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Abstract

This work aims to gain a deeper understanding of the current state of the orbital debris population. We
are currently developing new and innovative methods to efficiently extract observations of satellites, debris
and solar system objects from large astronomical data archives. The data obtained from these archives will
provide valuable insights into the size-frequency distribution of orbital debris and their physical properties
and support the development of strategies to maintain the usability of Earth’s orbit for future satellite
missions. This paper is an outline of the current status and future developments of our research.

1. Introduction

Space debris — man-made and non-functional objects in Earth’s orbit — are growing in number and raising major con-
cerns about the sustainability of space operations. Active satellites can be severely damaged by small debris and
completely destroyed by larger ones, requiring significant effort and resources for collision avoidance and mitigation
methods. Various sources contribute to the creation of space debris, including old satellites, rocket bodies, anti-satellite
tests and fragmentation or collisions between objects, and the increasing number of satellites, including large constella-
tions, further exacerbates the problem. Depending on their orbit, debris can remain in space for varying periods ranging
from a few days to thousands of years before naturally decaying in the atmosphere. As well as posing operational risks,
space debris also affect astronomical research by leaving traces on telescope images [14] [1].

In order to carry out collision avoidance manoeuvres as effectively as possible, to enable active debris removal missions
to approach targets, or more generally to gain a better understanding of the space environment in which we operate, it
is essential to obtain and analyse data that is as accurate and complete as possible. The orbital elements of most of the
largest objects are known and regularly updated, thanks to large telescope and radar networks that track space debris
on a daily basis!. However, in addition to the lack of precision from which these catalogues sometimes suffer, and
the fact that catalogues tend to be incomplete, particularly for high orbits [3], intrinsic characteristics such as shape or
material, as well as their rotational state, are in most cases unknown, although this type of information is essential for
the above-mentioned operations [5] [23] [26].

Our research aims to address the lack of information on the physical properties of objects and to improve the statistical
knowledge of the general population of space debris by studying archival images from large telescopes primarily used
for astrophysical research, using innovative debris and satellite track detection techniques and photometric analysis
tools. NEO (Near Earth Objects) detection techniques are also being developed as part of this project and are presented
in this article.

2. Data

Every year, astronomical research generates thousands of images of the night sky, captured by the world’s largest
and most powerful telescopes. Although space debris is not the main focus of most research, both debris and active
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satellites in orbit inevitably pass in front of telescope sensors and, when illuminated by sunlight, leave visible traces on
the images captured. Most of these images go through reduction pipelines before they are used, and unwanted streaks
are removed by superimposing multiple exposures. The idea behind this work is to use these same images, before the
tracks are removed, to detect space debris and derive light curves to study first their rotational state and subsequently
other physical properties such as their sizes and shapes. The use of such images is of great interest for the study of
space debris because, as the images are primarily produced for another purpose, their analysis does not require the use
of dedicated observing stations, and because the archives of these telescopes extend over several years, it is possible to
carry out a statistical analysis over a long period of time, which is crucial for our understanding of the evolution of the
debris population. In addition, data from large telescopes have superior resolution and sensitivity compared to most
dedicated space debris observations, making it possible to detect and study faint debris.

The techniques developed will first be applied to images from the OmegaCam sensor mounted on the VST (VLT Survey
Telescope) in Chile [15], before being applied to other archives from large field-of-view telescopes such as ZTF [2]
and DECam [24].

2.1 OmegaCam archive

OmegaCAM is a 300-megapixel wide-field optical camera consisting of 32 individual CCDs covering one square de-
gree with a resolution of 0.2 arcsec per pixel. The first images were taken in October 2011 and represent approximately
half a million images taken over more than 10 years. Exposure times range from 30s to 300s. Figure 1 shows an
estimate of the size of objects we expect to see in the OmegaCam and DECam archives. We estimate streaks with SNR
greater than 3 to be detectable by our algorithms and those with SNR greater than 30 to be suitable for photometric
analysis. The methods used to estimate the detection limits can be found in a previous paper [10].

3. Satellites and space debris detection

3.1 Detection algorithm

The algorithm developed for the detection of satellite and space debris traces is a machine learning model based on the
work of Lin et al. [17], a convolutional neural network with a trainable Hough transform prior block called HT-LCNN
(Hough Transform Lookup based Convolutional Neural Network). The introduction of the prior block allows to reduce
the amount of data required during the training phase, as the model already has an initial knowledge of the shapes to
look for. In fact, the Hough transform algorithm is widely used to detect lines in images. A diagram of how the Hough
transform block works can be seen in Figure 2. This block can be placed in several locations in the code to allow
specific tuning of the global LCNN algorithm.

