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Abstract 
This study explores the development of centralized mission planning for Unmanned Aerial Vehicles 
(UAVs) in collaboration with manned aircraft. We adopt a Proximal Policy Optimization (PPO) trained 
single agent to simulate a Suppression of Enemy Air Defenses (SEAD) scenario. Our goal is to master 
optimal mission strategies. Tested under various environmental conditions, our model demonstrates a 
78% success rate in neutralizing enemy defenses across 100 tests. The significant success of our model 
underlines its potential application in future warfare scenarios, representing a substantial progression in 
the domain of aerial warfare and reinforcement learning application. 

1. Introduction

Dating back to the advent of the experimental unmanned bomb aircraft, the Kettering Bug, during World War I, 
unmanned systems have played a significant role in military operations. As the years passed and technology progressed, 
these unmanned systems have seen extensive utilization in various theaters of war. From the B-17 unmanned bombers 
and Goliath unmanned bomb vehicles in World War II to the drones utilized in the Middle Eastern conflict and by the 
U.S. Air Force and Navy in the Vietnam and Gulf Wars, the role and capabilities of these unmanned systems have 
continually evolved. 
One significant transformation propelled by technological advancements has been the shift in the relationship dynamics 
between humans and unmanned systems. What began as a unilateral operator-system relationship has evolved into a 
complex and cooperative strategy known as 'Manned-Unmanned Teaming (MUM-T)'. This evolution has been 
characterized by the growing importance of these systems in enhancing situational awareness, increasing lethality, and 
improving survivability on the battlefield [1]. 
In the context of modern, complex battlefield scenarios, effective implementation of MUM-T strategies is paramount. 
Unmanned Aerial Vehicles (UAVs), once primarily used for surveillance purposes, are now entrusted with more 
complex tasks that necessitate a high degree of collaboration with manned aircraft. Suppression of Enemy Air Defenses 
(SEAD) missions, for instance, require sophisticated mission planning techniques that can adapt to dynamic battlefield 
environments and optimize the use of mixed resources. 
This research project seeks to address the development of such advanced mission planning techniques, specifically 
focusing on centralized planning for UAVs operating in collaboration with manned aircraft during SEAD missions. 
Our objectives in this pursuit are threefold: 

1) Design an efficient centralized battlefield operation architecture to enhance coordination between manned and
unmanned systems in dynamic combat environments.

2) Construct a reinforcement learning environment that uses battlefield monitoring data to simulate real-world
scenarios, thereby facilitating robust AI agent training.

3) Implement the PPO algorithm to train a single-agent model, enabling it to learn the optimal mission planning
strategy effectively.
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The implications of this research are significant and far-reaching. From an operational perspective, the development 
of such a centralized mission planning system could revolutionize the planning and execution of military missions, 
leading to a significant enhancement in operational efficiency and a reduction in mission failures. On a theoretical 
level, the research contributes to the broader field of reinforcement learning by providing empirical evidence of the 
effectiveness of the PPO algorithm in handling complex, real-world scenarios. Consequently, the insights gained from 
this research have the potential to guide the future development of military technology, particularly with regard to the 
planning, control, and deployment of unmanned systems in various military operations. 

 

 
Figure 1: MUM-T Mission with 2 UAVs in SEAD Mission 

 
 

2. Literature Review and Background 

2.1 MUM-T, Autonomous Control Levels (ACL), and Mission Planning Strategies 

Efficient data gathering and swift decision-making processes are vital in modern warfare scenarios. MUM-T has gained 
traction as it combines the strengths of manned and unmanned aircraft to enable strategic information gathering and 
execution, boosting combat efficiency. MUM-T has been designated as a core component of future warfare strategies 
by the U.S. Department of Defense[1], and several nations are actively developing it [2][3]. 
The framework for enabling MUM-T involves scenario development, workload reduction for operators, and 
enhancement of UAVs' autonomy. Scenario development focuses on employing both manned and unmanned aircraft 
in precise battlefield environments. This development is based on the analysis of current mission statuses of manned 
and unmanned aircraft using Model Based Systems Engineering (MBSE) [4] or detailed procedural breakdowns [5][6]. 
Workload reduction research concentrates on quantifying and mitigating the decision-making difficulty and the number 
of decisions during mission execution. Technologies and interfaces are designed to alleviate operator workloads 
through autonomous path planning, hierarchical mission planning, among others [7]. 

