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Abstract 

When an aircraft is struck by lightning, the current injected can vary between 200A up to 200kA. The lightning strike 
can be broken down into two phases. In the pulsed phase, the current intensity can go to 200kA in a few micro-
seconds with compressible flow characteristics, and in the continuous phase, the current is constant with intensities 
of a few 100A and for durations of hundreds of milliseconds with incompressible flow characteristics. The numerical 
modelling of this phenomenon is very complex as it involves different physics (fluid dynamics, electromagnetism, 
radiation ...), and the computational time consumption in the case of 3D simulation is extremely high because the 
refinement required results in a mesh containing up to several hundred million cells. An ideal solution to reduce this 
calculation cost would be to mesh only where necessary and, therefore, to have a mesh that will adapt in space and 
time according to the physics encountered. The magnetohydrodynamic (MHD) 2D/3D code Taranis developed at 
ONERA is coupled with feflo.a [22], an anisotropic mesh adaptation code developed at INRIA. These tools make it 
possible to greatly reduce the number of nodes in the mesh and, therefore, greatly reduce modelling times. However, 
as Taranis is a code using explicit compressible methods, the simulation of continuous arcs, even with these mesh 
adaptation tools, remains very costly due to the incompressible nature of the flow, where very small-time steps must 
be used to maintain stability. A proposed solution for simulating continuous arcs with a compressible method is to 
use semi-implicit schemes. The nature of these schemes makes it possible to increase the value of the time steps to 
values close to those used in incompressible methods while maintaining stability. In this paper, the method of 
Boscheri et al. [8][9] dealing with the Navier-Stokes equations in real gas is used. Modifications are made to the 
treatment of real gas, where thermodynamic tables are used instead of equations of state. The scheme is then tested in 
compressible flow configurations and then in a flow representing, in a simplified way, the flow of a continuous arc. 
Initial results have shown the scheme's ability to simulate compressible and incompressible flows for larger time 
steps and with greater accuracy than a conventional compressible scheme. 

1. Introduction

In the context of aviation safety, aircraft lightning strikes are studied to understand the direct and indirect 
damage that this phenomenon can cause when lightning interacts with them [1]. The phenomenon of 
lightning strikes consists of an electric arc that attaches to the aircraft structure triggering thermal, mechanical 
and electromagnetic potentially-hazardous responses. The arc is typically characterized by a first short but 
intense pulsed current followed by a less intense and much longer direct current, which may be superposed 
by pulsed arcs (return strokes) [2]. The physics of these two types of arc regimes are different since the flow 
of an arc driven by a pulsed current is highly compressible, whereas that of an arc driven by a direct current is 
rather incompressible. The Saturne code developed at EDF was used in [3-4] to carry out simulations of 
continuous arcs. As the Saturne code is based on an incompressible fluid solver, physical limitations appeared 
when simulating highly compressible fluid associated with pulsed arcs. This led to the ongoing development 
at ONERA of the massively parallel, finite-volume, three-dimensional magnetohydrodynamics (MHD) code 
TARANIS, intending to model a full lightning strike. Compressible fluid equations in TARANIS are 
currently solved temporally using fully explicit methods.  These methods are suitable for the highly 
compressible flows present in pulsed arcs, but the almost incompressible nature of DC-powered arcs means 
that are less suitable in these regimes, due to the size of the time steps used, which are very small to respect 
the CFL stability condition. To model the arc evolution during a full lightning strike, we need a numerical 
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scheme capable of solving flows over a broad range of Mach numbers. Semi-implicit methods seem to meet 
these conditions. There are many different methods in the literature, but most of them involve solving an 
implicit pressure equation and then correcting the conservative variables (𝜌𝑢, 𝜌𝐸) with this pressure. For the 
moment, we're focusing on the simulation of a continuous arc using compressible methods. In the literature, 
many methods use semi-implicit schemes, some of which only deal with Euler equations [5-7], others solve 
the Navier-Stokes equations for real gases with explicit viscous effects [9-11], for perfect gases with implicit 
viscous effects [8] or multiphase problems [12].  This paper aims to present a semi-implicit method capable 
of solving the Navier-Stokes equations where the fluid considered is a real gas, and the viscous and thermal 
effects are solved implicitly. The present paper is organized as follows: the solved equations are first 
presented, then we detail the numerical method, and finally, numerical results are shown where first 
compressible flow test cases are studied, followed by the flow of a hot column representing the flow of a 
continuous arc. 