The original algorithm developed by Lin and his colleagues was trained and tested on the Wireframe [11] and York
Urban [6] datasets, two datasets designed for the detection of edges in buildings and interiors, and was primarily
intended for automatic orientation of smart objects.

3.2 Datasets

In order to tune the algorithm to our specific situation, i.e. the detection of traces in astronomical images, it is neces-
sary to create our own dataset for training and testing the neural network. 193 VST mosaics, corresponding to 6176
individual CCD frames, were prepared for this purpose. The preparation consisted of resizing the images to remove
dark edges, converting the format from fits to png using a zscale algorithm, as this is the preferred input format of the
machine learning method, manually annotating the existing streaks by noting their start and end points, and adding
artificial streaks. Artificial streaks are created by adding lines of random orientation and SNR with widths following a
Gaussian profile. The SNR is calculated locally along the streak and has values between 2 and 100. A total of 12352
artificial streaks have been added to the images, in addition to the 302 natural streaks already present.

To ensure adequate validation of the algorithm, a training split and a test split were created containing approximately
90% and 10% of the initial image set respectively. Data augmentation, consisting of rotation by 90 degrees, 180 degrees
and 270 degrees, was applied to the training set, resulting in a total of 22328 images for training the algorithm. The
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Figure 1: Size estimate of objects leaving a streak of SNR 3 (dashed lines) and SNR 30 (solid line) on images for
different orbital regimes. From [10].
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Figure 2: Flowchart of the Hough transform prior block. Adapted from [17].
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test split contains 594 images.

It is important to note that the data was not calibrated before the algorithm was trained or after it was used. This is
to avoid downloading unnecessary data and adding extra computation time to the detection pipeline, a critical element
in our research as we are dealing with extremely large amounts of data. The images in which satellite or space debris
streaks are detected are calibrated for photometric analysis at a later stage.

3.3 Evaluation metrics

In order to evaluate the results of the machine learning algorithm on the validation set, several metrics commonly
adopted in the field are used and presented below.

Precision Precision is an indication of how many cases detected as positive are actually true positives. It tells us how
good the algorithm is at making correct predictions when something is detected, and is calculated as follows.

o True Positives
Precision = — — (D)
True Positives + False Positives

Recall Recall gives an indication of how many positive detections, whether true or false, have been made by the
model. It indicates the ability of the model to make positive detections. The formulation is as follows.

True Positives
Recall = — - )
True Positives + False Negatives

Average precision When evaluating a neural network, both the precision and the recall should be as high as possible,
which in our specific case means that the model would detect all streaks and that all detected lines are indeed debris or
satellite streaks. However, in practice this is almost impossible to achieve and it is therefore necessary to modify the
evaluation threshold used to separate the detections that are considered as streaks or not. To avoid having to choose
such a threshold at an early stage of the model development, a metric that uses both the precision and recall definitions
is adopted, namely the average precision. To define it, it is first necessary to draw the precision-recall curve, plotting
the precision and recall values of the model at different evaluation thresholds. The average precision is then defined as
the area under the precision-recall curve, as follows, with R the recall and P(R) the precision as a function of the recall.

1

Average Precision:f P(R)dR 3)
R=0

3.4 Results

In order to maintain the good performance of the original algorithm while fine-tuning it for our specific case, the model
was trained on the VST dataset from the best performing network trained on the Wireframe and York Urban datasets,
thus starting from the weights and biases given by the authors. The network was trained for 24 epochs in just over
30 hours on a single GPU. The best performing model over the entire training was selected to avoid overfitting. The
results of the application of the model to the validation set are presented in Table 1. The average precision of the model
is 97.4%, meaning that the algorithm performs well even at high values of both precision and recall.

Table 1: Results of the final model applied to the VST validation set.

Ground Truth H True Positives False Positives False Negatives
1221 \ \ 1193 71 28
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(a) Original image (b) Detection heatmap (c) Detected lines

Figure 3: Example of a true positive detection.

True Positives A detection is considered to be a true positive when the maximum distance between the detection and
the ground truth streak is less than 5 pixels. An example of a true positive detection is shown in Figure 3, where the
lines have an SNR of 25 and 53 respectively. The algorithm was able to correctly detect the lines despite the presence
of neighbouring stars and their diffraction peaks, as well as light reflection from the telescope.