 

 
Figure 2: Transparency elements in the mission planning interface [7] 
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Autonomy, as per the AFRL ACL[8], is key to determining the UAVs' ability to independently perform the Observe, 
Orient, Decide, and Act (OODA) loop. Mission planning can either be decentralized, with each UAV independently 
making decisions [9], or centralized, where a single entity like a GCS makes decisions based on data from all UAVs 
[10]. A framework utilizing Leaders and Sub-Leaders has been proposed to address processing and communication 
challenges [11]. 
 

Table 1: AFRL ACL Chart [8] 

Level Level 
Descriptor 

Observe Orient Decide Act 
Perception / 
Situational Awareness 

Analysis / 
Coordination Decision Making Capability 

5 

Real Time 
Multi 

Vehicle 
Cooperation 

Sensed awareness / 
Local sensors to detect 
external targets 
(friendly and threat) 
fused with off board 
data 

All below with 
Prognostic Health 
Mgmt; Group 
diagnosis and resource 
management 

On board trajectory 
replanning / Optimizer 
for current and 
predictive conditions; 
Collision avoidance 

Group accomplishment 
of tactical plan as 
externally assigned; 
Air collision 
avoidance; Possible 
close air space 
separation 
(1:200yards); 
Formation in non-
threat conditions 

 
The choice between centralized and decentralized planning depends on the autonomy level of the UAV and the 
operational environment. This study assumes an ACL Level 5 for the involved UAVs, implying their capability for 
evasion maneuvers and autonomous flight. However, for group operations and strategy establishment, a centralized 
architecture has been implemented. 

2.2 Application of Reinforcement Learning in UAV Mission Planning 

RL, where an agent learns to make decisions to maximize rewards through interaction with its environment, has 
significant applications in UAV mission planning. The PPO algorithm, an RL technique, can be applied to everything 
from lower-level controls like attitude control and route planning to higher-level controls such as mission point 
planning and optimal action set determination [12]. 

 

 
Figure 3: Reinforcement Learning  

 
Yue et al. applied Deep RL to MUM-T mission planning, specifically for shooting down SAMs using Jammers and 
Fighters, controlling each UAV's heading and velocity to move towards the target point based on pre-determined 
Jamming and Attack Points. Zhan et al. applied PPO and MAPPO algorithms to multi-UAV strike missions but did 
not consider explicit cooperation between UAVs [13]. 
In contrast, our research implements a centralized architecture for higher-level controls in UAV mission planning, 
differentiating UAVs as Jammers and Fighters. A cooperative scenario is learned through the PPO algorithm, which 
involves shooting down SAMs and moving towards the next destination. The agent learns the optimal route and 
Jamming Point for the Jammer and the optimal route and Attack Point for the Fighter, which will be explained in detail 
in Section 3.2. 
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3. Methods 

3.1 Centralized Mission Planning Architecture 

Centralized Mission Planning Architecture refers to an advanced technological architecture enabling efficient 
coordination and management of UAVs in complex and dynamic combat scenarios. This architecture collects data 
from various sources of information, evaluates the situation in real-time, and plans and executes optimal strategies to 
maximize the success potential of the overall mission [14]. 

 
Figure 4: Centralized Mission Planning 

 
The main components of this architecture are as follows: 
 

1) Combat Info Management: This component continually monitors the current combat situation and tracks 
information to provide real-time battlefield intelligence. Information sources vary widely, including various 
sensors, sensor networks, and human observation, enabling a deep understanding of the dynamic and complex 
combat environment. This corresponds to the process of collecting information about the environment in 
reinforcement learning, providing the first step for an effective learning process. 

2) Combat State (Observation): At this stage, battlefield information is provided to the agent. Various 
information collected in the field is processed in real-time and delivered to the reinforcement learning agent. 
This allows the agent to understand the current situation through integrated battlefield situation awareness, 
predict future possibilities, and decide on the next action. 