2. Governing equation 

The compressible Navier Stokes equations, i.e., the continuity, momentum and energy equations, are considered. 
These equations form a set of partially differentiable hyperbolic (PDE) equations written as: 

𝜕
𝜕𝑡 (

𝜌
𝜌𝒖
𝜌𝐸
* + 𝛁 ⋅ (

𝜌𝒖
𝜌𝒖⨂𝒖+ 𝑝𝕀
𝒖(𝜌𝐸 + 𝑝)

* = 𝛁 ⋅ (
0
𝝈

𝝈𝒖 + 𝜆𝛁𝑇
*	 (1) 

 
With 𝜌 the fluid density,	𝒖 the velocity vector, 𝑝 the pressure and 𝜌𝐸 the total energy density. 𝑇 is the fluid 
temperature, 𝜆 is the thermal conductivity coefficient, and 𝝈 is the viscous stress tensor. 
To close the system, perfect gas equations of state (EOS) are used if a perfect gas is considered. If a real gas is being 
considered, EOS are defined using tabulated data.  
These tables are generated using an ONERA code called Sethi. Thermodynamical quantities of arbitrary mixtures are 
evaluated from partition functions assuming local thermodynamic equilibrium and perfect gas law. Energy levels for 
neutral and ionized atoms are taken from the NIST database [21]. Particle interactions are somewhat introduced in 
the model as partition functions and are truncated using the minimum value between the Fermi and Griem cutoff 
[15]. Plasma composition at a given pressure and temperature is obtained by minimization of the mixture Gibbs free 
energy. Transport coefficients are computed according to the Chapman-Enskog theory [16] with quantities 
depending on the binary collision integrals and corresponding interaction potentials. Analytical expressions for 
collision integrals with Debye-screened coulomb potential are used for charged-charged interactions [17]. Neutral-
neutral and neutral-charged collision integrals are evaluated using tabulated fits from [18]. For the present work, 
numerical results for real gases in the following sections have been obtained for an argon gas composed of Ar, Ar+, 
Ar2+, Ar3+ and electrons. Both thermodynamical and transport quantities have been compared to available data from 
[20] and show good agreement over temperatures ranging from 300 K to 30000 K and pressures from 1 bar to 100 
bar.    
 
The tables used in this code for processing real gases are the pressure-temperature (𝑃, 𝑇) and pressure-density (𝑃, 𝜌) 
tables. By indicating the two thermodynamic quantities as inputs, the table can give us the value of another 
thermodynamic quantity (density, temperature, pressure, etc.) or transport quantity (viscosity, thermal diffusion 
coefficient, etc.). Furthermore, these tables can consider fluid ionization, which is an important parameter to consider 
given the high temperatures encountered during arc simulation. 
 
The left-hand side of the equation system (1) corresponds to the non-viscous compressible Euler equations, while the 
right-hand side corresponds to the viscous effects: viscous forces 𝝈𝒖 and heat flux 𝜆𝛁𝑇. 
With the Stokes hypothesis, the viscous stress tensor is defined by [19]:  
 

𝝈 = 𝜇(𝛁𝒖 + 𝛁𝒖!) −
2
3
(𝜇𝛁 ⋅ 𝒖)𝕀 (2) 

With 𝜇, the dynamic viscosity. 
 𝜇 and 𝜆 are calculated using Sutherland’s law (3) in the case of a perfect gas:  
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𝜇 = 𝜇"# ?
𝑇
𝑇"#

@
$
%
⋅
𝑇"# + 𝑆𝑢
𝑇 + 𝑆𝑢 	; 		𝜆 = 𝜆"# ?

𝑇
𝑇"#

@ ⋅
𝑇"# + 𝑆𝑢	
𝑇 + 𝑆𝑢 	 (3) 

 
Where 𝑇"# is a reference temperature equal to 273,15°𝐾, 𝑆𝑢 a numerical constant which depends on the considerate 
gas,  𝜇"# = 𝜇(𝑇"#) and 𝜆"# = 𝜆(𝑇"#). For a real gas, 𝜇 and 𝜆 can be found by reading the thermodynamic tables. 
 
Let's introduce a split of the energy flow as described in [13]:  
 

𝒖(𝜌𝐸 + 𝑝) =
1
2𝜌𝒖

𝟑 + 𝜌ℎ𝒖	 (4) 

with the specific enthalpy ℎ = 𝑒 + '
(
. This flow decomposition will enable the construction of an implicit pressure 

equation, which will be detailed in part 3. 
 

3. Numerical scheme 

 The numerical scheme is time-discretized using a first-order method. Spatial discretization is also of 
order 1, using a finite-volume method. The starting point for this method is described in published work by 
Boscheri et al. [8][9]. In article [9], the Navier-Stokes equations are solved using a semi-implicit pressure 
method. The scheme covers both perfect and real gases. Real gases are treated using the Redlich-Kwong 
equations of state and Newton methods. Viscous effects are treated as explicit source terms, while thermal 
effects can be implicit if the gas is considered perfect. The implicit pressure equation is obtained by splitting 
the flow of the energy equation into a kinetic energy part and an internal energy part and then injecting the 
momentum equation into it. In article [8], the method is very similar to that of article [9], but only perfect 
gases are considered. In this method, viscous effects are implicit with the help of an implicit intermediate 
velocity equation. 