False Positives False positives occur when the algorithm detects a line that is not present in the image. Several
categories of false positives have been identified and are shown in Table 2. The vast majority of false positives occurred
when the algorithm detected an existing line more than once, meaning that two or more lines close to each other were
the result of the detection on a single ground truth line. Figure 4 shows an example of such multiple detections. The
good news is that discarding the extra detections is fairly straightforward and can be done during the post-processing of
the results. False positive detections were considered anomalous if they could not be linked to an annotated line. Most
of these were the result of incorrect detection of stellar diffraction peaks. Finally, the last category of false positives is
quite interesting, as it refers to lines detected by the algorithm that correspond to real satellite or space debris tracks that
were missed during the annotation process and therefore not part of the ground truth set. The fact that traces missed
by the human eye were successfully detected by the machine learning model is a sign of its good performance and that
the development of the algorithm is going in the right direction. An example of such a detection is shown in Figure 5.

Table 2: Classification of the false positives results.

False Positives H Multiple detections Anomalous detections Unnanotated true detections
71 | 64 3 4

False Negatives False negatives refer to cases where a ground truth line exists but was not detected by the algorithm.
Similar to false positives, different sub-categories were identified and are shown in Table 3. A distinction was made
between non-detections, where a faint line was present on the heatmap and cases with no visible trace on the heatmap.
In the first category are mostly cases where the streak to be detected had a low SNR (SNR < 10), and so could be seen
on the heatmap, but was not considered a detection. Such an example is shown in Figure 6. A few images had a clear
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(a) Original image (b) Detection heatmap (c) Detected lines

Figure 4: Example of a false positive detection resulting from a double detection of a single ground truth streaks.

(a) Original image (b) Detection heatmap (c) Detected lines

Figure 5: Example of a false positive detection resulting from the correct detection of an unannotated streak.



DOI: 10.13009/EUCASS2023-669

SPACE DEBRIS CHARACTERIZATION

(a) Original image (b) Detection heatmap (c) Detected lines

Figure 6: Example of a false negative detection. The ground truth streak has an SNR of 3.

line on the heatmap, but no detection was made because the end or part of the streak was obscured by a nearby star. In
the second category, no line could be seen on the heatmap and therefore no detection was made, even if a ground truth
streak was present. The majority of these cases were lines with SNR 2, and the few remaining cases were where the
streak was along an edge of the image. This observation allows us to say that the algorithm has a detectability limit of
SNR 3, since most lines with SNR 3 were correctly detected, but SNR 2 lines were not, which is consistent with our
initial assumptions. Finally, the last category of false negatives refers to the few NEO tracks that were annotated during
the preparation of the dataset and in most cases were not detected by the algorithm. It makes intuitive sense that the
algorithm did not learn to correctly detect these short tracks, as the vast majority of the streaks provided during training
crossed the entire image. This is not a problem for the current results, as a separate algorithm is trained specifically to
detect NEOs.

Table 3: Classification of the false negatives results.

False Negatives H Undetected but seen on heatmap Undetected and not seen on heatmap Short tracks
28 H 13 11 4

As the present research requires a very large amount of data to be processed in the shortest possible time, great care
has been taken to ensure maximum efficiency of the algorithm. The current model performs the analysis of a mosaic
image composed of 32 CCDs of each 2000 X 4000 pixels in just under a minute on a single GPU. Although this result
is already promising, we hope to reduce the processing time even further by carefully optimising the code and using
parallelisation methods on a GPU cluster, so that the entire VST archive can be processed in less than 3 months.

4. Detection of near-Earth objects

Near-Earth objects (NEOs) are solar system objects that pass close to the Earth’s orbit, posing a threat of colliding with
it. The consequences of this could be catastrophic: the impact of an asteroid with a diameter of 10 m would release as
much energy as a nuclear bomb, whereas an asteroid of more than 3 km across could destroy all life on Earth [4].
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Figure 7: Example of asteroid detection performed by our algorithm. On the left, the asteroids found are marked in
red. On the right, the original image. The asteroids were simulated and injected into real VST images.