3) Mission Planner (Agent): As the core element of the central, this reinforcement learning-based agent makes 
optimal actions based on incoming real-time combat situation data. This decision process is carried out by a pre-
trained reinforcement learning model, which learns how to achieve the objectives of the mission in a complex 
environment. 

4) Commander: Lastly, the agent's decision is passed onto the Commander for execution. The actions decided by 
the agent are delivered as commands to the actual UAVs, enabling specific tasks such as movement, target 
detection, and attack. 
 

Therefore, Centralized Mission Planning Architecture realizes the strategy of collecting and processing data from 
various sources of information, planning and adjusting UAV's actions adaptive to real-time battlefield conditions. This 
enables real-time strategic decision-making and quick response, enhancing overall combat efficiency and survivability. 

3.2 Construction of Reinforcement Learning Environment 

We have developed a tailored reinforcement learning environment for the MUM-T problem. In this environment, we 
have deployed a single Fighter UAV, a Jammer, and a SAM system, each with predefined attack ranges and jamming 
distances. The primary objective of the mission is to collaboratively engage in jamming operations, neutralize the 
targeted SAM system, and subsequently eliminate it by maneuvering the Fighter UAV. Successful completion of the 
mission is determined by reaching the designated Goal Point. 
We constructed a custom reinforcement learning environment for MUM-T in the context of UAV mission planning. 
In our MUM-T environment, we deployed one Fighter UAV, a Jammer, and SAM systems, each with defined attack 
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ranges and jamming distances. The ultimate objective of the mission is to perform cooperative jamming with the 
Jammer, rendering the SAM incapable of attacking, and subsequently destroying the SAM by maneuvering the Fighter 
UAV. Successful completion of the mission is achieved when the UAV reaches the final destination, referred to as the 
Goal Point. 
To develop the environment, we utilized the Gym library, an open-source framework for reinforcement learning 
environments. The space in which the UAVs can move is represented as a 2D grid. Since the lower-level control 
aspects such as heading and velocity of the UAVs are assumed to be handled autonomously at AFRL ACL Level 5, 
the centralized mission planning framework focuses on the higher-level control responsible for planning mission-
related values, namely waypoints and mission points, based on the information of multiple UAVs and the battlefield 
state. To facilitate the learning process, we discretized the mission space into a 30x30 grid, consisting of a total of 900 
cells. 
The action space for each UAV is defined as a discrete multi-action space, enabling each agent to independently select 
actions. The Fighter UAV and Jammer have five possible actions: left, right, up, down, and attack. Discretizing the 
action space simplifies learning and control [Figure 5, 6]. 

       
 

              Figure 5: UAV’s Action                     Figure 6: Discrete Multi-action Space and Observation Space 
 
At each time step, the agents move within the grid environment according to their chosen actions. We impose boundary 
conditions (penalties) to prevent the UAVs from moving outside the grid boundaries. Additionally, we handle potential 
collisions between the Fighter and Jammer by detecting collisions and assigning penalties accordingly. 
To address the collaboration aspect among the UAVs, we model specific functionalities and interactions between the 
agents. When the Jammer engages in jamming and the SAM is not within the attack range, a penalty is incurred. 
However, if the SAM is within the attack range, successful jamming leads to a reward, rendering the SAM inoperable. 
The Fighter has a total of five attack opportunities and failing to attack (when the SAM is not within the attack range) 
results in losing one attack opportunity and receiving a penalty. On the other hand, if the SAM is within the defined 
attack range, the SAM is neutralized, and a reward is given. Importantly, the Fighter cannot attack if it is not engaged 
in jamming, as the attack range of the Fighter is shorter than the jamming distance. 

 

3.3 Training Method of the Agent using PPO Algorithm 

In this study, we utilized PPO, a type of RL algorithm and a variant of the Advantage Actor Critic algorithms. The 
objective function of PPO, known as the Surrogate Objective, aims to update the policy in a way that minimizes the 
difference between the current policy and the previous policy [15][17].  
The Surrogate Objective is represented as follows: 
 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝑆𝑆𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹 =  �̂�𝐸𝑡𝑡 �

𝜋𝜋𝜃𝜃(𝑆𝑆𝑡𝑡 ∣ 𝑠𝑠𝑡𝑡)
𝜋𝜋𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃(𝑆𝑆𝑡𝑡 ∣ 𝑠𝑠𝑡𝑡)