 The method described here is based on [8-9], but modifications will be made for the case of real gas 
processing. Here equations of state are assumed to be provided by tabulated properties. First-order time discretization 
yields: 
 

𝜌)*+ − 𝜌)

Δ𝑡 + 𝛁 ⋅ (𝜌𝒖)) = 0		 (5) 

 
(𝜌𝒖))*+ − (𝜌𝒖))

Δ𝑡 + 𝛁 ⋅ (𝜌𝒖⨂𝒖)) + 𝛁𝑝)*+ = 𝛁 ⋅ 𝝈)*+	 (6) 

 
(𝜌𝑒))*+ + (𝜌𝒖)

)

2𝜌) (𝜌𝒖))*+ − (𝜌𝐸))	

Δ𝑡 + 𝛁 ⋅ ?
1
2𝜌𝒖

$@
)

+ 𝛁	 ⋅ (ℎ)(𝜌𝒖))*+) = 𝛁 ⋅ (𝝈)*+𝒖)*+) + 𝛁 ⋅ (𝜆𝛁𝑇)*+)		 (7) 

 
With conventional explicit compressible schemes, the time step is calculated using formulas (8): 
 

Δ𝑡,-#./01 = 𝐶𝐹𝐿min ?
𝛥𝑥

|𝒖| + 𝑎@ ; 			Δ𝑡2.34 = 𝐶𝐹𝐿minV
𝛥𝑥%

2𝜈	 X ; 			Δ𝑡!5 = 𝐶𝐹𝐿minY
𝛥𝑥%
2𝜆
𝜌𝐶'

Z	 (8) 

 
Where 𝑎 is the sound velocity, 𝜈 is the kinematic viscosity, 𝐶' is the heat capacity, and 𝐶𝐹𝐿 is the Courant-
Friedrichs-Lewy condition. By impliciting viscous and pressure terms, viscous and thermal time steps no longer need 
to be calculated, and the acoustic component of the fluid time step is removed. The effective time step for each 
iteration then becomes:  

Δ𝑡,-#./ = 𝐶𝐹𝐿min ?
𝛥𝑥
|𝒖|@	

(9) 

 
Spatial discretization is performed using a 1st-order finite-volume method, the mesh used is a cartesian mesh with a 
space step defined as: Δ𝑥 = (𝑥617 − 𝑥6.))/𝑁, 𝑁 being the number of cells in the mesh.  
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The algorithm solving the system of equations (5-7) consists of five steps:  
 

1. Explicit resolution of the continuity equation (5), which gives the density value at time (𝜌)*+). 
For simplicity of writing, the following notation is used [9]. Let 𝑚.

∗ be the explicit operator that applies to a 
generic quantity 𝑚.

): 
 

𝑚.
∗ = 𝑚.

) −
Δ𝑡
Δ𝑥 a𝑓.*+/%

6 − 𝑓.0+/%6 c	 (10) 

 
Here, 𝑓.*+/%6  denote the numerical fluxes that are explicitly given by a Rusanov-type approximate Riemann 
solver:  

𝑓.*+/%6 =
1
2 a𝑓

(𝑚.*+
) ) + 𝑓(𝑚.

))c −
1
2max

(|𝑢.*+) |, |𝑢.)|) (𝑚.*+
) −𝑚.

)) 
 

𝑓.0+/%6 =
1
2 a𝑓

(𝑚.
)) + 𝑓(𝑚.0+

) )c −
1
2max

(|𝑢.)|, |𝑢.0+) |) (𝑚.
) −𝑚.0+

) ) 
 
Where 𝑓(⋅) represents the physical flux related to the variable 𝑚. Therefore, using relationship (10): 
 

𝜌.)*+ = (𝜌.))∗	 (11) 
 

2. In the momentum and energy equation, viscous terms are implicit. To construct the implicit pressure 
equation, the momentum equation is inserted into the energy equation. In so doing, the implicit viscous 
terms will form a highly non-linear equation since they depend on the velocity gradient. 
It is then necessary to determine the value of the viscous terms before solving the implicit pressure equation. 
Taking the approach used in [8], the resolution of a provisional velocity field  𝑢f)*+ is calculated by solving 
the following linear system: 
 

𝜌.)*+𝒖g.)*+ − 𝛁 ⋅ 𝛔:*+ = (𝜌𝒖)∗ − Δ𝑡𝛁𝑝)	 (12) 
 
 
Where 𝝈)*+ = 𝝈(𝒖g)*+) according to (2).  The linear system is solved using a Thomas algorithm. Once the 
provisional velocity 𝒖g)*+ is known, the viscous stress tensor 𝝈)*+ is calculated using equation (2). In this 
way, the terms (𝛁 ⋅ 𝝈)*+) and (𝛁 ⋅ (𝝈)*+𝒖)*+) of equations (6-7) are now known. 