Large asteroids in our Solar System have been exhaustively documented and monitored, partly due to the efforts of
surveys such as that of Pan-STARRS [12], the Catalina Sky Survey [16] or the NASA Spaceguard Survey, which aims
to catalogue 90% of NEOs larger than 140 meters [20]. However, our knowledge of the asteroid population weakens for
smaller asteroids, and is almost non-existent for those NEOs only several meters in size, a population that is expected
to be of 45 millions and of which we only know 0.03% [21]. Nevertheless, these asteroids can still pose a severe threat
to Earth, with the latest significant impact being in Chelyabinsk, Russia, in 2013. This asteroid, estimated to have a
size of 20 m, left 1600 injured and caused 25 million euros worth of damages [13].

For this reason, it is key that we monitor NEOs to ensure that any damages are prevented. As opposed to the case of
space debris and satellites, the orbits of NEOs remain constant over decades, so even looking at ancient data can help
us improve our knowledge of their orbital elements today. Since NEOs are moving very fast relative to the background
stars, albeit slower than space debris, they are also visible as tracks of light in long-exposure, wide-field images. In
practice, NEOs will not cross the field-of-view in the VST exposures, but will rather appear as extended sources.

To detect them, we are developing a deep-learning algorithm similar to the one used for space debris, but tailored
specifically to short streaks. For training the algorithm, a population of NEOs has been simulated and injected into
real VST images, as shown in Figure 7. Our aim is to go through the whole VST archive with a blind asteroid search,
and report any detections to Harvard’s Minor Planet Center [18]. If an asteroid is detected and it was already known,
reporting it will likely elongate the baseline. For example, if it was found in 2019, that means it will have been
monitored from 2019 to the present. If it is detected in an image from 2017, its orbit can be extrapolated further back,
from 2019 to 2017, and our knowledge of its orbit will improve. However, this is not applicable if the data where it is
detected is very old, since extrapolating too far back is likely to cause great uncertainties.
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Figure 8: Satellite trail, detected on a ESO VST image, the light curve measured from the streak and all light curves
from this target folded to its corresponding rotation period.

5. Photometric analysis

One goal of our work is to determine the rotational and physical characteristics of the observed orbital debris. The
information needed for this task can be extracted from photometric observations. The amount of light that is reflected
from the observed object to the observer depends on the illumination geometry, the rotational phase and the object’s
shape and surface properties. Acquiring and examining series of brightness measurements, called light curves, makes
it possible to draw conclusions about these properties even if the object is not resolved. Light curve analysis is a very
powerful tool to study unresolved observations and has many applications in astronomy, ranging from characterizing
solar system objects [22], searching for exoplanets [19] and variable stars [8]. For our analysis, we are employing the
Fourier Analysis of Light Curves (FALC) algorithm [9], that applies a least-squares fit of a Fourier polynomial to the
data. This technique is considered the standard method for rotation period determination of asteroids.

To obtain the light curves, we are using a similar approach as in [5]. The intensity profile of a streak is retrieved
by placing a series of rectangular apertures along the streak and measuring the flux received from the target in each
aperture. To obtain precise magnitudes for each measurement, we selected a set of photometric reference stars from
the GAIA DR2 catalog [7]. This procedure is currently tested and automatized in order to process the large amount
of satellite streaks we expect to find in the astronomical data archives. First results demonstrate the high photometric
precision of the data and high time resolution that can be achieved: We successfully determined a rotation period of
0.84s for a Russian Briz-M upper stage, observed at a distance of 37280 km [10]. We will proceed implementing
methods for further photometric analysis that will allow us to determine the phase curves (the brightness as a function
of the phase angle). This will enable us to estimate the size and approximate the shape of the observed objects [25].

6. Conclusion

The research presented in this paper provides a foundation for advancing our knowledge of the orbital debris population
and the physical properties of space objects. The detection algorithm developed and the analysis of archival images
from large telescopes pave the way for future studies and strategies aimed at ensuring the sustainability of space
operations and securing the Earth’s orbit for future satellite missions.

The use of archives from large telescopes such as OmegaCam offers significant advantages in terms of data availability,
long-term statistical analysis, and superior resolution and sensitivity compared to dedicated space debris observations.

The developed space debris detection algorithm, based on a convolutional neural network with a trainable Hough
transform prior block, shows promising results in identifying satellite and space debris traces in the images. The
algorithm achieved a high average precision of 97.4% on the validation set, demonstrating its effectiveness in detecting
true positives while minimising false positives and false negatives.

Furthermore, this research includes the detection of Near-Earth Objects (NEOs) approaching Earth’s orbit. By devel-
oping NEO detection techniques, this work contributes to the identification and monitoring of potential threats and
supports efforts to mitigate the risk of collision with Earth.
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