�̂�𝐴𝑡𝑡�  (1) 

   
In the formula, a 𝑆𝑆𝑡𝑡 and 𝑠𝑠𝑡𝑡 denote the action and state at time step t, respectively, 𝜋𝜋𝜃𝜃  represents the policy, and �̂�𝐴𝑡𝑡 
stands for the estimator of the advantage function at timestep, while �̂�𝐸𝑡𝑡 refers to the expected value of the function. At 
this point, when we refer to the ratio of the previous policy to the current policy as 𝑆𝑆𝑖𝑖(𝜃𝜃), it can be represented as 
follows: 
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𝑆𝑆𝑖𝑖(𝜃𝜃) =  �

𝜋𝜋𝜃𝜃(𝑆𝑆𝑡𝑡 ∣ 𝑠𝑠𝑡𝑡)
𝜋𝜋𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃(𝑆𝑆𝑡𝑡 ∣ 𝑠𝑠𝑡𝑡)

� (2) 

   
The PPO algorithm employs a strategy known as Clipping to restrict the similarity between the current and previous 
policies. Clipping refers to keeping the value of 𝑆𝑆𝑖𝑖(𝜃𝜃) between 1-ϵ and 1+ϵ, and it can be represented as follows: 
  

 
 clip (𝑆𝑆𝑖𝑖(𝜃𝜃),1 − 𝜖𝜖, 1 + 𝜖𝜖) = �

1 + 𝜖𝜖, if 𝑆𝑆𝑖𝑖(𝜃𝜃) ≥ 1 + 𝜖𝜖
1 − 𝜖𝜖, if 𝑆𝑆𝑖𝑖(𝜃𝜃) ≤ 1 − 𝜖𝜖
𝑆𝑆𝑖𝑖(𝜃𝜃), otherwise 

 (3) 

 
 

 By employing this Clipping technique, we can represent the optimization problem with the new objective function 
𝐿𝐿𝑡𝑡
𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐(𝜃𝜃) and 𝜃𝜃 as follows: 

 
 𝐿𝐿𝑇𝑇

𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐(𝜃𝜃) = min{𝑆𝑆𝑖𝑖(𝜃𝜃)𝐴𝐴𝜋𝜋𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥𝑡𝑡 ,𝑆𝑆𝑡𝑡), clip (𝑆𝑆𝑖𝑖(𝜃𝜃),1 − 𝜖𝜖, 1 + 𝜖𝜖)𝐴𝐴𝜋𝜋𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥𝑡𝑡 ,𝑆𝑆𝑡𝑡)}
𝜃𝜃 ← arg max𝜃𝜃 ∑𝑡𝑡=0

∞  𝐸𝐸𝑥𝑥0:𝑢𝑢𝑡𝑡∼𝑐𝑐𝜃𝜃𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥0:𝑆𝑆𝑡𝑡)�𝐿𝐿𝑇𝑇
𝑐𝑐𝜃𝜃𝑖𝑖𝑐𝑐(𝜃𝜃)�

 (4) 

 
1) 𝐴𝐴𝜋𝜋𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥𝑡𝑡 ,𝑆𝑆𝑡𝑡) > 0 : In state 𝑥𝑥𝑡𝑡, the selected action  𝑆𝑆𝑡𝑡 is in a better state compared to the average. Hence, 

the new policy will have a higher probability value than the policy that selected that action. This increases 
the value of 𝑆𝑆𝑖𝑖(𝜃𝜃), albeit limiting it to 1+ϵ 

2) 𝐴𝐴𝜋𝜋𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥𝑡𝑡 ,𝑆𝑆𝑡𝑡) < 0 : In state 𝑥𝑥𝑡𝑡, the selected action  𝑆𝑆𝑡𝑡 is in a worse state compared to the average. Therefore, 
the new policy will have a lower probability value than the policy that selected that action. This decreases 
the value of 𝑆𝑆𝑖𝑖(𝜃𝜃), albeit limiting it to 1-ϵ 
 