 
3. Inserting the momentum equation into the energy equation gives the following implicit pressure equation: 

 

(𝜌𝑒))*+ −
Δ𝑡
2
(𝜌𝒖))

𝜌) 𝛁𝑝)*+ − Δ𝑡%𝛁 ⋅ (ℎ)𝛁𝑝)*+)

= (𝜌𝐸)∗ − Δ𝑡𝛁 ⋅ (ℎ)(𝜌𝒖)∗) −
1
2
(𝜌𝒖))

𝜌)
(𝜌𝒖)∗ + Δt𝛁 ⋅ (λ𝛁T:*+) (13)

 

 
Where: 
 

(𝜌𝒖)∗ = (𝜌𝒖)) − Δ𝑡𝛁 ⋅ (𝜌𝒖⊗𝒖)) + Δ𝑡	𝛁 ⋅ 𝝈)*+	 (14) 
 

(𝜌𝐸)∗ = (𝜌𝐸)) − Δ𝑡𝛁 ⋅ ?
1
2𝜌𝒖

$@
)

+ Δ𝑡𝛁 ⋅ (𝝈)*+𝒖)*+) (15) 

 
With 𝝈)*+ and 𝒖)*+ have been calculated in step 2. To solve this equation in pressure, we need to find a 
way of expressing the remaining implicit terms ((𝜌𝑒))*+	, 𝑇)*+) as a function of pressure. Two methods are 
possible, depending on whether the gas is considered perfect or real. 
If the perfect gas is considered:  Using the equations of state for perfect gases makes the transformation 
very simple:  

(𝜌𝑒))*+ =
𝑝)*+

(𝛾 − 1)	; 				𝑇
)*+ =

𝑝)*+

𝜌)*+𝑅	
(16) 
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With 𝛾 = 𝑐'/𝑐2 is the ratio of specific heats of the gas, and 𝑅	is the gas constant. In these conditions, 
equation (13) becomes: 
 

𝑝)*+

(𝛾 − 1) −
Δ𝑡
2
(𝜌𝒖))

𝜌) 𝛁𝑝)*+ − Δt%𝛁 ⋅ (h:𝛁𝑝)*+) − Δ𝑡𝛁 ⋅ q𝜆𝛁V
𝑝)*+

𝜌)*+𝑅Xr = 𝑅𝐻𝑆	 (17) 

 
Where:  

𝑅𝐻𝑆 = (𝜌𝐸)∗ − Δ𝑡𝛁 ⋅ (ℎ)(𝜌𝒖)∗) −
1
2
(𝜌𝒖))

𝜌)
(𝜌𝒖)∗	 (18) 

 
The term 𝜌)*+ is known as it has been calculated in step 1.  
 
If the real gas is considered: In this case, not being able to use the equations of state for perfect gases will 
make solving the equation more complex. However, the use of thermodynamic tables can simplify this task. 
The first objective is to be able to express internal energy as a function of pressure at time 𝑝)*+.  
Using Taylor expansion:  
 

(𝜌𝑒))*+ ≈ (𝜌𝑒)) + V
𝜕(𝜌𝑒)
𝜕𝑝 X

)

(𝑝)*+ − 𝑝))	 (19) 

 
Where (𝜌𝑒)) and 𝑝) are known, the derivative of internal energy with respect to pressure is calculated 
beforehand and is available as a thermodynamic value in the tables used. The temperature is also read with 
the thermodynamic table. As this resolution is only an approximation, an iterative loop is constructed to 
converge on the result at time 𝑝)*+.  
This iterative loop is constructed as follows: 
a. Start of the iterative time loop in k, where 𝑚;<= = 𝑚). Read the table to know at time 𝑡; all the 

necessary variables. 
b. Solving the equation:  

 

V
𝜕(𝜌𝑒)
𝜕𝑝 X

;

𝑝;*+ −
Δ𝑡
2
(𝜌𝒖);

𝜌; 𝛁𝑝;*+ − Δ𝑡𝛁 ⋅ (ℎ;𝛁𝑝;*+) = 𝑅𝐻𝑆 (20) 

 

With : 𝑅𝐻𝑆 =	 (𝜌𝐸)∗ − Δ𝑡𝛁 ⋅ (ℎ;(𝜌𝒖)∗) − +
%
((𝒖)!

(!
(𝜌𝒖)∗ − (𝜌𝑒); + uA((B)

A'
v
;
𝑝; + Δ𝑡𝛁 ⋅ (𝑘𝛁𝑇;) 

 
c. A test on the convergence of the relative error in pressure and temperature is being conducted. The 

iterative procedure stops when the relative error 𝛿 = 100C has been reached. Then 𝑝)*+ = 𝑝;*+. 
 

 
4. The pressure 𝑝)*+ is used to compute the momentum: (𝜌𝒖))*+ = (𝜌𝒖)∗ − +

%
Δ𝑡∇𝑝)*+ 

5. The total energy is computed: (𝜌𝐸))*+ = 𝜌)*+𝑒)*+ + ((𝒖)"

("
(𝜌𝒖))*+, where the internal energy is 

computed at the aid of the equation of state if a perfect gas is considered, at the aid of a thermodynamic 
table if a real gas is considered. 

 
A little remark on the enthalpy used in equations (17) and (20): to compute this enthalpy, equation (21) is used. 
 

ℎ.) =
𝜌.)ℎ.)

