.org/10.2514/1.I010791.

[13] Ghazi, G., Kossinga-Yalemba, M., and Botez, R. M., “Methodology to Identify a Mathematical Model for Predict-
ing Cessna Citation X Cruise Performance in Cruise Regime using Flight Manual Data,” EUCASS association,
Madrid, Spain, 2019. https://doi.org/10.13009/EUCASS2019-496.

[14] Dancila, R., and Botez, R., “Vertical Flight Profile Optimization for a Cruise Segment with RTA Constraints,”
The Aeronautical Journal, Vol. 123, No. 1265, 2019, pp. 970–992. https://doi.org/10.1017/aer.2019.47.

[15] Murrieta-Mendoza, A., and Botez, R., “Lateral Navigation Optimization Considering Winds and Temperatures
for Fixed Altitude Cruise Using Dijsktra’s Algorithm,” American Society of Mechanical Engineers, Montreal,
Quebec, Canada, 2014. https://doi.org/10.1115/IMECE2014-37570.

[16] Murrieta-Mendoza, A., Romain, C., and Botez, R. M., “Commercial Aircraft Lateral Flight Reference Trajectory
Optimization,” IFAC-PapersOnLine, Vol. 49, No. 17, 2016, pp. 1–6. https://doi.org/10.1016/j.ifacol.2016.09.001.

[17] Murrieta-Mendoza, A., Romain, C., and Botez, R. M., “3D Cruise Trajectory Optimization Inspired by a Shortest
Path Algorithm,” Aerospace, Vol. 7, No. 7, 2020, p. 99. https://doi.org/10.3390/aerospace7070099.

[18] Murrieta-Mendoza, A., Beuze, B., Ternisien, L., and Botez, R. M., “New Reference Trajectory Optimization
Algorithm for a Flight Management System Inspired in Beam Search,” Chinese Journal of Aeronautics, Vol. 30,
No. 4, 2017, pp. 1459–1472. https://doi.org/10.1016/j.cja.2017.06.006.

[19] Murrieta-Mendoza, A., Botez, R. M., and Bunel, A., “Four-Dimensional Aircraft en Route Optimization Algo-
rithm using the Artificial Bee Colony,” Journal of Aerospace Information Systems, Vol. 15, No. 6, 2018, pp.
307–334. https://doi.org/10.2514/1.I010523.

[20] Guclu, O. E., and Cetek, C., “Analysis of Aircraft Ground Traffic Flow and Gate Utilisation using a Hybrid
Dynamic Gate and Taxiway Assignment Algorithm,” The Aeronautical Journal, Vol. 121, No. 1240, 2017, pp.
721–745. https://doi.org/10.1017/aer.2017.20.

[21] Yu, C., Zhang, D., and Henry Lau, H., “A Heuristic Approach for Solving an Integrated Gate Reassignment and
Taxi Scheduling Problem,” Journal of Air Transport Management, Vol. 62, 2017, pp. 189–196. https://doi.org/

10.1016/j.jairtraman.2017.04.006.

[22] Guépet, J., Briant, O., Gayon, J.-P., and Acuna-Agost, R., “Integration of Aircraft Ground Movements and Run-
way Operations,” Transportation Research Part E: Logistics and Transportation Review, Vol. 104, 2017, pp.
131–149. https://doi.org/10.1016/j.tre.2017.05.002.

[23] Benlic, U., Brownlee, A. E., and Burke, E. K., “Heuristic Search for the Coupled Runway Sequencing and
Taxiway Routing Problem,” Transportation Research Part C: Emerging Technologies, Vol. 71, 2016, pp. 333–
355. https://doi.org/10.1016/j.trc.2016.08.004.

[24] Gotteland, J. B., and Durand, N., “Genetic algorithms Applied to Airport Ground Traffic Optimization,” IEEE,
Canberra, ACT, Australia, 2003, pp. 544–551. https://doi.org/10.1109/CEC.2003.1299623.