 
Algorithm 1 PPO, Actor-Critic Style [16] 

for iteration = 1,2, … do 
for actor = 1,2, … ,𝑁𝑁 do 

              Run policy 𝜋𝜋𝜃𝜃old  in environment for 𝑇𝑇 timesteps 
              Compute advantage estimates �̂�𝐴1, … , �̂�𝐴𝑇𝑇 

end for 
Optimize surrogate 𝐿𝐿 wrt 𝜃𝜃, with 𝐾𝐾 epochs and minibatch size 𝑀𝑀 ≤ 𝑁𝑁𝑇𝑇 

𝜃𝜃old ← 𝜃𝜃 
end for 

 
 

 
 

Figure 7: General Architecture of PPO based Training [18] 
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4. Training Results and Analysis 
 

In this section, we present the results obtained from the application of our proposed mission planning strategy on SEAD 
missions. The results were achieved by simulating a variety of SEAD mission scenarios within our reinforcement 
learning environment and observing the performance of our PPO-trained agent.  

4.1 Training Setup 

In our research, we employed the PPO algorithm to facilitate effective learning for the Fighter and the Jammer. 
Although the learning scenario is configured for the Fighter to attack the SAM, there exist several significant 
constraints. 
Firstly, the Fighter is limited to having a maximum of only five missiles. Moreover, if the Jammer does not precede in 
jamming the SAM, the Fighter is not permitted to carry out an attack. Additionally, it is necessary to find a path that 
prevents the two entities from colliding, and they are not allowed to move beyond a designated space. Lastly, the agent 
must plan its mission utilizing only the information available from its observable points. 
To overcome these constraints, we designed a reward system as detailed in Table 3. This system is composed of two 
components, Penalty and Reward. The Penalty component enables the agent to learn swiftly and in the correct direction, 
while the Reward component is applied to actions such as attack and jamming, encouraging the discovery of optimal 
policies under different situations. Through this method, we anticipate that the agent can learn efficiently and achieve 
its objectives while satisfying the constraints. 

 
Table 2 Reward 

Penalty Reward 

1) Step 

2) Crash 

3) Mission Fail 

1) Conservation  

2) Survival  

3) Arrival  

4) Attack  

. 
In the PPO algorithm, several key hyperparameters significantly influence performance. The learning rate determines 
the step size for model parameter updates; a lower rate fosters stable yet slower training, while a higher rate can hasten 
convergence but may lead to instability. The discount factor, or gamma, arbitrates the importance of immediate rewards 
versus future ones, with the optimal value being goal dependent. The batch size influences the number of samples 
utilized in each update, affecting both the speed of learning and memory requirements. Smaller batch sizes may slow 
down learning but are less memory-intensive, while larger ones could speed up learning at the expense of more memory. 
Lastly, the number of steps (n_steps) per training step also has a significant effect on both learning speed and memory 
usage. In our study, we adjusted and compared several parameters to find the optimal set. The results of this are 
presented in Table 4. 
 

Table 3: Hyperparameter Setting 
Parameter Value 

Leaning Rate 
Gamma 
N_steps 
Batch Size 

0.003 
0.99 

1024 
128 

 
Another significant element in reinforcement learning is the 'Observation,' which signifies the current state of the 
environment or the representation of the state. This serves as critical information that the agent uses to make decisions. 
A trained agent understands the environment based on the Observation Space used during the learning process, and 
links this understanding to the actual battlefield situation and the determination of the optimal policy. The following 
description illustrates the types of Observation Space and corresponding values utilized in our research [Table 5]. 

 
 

DOI: 10.13009/EUCASS2023-663



Centralized Mission Planning for UAV MUM-T in SEAD Operations Using PPO 
     

 8 

Table 4: Observation Spaces 
Type Data Format Code 

Sam Position Integer 'sam_pos': spaces.Box(low=-GRID_SIZE, high=GRID_SIZE, 
shape=(2,), dtype=np.int32) 

Fighter Position Integer 'fighter_pos': spaces.Box(low=-GRID_SIZE, 
high=GRID_SIZE, shape=(2,), dtype=np.int32) 

Jammer Position Integer 'jammer_pos': spaces.Box(low=-GRID_SIZE, 
high=GRID_SIZE, shape=(2,), dtype=np.int32) 