𝜌.)*+
	 (21) 

4. Numerical results 

To validate the semi-implicit numerical scheme under compressible flow conditions, a set of simulations of 
Riemann problems for compressible Euler equations are carried out. These problems consist of two states, left (L) 
and right (R), separated by a membrane located at 𝑥 = 𝑥/. The computational domain is of size Ω = [𝑥6.), 𝑥617] 
where Neumann-type boundary conditions are imposed at the edges of the domain. Initialization data are 
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Figure 1: Fixed contact discontinuity at final time t=2. Comparison of density, velocity and pressure from the 
computed solution (symbols) versus the reference solution (straight line) 

summarized in Table 1. It is important to note that all calculations are made assuming that the gas is Argon including 
compressible test cases. Simulations of these compressible test cases are carried out with schemes that solve Euler's 
equations in a perfect gas. The numerical scheme presented here will be referred to as SI (semi-implicit). For each 
test case, the semi-implicit scheme will be compared with an HLL explicit compressible method [14], which is a 
classical compressible method, and a theoretical curve obtained with an exact Riemann solver for Euler equations. 
To be in the same conditions as the semi-implicit method, the HLL scheme is of order 1. For all test cases, the mesh 
is composed of N=1000 points, the SI time step is calculated with: Δ𝑡 = 𝐶𝐹𝐿 D7

|𝒖|
	, the HLL time step with :          

Δ𝑡 = 𝐶𝐹𝐿 D7
|𝒖|*1

, with 𝐶𝐹𝐿 = 0.5, 𝑢	the velocity of the flow and  𝑎 the sound velocity. 

 
Name 𝑡, 𝑥6.) 𝑥617 𝑥/ 𝜌F 𝑢F 𝑝F 𝜌G 𝑢G 𝑝G 
Fixed contact 2 0.0 1.0 0.5 1.4 0.0 1.0 1.0 0.0 1.0 
Moving contact 2 0.0 1.0 0.5 1.4 0.1 1.0 1.0 0.1 1.0 
Sod 0.2 0.0 1.0 0.5 1.0 0.0 1.0 0.125 0.0 0.1 
Lax 0.14 0.0 1.0 0.5 0.445 0.698 3.528 0.5 0.0 0.571 

 

Table 1 Data of initialization of shock tube problems. 

4.1 Fixed and moving contact discontinuity. 

Simulation results for a fixed contact discontinuity are shown in Figure 1. 
It can be observed that both HLL and semi-implicit methods were able to accurately preserve velocity and pressure 
in the computational domain. However, the behavior of the schemes is not the same in the case of density for the 
case of a fixed discontinuity (Figure 1).   
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Figure 2: Moving contact discontinuity at final time t=2. Comparison of density, velocity and pressure 
from the computed solution (symbols) versus the reference solution (straight line) 

Figure 3 Time step values of HLL scheme and SI scheme for the case of a 
moving contact discontinuity for N = 1000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The semi-implicit scheme was able to preserve density in the domain, even though discontinuity, while the HLL 
scheme diffused it. 
In the case of a moving discontinuity (Figure 2), the SI scheme has slightly diffused the density, but the scheme 
remains less diffusive than the HLL scheme. 
Figure 3 shows the value of the time steps as a function of time in the case of a moving discontinuity.  Due to the 
nature of the definition of the time steps used, the SI scheme is able, in this situation, to use time step values which 
are more than ten times higher compared with the HLL case. This allows the SI scheme to have shorter simulation 
times than the HLL scheme. 
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Figure 5 Time step values of HLL scheme and SI scheme for the 
case of sod shock tube for N = 1000. 

4.2 Sod shock tube. 

Figure 4 shows the simulation results for the Sod shock tube test case. This is a classic test case used to validate 
compressible numerical schemes. The problem is characterized by a shock wave propagating through an initially 
steady-state fluid. This test case is used to assess the ability of a numerical scheme to solve complex phenomena such 
as shock waves, rarefaction waves and discontinuities. The two numerical schemes simulated the various 
discontinuities in this flow, notably rarefaction waves and shock waves. Figure 5 plots the value of time steps as a 
function of time and shows that the time step values of the semi-implicit scheme are larger than those of the HLL 
method, since they are more than twice as large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 

 

 

 

 

 

 

 

   

 

4.3 Lax shock tube. 

This last test case is like that of Sod, but the presence of a velocity discontinuity will make the problem more 
difficult to solve. Figure 6 shows the result of the simulation. Both schemes give good results, but it is important to 
notice the presence of a peak value at the shock wave level for the semi-implicit scheme, which can be observed in 

Figure 4: Sod shock tube at final time t=0.2. Comparison of density, velocity and pressure from the 
computed solution (symbols) versus the reference solution (straight line) 
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Figure 7 Time step values of HLL scheme and SI scheme for the case of 
Lax shock tube for N = 1000. 

all three quantities (density, velocity, pressure). Such peaks also appeared for other semi-implicit schemes such as 
those presented in [7], [12]. Figure 7 plots the value of time steps as a function of time and shows the same behaviour 
than the previous test cases where the time step is larger in the case of the semi-implicit method than the explicit 
compressible method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To conclude this section, it has been shown that the SI scheme can simulate compressible flows with less numerical 
diffusion and with larger time steps than a classic compressible scheme: HLL. 