[25] Brownlee, A. E. I., Woodward, J. R., Weiszer, M., and Chen, J., “A Rolling Window with Genetic Algorithm
Approach to Sorting Aircraft for Automated Taxi Routing,” ACM, Kyoto Japan, 2018, pp. 1207–1213. https:
//doi.org/10.1145/3205455.3205558.

[26] Dabachine, Y., Bouikhalene, B., and Balouki, A., “Bidirectional Search Algorithm for Airport Ground Move-
ment,” IEEE, Werdanye, Lebanon, 2018, pp. 1–9. https://doi.org/10.1109/ACIT.2018.8672668.

[27] Lesire, C., “An Iterative A* Algorithm for Planning of Airport Ground Movements,” Frontiers in Artifi-
cial Intelligence and Applications : ECAI 2010, Vol. 215, 2010, pp. 413 – 418. https://doi.org/10.3233/

978-1-60750-606-5-413.

13

DOI: 10.13009/EUCASS2023-713

https://doi.org/10.2514/1.I011050
https://doi.org/10.2514/1.I011050
https://doi.org/10.2514/1.I010791
https://doi.org/10.13009/EUCASS2019-496
https://doi.org/10.1017/aer.2019.47
https://doi.org/10.1115/IMECE2014-37570
https://doi.org/10.1016/j.ifacol.2016.09.001
https://doi.org/10.3390/aerospace7070099
https://doi.org/10.1016/j.cja.2017.06.006
https://doi.org/10.2514/1.I010523
https://doi.org/10.1017/aer.2017.20
https://doi.org/10.1016/j.jairtraman.2017.04.006
https://doi.org/10.1016/j.jairtraman.2017.04.006
https://doi.org/10.1016/j.tre.2017.05.002
https://doi.org/10.1016/j.trc.2016.08.004
https://doi.org/10.1109/CEC.2003.1299623
https://doi.org/10.1145/3205455.3205558
https://doi.org/10.1145/3205455.3205558
https://doi.org/10.1109/ACIT.2018.8672668
https://doi.org/10.3233/978-1-60750-606-5-413
https://doi.org/10.3233/978-1-60750-606-5-413


REINFORCEMENT LEARNING APPROACH TO OPTIMIZE AIRCRAFT GROUND TRAJECTORIES AT AIRPORTS

[28] Zhou, H., and Jiang, X., “Research on Taxiway Path Optimization Based on Conflict Detection,” PLOS ONE,
Vol. 10, No. 7, 2015, p. e0134522. https://doi.org/10.1371/journal.pone.0134522.

[29] Ravizza, S., Atkin, J. A. D., and Burke, E. K., “A More Realistic Approach for Airport Ground Movement
Optimisation with Stand Holding,” Journal of Scheduling, Vol. 17, No. 5, 2014, pp. 507–520. https://doi.org/10.
1007/s10951-013-0323-3.

[30] Szymanski, M., Ghazi, G., and Botez, R. M., “Development of a Map-Matching Algorithm for the Analysis
of Aircraft Ground Trajectories using ADS-B Data,” American Institute of Aeronautics and Astronautics, San
Diego, CA and Online, 2023. https://doi.org/10.2514/6.2023-3758.

[31] Ding, Z., Huang, Y., Yuan, H., and Dong, H., “Introduction to Reinforcement Learning,” Deep Reinforcement
Learning: Fundamentals, Research and Applications, 2020, pp. 47–123.

[32] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal Policy Optimization Algorithms,”
2017. https://doi.org/10.48550/ARXIV.1707.06347.

14

DOI: 10.13009/EUCASS2023-713

https://doi.org/10.1371/journal.pone.0134522
https://doi.org/10.1007/s10951-013-0323-3
https://doi.org/10.1007/s10951-013-0323-3
https://doi.org/10.2514/6.2023-3758
https://doi.org/10.48550/ARXIV.1707.06347

	Introduction
	Airport Layout and Background
	Airport Layout Modelling
	Reinforcement Learning

	Methodology
	Environment and Observations
	Agent and Actions
	Stop Conditions and Reward

	Results and Validation
	Evolution of the Reward
	Validation for Different Scenarios
	Validation for a Multi-Agent Environment

	Conclusion