4.4 Hot column. 

After demonstrating the scheme's ability to simulate compressible flows, it's now time to study its behaviour when 
faced with DC-powered arc flows. It's important to remember that this new scheme is being studied in a context 
where the use of compressible schemes is not ideal for continuous arc simulation. The almost incompressible 

Figure 6 Lax shock tube at final time t=0.14. Comparison of density, velocity and pressure from the 
computed solution (symbols) versus the reference solution (straight line) 
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Figure 8 Mesh convergence study of a hot column advected for t=0.02s, simulated by a HLL method (left), SI with 
perfect gas (middle) and SI with real gas (right). 

Figure 9 Time step values for the three methods for the case of an advected hot column for N = 10 000. 

characteristics of DC-powered arcs mean that simulating this type of arc with a compressible scheme will be 
extremely time-consuming due to the very small-time steps involved. From a theoretical point of view, the use of the 
implicit scheme should solve this problem since the acoustic component in the time step calculation is eliminated.  
A simplified continuous arc can be represented by a hot column advected into the domain. The following section will 
demonstrate the benefits of the semi-implicit scheme for continuous arc simulation. 
 
As a first step, studying the mesh convergence of the different methods is interesting. A simulation of a 1000°K hot 
column advected into a 300°K domain will be studied in 3 different configurations: one with the HLL method, one 
with the perfect gas SI method and finally, one with the real gas SI method. 
For each case, the viscosity and thermal effects will not be considered to avoid diffusion effects and CFL = 0.5 for 
the calculation of the time step. The domain is initiated with constant pressure = 1 bar and constant velocity = 10 
m/s. The final time is 𝑡 = 0.02𝑠.  
Figure 8 shows mesh convergence for three schemes: a) HLL, b) SI-PG and c) SI-RG. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
  
 
Due to the highly diffusive nature of the 1st-order HLL scheme, it can be observed that the HLL scheme has 
difficulty converging, with more than 200k points required to reach the beginning of convergence. On the other hand, 
even if the semi-implicit schemes are also of order 1, convergence occurs much more quickly at 20k points. 
Furthermore, to support the fact that the SI scheme is more suitable for simulating a hot column than the HLL 
scheme, in Figure 9, the value of time steps as a function of time is plotted. The SI time step value is approximately 2 
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Figure 10: Influence of viscous and thermal effects for a hot column at 
1000K (left) and 9000K (right). 

orders of magnitude larger than that of the HLL scheme. The semi-implicit scheme then enables less time-consuming 
simulations with much less diffusive behaviour. 
 

4.5 Viscous and thermal effects. 

In this section, the effects of viscosity and temperature are studied, and two points are analyzed: 
- Their influence on the shape of curves compared to the case where they are neglected. 
- Their influence on the calculation of the time step. 

Figure 10 shows the temperature trends in two configurations: on the left, a hot column with a maximum value of 
1000K is advected for 𝑡 = 0.02𝑠; on the right, the same test case but with a column with a maximum value of 
9000K. As was shown in the previous section, this test case is converged on a 20,000-point mesh; these two flows 
will be simulated on this same mesh. Figure 11 shows this convergence of the temperature curves with the viscous 
effects for the perfect gas case. Figure 10 shows: the peak at initialization (line), the advected peak in a case where 
viscous and thermal effects are not considered (dash line), a peak with a perfect gas method with viscosity and 
thermal effects, and a real gas method with viscosity and thermal effects (symbols). As seen in the previous section, 
on a converged mesh, the viscosity-free case has, in both cases, not diffused, and the temperature peak has the same 
value as that of the initialization. This is because no diffusive terms are considered in solving the equations. 
However, in cases where viscosity is considered, different behaviour is observed in both cases. For the 1000k case 
(left in Figure 10), both the real gas and perfect gas curves have diffused, but only by a small amount and have very 
similar values: a maximum temperature value of 990K for the perfect gas case and 985K for the real gas case. 
It is important to remember that the viscous and thermal coefficients in the perfect gas case are calculated using 
Sutherland's law (3). This law is valid up to temperature values of around 2500K. To conclude this case, the thermal 
and viscous effects are quite weak. 
However, for the 9000K column, different behaviour is observed. In this case, the fluid is much hotter, so the thermal 
effects are much greater. These greater thermal effects are at the origin of the greater diffusion of the curves 
corresponding to the schemes that take these thermal and viscous effects into account. We also note a difference in 
values between the real gas and perfect gas cases: the peak temperature for the real gas is 7545K, while the perfect 
gas is 7467K. This difference can be explained by the fact that at 9000K, Sutherland's law (3) used in the perfect gas 
case is no longer valid. One of the parameters that explains why this equation is no longer valid is the ionization 
effects that occur at such temperatures, which are not considered, unlike in the tables given by the Sethi code. These 
ionization effects will, among other things, modify the chemical composition of the gas and thus alter the behaviour 
of transport coefficients (viscosity, diffusion coefficient...).  
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Figure 11: Temperature convergence for the case of a 9000K hot column 
advected for 0.02s. 

 

 

 

 

 

 

 

 

 

 

 

How will the addition of viscous and thermal effects influence the calculation of the time step? It was shown 
in the previous section that if the fluid Euler equations are solved alone, the time steps used are at least two 
orders of magnitude larger than those of a classical explicit compressible scheme. However, if the Navier 
Stokes equations (1) are solved, the time step is calculated using the equations (8). To summarize, at each 
time iteration, the three-time steps (8) are calculated, and the smallest of the three is chosen as the effective 
time step. In the semi-implicit scheme shown, as viscous and thermal effects are implicit, these time steps are 
not considered, and only the time step (9) is calculated. However, stability problems were observed during 
simulations with a high temperature peak (over 5000K) on a highly refined mesh (over 20,000 points). After 
empirical investigation, the following point was observed: 

Even if the thermal time step is not calculated, our effective time step must not be too far from it. To explain 
this phenomenon, the case of hot columns at 1000K and 9000K presented above is considered. For both 
cases, the ratio between the effective time step calculated with (9) and the time steps calculated with (8) are 
calculated where for all times step 𝑪𝑭𝑳 = 𝟎. 𝟓. The results are summarized in Table 2. 

 

 Δ𝑡,-#./
Δ𝑡!5

 
Δ𝑡,-#./
ΔtHIJKL0M

 
Δ𝑡,-#./
Δ𝑡2.34

 

1000°𝐾 1.16 62 2 

9000°𝐾 125 178 17 

 
Table 2: Ratio between the effective time step and those of the explicit compressible diagrams for the case of a hot column at 

1000K and a column at 9000K with a 𝐶𝐹𝐿 = 0.5 and 𝑁 = 20	000 for all calculations. 

Under these conditions, calculating the column at 1000K gives good results, whereas calculating the column 
at 9000K gives oscillations. This difference in behavior may be correlated with the fact that the difference in 
value between the effective time step and the explicit compressible time steps is much greater in the 9000K 
case. In fact, according to Table 2, in the case of 1000K, the fluid time step and the thermal time step are 
almost equal, whereas in the case of 9000K, the fluid time step is more than 100 times greater (with a 𝑪𝑭𝑳 =
𝟎. 𝟓).  In this test case, where thermal effects are important, having too great a difference in value between 
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time steps makes the computation unstable. The temperature curves at 9000K plotted in Figure 10 were 
obtained with the following CFL values: 𝑪𝑭𝑳 = 𝟎. 𝟏 for the perfect gas case, and 𝑪𝑭𝑳 = 𝟎. 𝟎𝟓 for the real 
gas case. The new ratios of time steps in these conditions are summarized in Table 3 where 𝑪𝑭𝑳 = 𝟎. 𝟓 for 
the other time steps (8). 

 Δ𝑡,-#./
Δ𝑡!5

 Δ𝑡,-#./
ΔtHIJKL0M

 Δ𝑡,-#./
Δ𝑡2.34

 

9000°𝐾(𝑃𝐺)	 11 64 5 
9000°𝐾(𝑅𝐺)	 11	 17	 2	

 Table 3 Ratio between the effective time step and those of the explicit compressible diagrams for the case of a hot column at 
1000K and for a column at 9000K with a CFL=0.1 for 𝛥𝑡!"#$% and N=20 000 for all calculation. 

So, even if the CFL had to be reduced to obtain a condition where the scheme is stable, the ratio between the 
effective time step and those used with an explicit compressible method remains significant (approximately 
an order of magnitude). Given the initial results, for this type of flow, having a 

𝚫𝒕𝒇𝒍𝒖𝒊𝒅
𝚫𝒕𝒕𝒉

≤ 𝟏𝟏 is a prerequisite 
for a stable simulation. It is important to note that this criterion is currently purely empirical, valid only for 
this flow and that studies are underway to determine a true stability criterion valid for all types of flow. It's 
important to note that the effects of viscosity have not been discussed simply because, in this flow, the 
velocity is constant throughout the domain, so its effect is negligible.  

5. Conclusion 

In this article, a semi-implicit scheme has been presented. This scheme aims to be able to simulate compressible 
flows as well as weakly compressible flows where the fluid considered is a real gas. The various test cases simulated 
with this scheme have demonstrated the code's ability to simulate compressible flows with good accuracy and shorter 
computation times than with a conventional compressible scheme. In the second part, the code's ability to simulate 
flows of the type that can be encountered when simulating a DC-powered arc was carried out. It was seen that the 
scheme was much less diffusive and converged much faster than a conventional compressible scheme and that the 
simulation time was much faster due to the time steps being about two orders of magnitude larger in the case where 
viscous and thermal effects are neglected and one order of magnitude when viscous are thermal effects are 
considered. Finally, it has been shown that the use of thermodynamic tables for the treatment of real gases will give 
results in better agreement with physics since at the temperatures encountered, ionization effects appear, which are 
not considered with classical equations of state. However, to validate this hypothesis, a comparison between the 
results of the literature and those of the simulations will have to be carried out in the future. It has been determined 
that particular attention needs to be paid to the time step values when simulating viscous/thermal effects. The 
prospects of this work are to include this scheme in a 2D/3D configuration in the Taranis MHD code, which will 
significantly improve computation times when simulating continuous arcs with this code. 

5. References 

 
[1] : Martins, R. S. (2016). Experimental and theoretical studies of lightning arcs and their interaction with 
aeronautical materials (Doctoral dissertation, Universite Paris-Saclay). 
 
[2]: Lalande, P., & Delannoy, A. (2012). Numerical methods for zoning computation. Aerospace Lab, (5), p-1. 
 
[3] : Tholin, L., Chemartin, P., & Lalande, F. (2013, September). Numerical investigation of the surface effects 
on the dwell time during the sweeping of lightning arcs. In 2013 International Conference on Lightning and 
Static Electricity (ICOLSE 2013). 
 
[4] : Archambeau, F., Méchitoua, N., & Sakiz, M. (2004). Code Saturne: A finite volume code for the computation 
of turbulent incompressible flows-Industrial applications. International Journal on Finite Volumes, 1 
 
[5] : Patnaik, G., Guirguis, R. H., Boris, J. P., & Oran, E. S. (1987). A barely implicit correction for flux-corrected 
transport. Journal of Computational Physics, 71(1), 1-20. 

DOI: 10.13009/EUCASS2023-684



Semi-implicit scheme for modelling the fluid dynamics part of a DC-powered arc. 
     

 14 

 
[6] : Moguen, Y., & Dick, E. (2020). Diffusion and dissipation in acoustic propagation simulation by convection-
pressure split algorithms in all Mach number form. Journal of Computational Physics, 414, 109480. 
 
[7] : Kwatra, N., Su, J., Grétarsson, J. T., & Fedkiw, R. (2009). A method for avoiding the acoustic time step 
restriction in compressible flow. Journal of Computational Physics, 228(11), 4146-4161. 
 
[8]: Boscheri, W., & Tavelli, M. (2022). High order semi-implicit schemes for viscous compressible flows in 3D. 
Applied Mathematics and Computation, 434, 127457. 
 
[9]: Boscheri, W., & Pareschi, L. (2021). High order pressure-based semi-implicit IMEX schemes for the 3D Navier-
Stokes equations at all Mach numbers. Journal of Computational Physics, 434, 110206. 
 
[10]: Denner, F., Evrard, F., & van Wachem, B. G. (2020). Conservative finite-volume framework and pressure-
based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all speeds. Journal of Computational 
Physics, 409, 109348. 
 
[11] : Cordier, F., Degond, P., & Kumbaro, A. (2012). An asymptotic-preserving all-speed scheme for the Euler and 
Navier–Stokes equations. Journal of Computational Physics, 231(17), 5685-5704. 
 
[12] : Jemison, M., Sussman, M., & Arienti, M. (2014). Compressible, multiphase semi-implicit method with 
moment of fluid interface representation. Journal of Computational Physics, 279, 182-217. 
 
[13] : Toro, E. F., & Vázquez-Cendón, M. E. (2012). Flux splitting schemes for the Euler equations. Computers & 
Fluids, 70, 1-12. 
 
[14] : Toro, E. F., & Toro, E. F. (2009). The HLL and HLLC Riemann solvers. Riemann Solvers and Numerical 
Methods for Fluid Dynamics: A Practical Introduction, 315-344. 
 
[15] : Colonna, G.; Laricchiuta, A. Thermodynamic and Transport Properties of Equilibrium Debye Plasmas. 
Entropy 2020, 22, 237.  
 
[16]: Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1964). Molecular theory of gases and liquids. Molecular 
theory of gases and liquids. 
 
[17] : Hahn, H. S., Mason, E. A., & Smith, F. J. (1971). Quantum transport cross sections for ionized gases. The 
Physics of Fluids, 14(2), 278-287. 
 
[18] : Bruno, D., Capitelli, M., Catalfamo, C., Celiberto, R., Colonna, G., Diomede, P., ... & Pirani, F. (2008). 
Transport properties of high-temperature Mars-atmosphere components. ESA Scientific Technical Review, 256. 
 
[19] : White, F. M., & Majdalani, J. (2006). Viscous fluid flow (Vol. 3, pp. 433-434). New York: McGraw-Hill. 
 
[20] : Murphy, A. B., & Tam, E. (2014). Thermodynamic properties and transport coefficients of arc lamp plasmas: 
argon, krypton and xenon. Journal of Physics D: Applied Physics, 47(29), 295202. 
 
[21]: P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 
69, National Institute of Standards and Technology, Gaithersburg MD, 20899 
 
[22]: Alauzet, F., & Frazza, L. (2021). Feature-based and goal-oriented anisotropic mesh adaptation for RANS 
applications in aeronautics and aerospace. Journal of Computational Physics, 439, 110340. 
 
 

DOI: 10.13009/EUCASS2023-684