Goal Position Integer 'goal_pos': spaces.Box(low=-GRID_SIZE, high=GRID_SIZE, 
shape=(2,), dtype=np.int32) 

Is Fighter Alive True / False 'is_f_alive': spaces.Discrete(2) 
Is Jammer Alive True / False 'is_j_alive': spaces.Discrete(2) 

Number of Weapons Integer num_wp': spaces.Box(low=0, high=NUM_W, shape=(1,), 
dtype=np.int32) 

Is SAM Alive True / False 'is_s_alive': spaces.Discrete(2), 
Is Jamming True / False 'is_jamming': spaces.Discrete(2) 

Is Fighter Arrived True / False 'is_f_arrived': spaces.Discrete(2) 
Is Jammer Arrived True / False 'is_j_arrived': spaces.Discrete(2) 

Crashed True / False 'is_crash': spaces.Discrete(2) 

4.2 Training Results 

In Section 4.2, we provide a detailed analysis of the training results from our research. The outcomes are presented in 
terms of the Episode Length Mean, Episode Reward Mean, and Value Loss. 

 

 
Figure 8: Episode Length Mean 

 
"Episode Length Mean" in reinforcement learning indicates the average number of steps taken by the agent before it 
reaches a terminal state. This metric is utilized to assess the progress and efficiency of the agent's learning. Initially, 
the episode length was over 500 but gradually decreased to below 100, and by the end of the training, it registered at 
61.1[Figure 8]. 
 

 
Figure 9: Episode Reward Mean 

 
In reinforcement learning, the "Episode Reward Mean" represents the average total reward an agent accumulates 
throughout an episode. This metric serves as a crucial indicator of the agent's performance, with a higher average 
reward typically signifying that the agent is learning actions leading to more favorable outcomes in the given 
environment. In our scenario, the agent receives a reward of 200 upon successful completion of the mission and incurs 
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a penalty of -0.2 for each step taken. Taking this into account, the convergence of the reward function towards 188 
validates the effective progress of the training. 

 

 
Figure 10: Value Loss 

 
In reinforcement learning, "Value Loss" signifies the difference between the agent's predicted and actual returns. A 
smaller value loss indicates more accurate predictions of returns, thereby reflecting the agent's effective learning. As 
seen in Figure 10, the value loss decreases as the training progresses, with the average over 10,000 time steps 
converging approximately to 1.2. 

 

 
Figure 11: The Smooth Interpolated Trajectory of a Successful Mission 

 
Figure 11 represents the simulation results using the trained model. The trajectories have been processed with smooth 
interpolation to ensure that overlapping paths are not visible. The figure includes the Jamming Point and Attack Point. 
The larger circle represents the attack range of the SAM before jamming, while the smaller circle represents the SAM's 
range after jamming. As evident from the results, each UAV has planned its path to avoid collision with other UAVs 
while successfully completing the mission. 

4.3 Performance Evaluation 

To evaluate the performance of the trained model, we assessed its responsiveness to changes in the environment. This 
was done by randomly varying the positions of the SAM, the goal, and the starting points of the two UAVs. The 
termination criterion for the tests was set at 100 steps, and a successful evaluation was based on the model successfully 
intercepting the SAM and passing through the goal point within 100 steps. The results are as follows: 

 
Table 5: Evaluation Result 

Test Cases Rate of Success 
100 78% 
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5. Conclusions 
 
In this study, we have designed and validated a centralized mission planning strategy for UAVs engaged in SEAD 
operations. Leveraging the capabilities of the PPO algorithm, we trained a model to discern and implement the optimal 
strategy for cooperative SAM neutralization by Fighter and Jammer units. 
Our training outcomes showcased considerable improvements across various performance indicators. The Episode 
Length Mean fell from over 500 to a mere 61.1, evidencing the agent's efficiency in mission execution. The Episode 
Reward Mean stabilized around 188, underscoring the agent's learned proficiency in selecting rewarding actions while 
considering penalties. Concurrently, the Value Loss diminished over training iterations, indicating the agent's enhanced 
accuracy in forecasting returns. 
We further examined the adaptability and robustness of our model under environmental modifications. By randomizing 
the positions of SAMs, goals, and starting points, we evaluated the model's capability to successfully neutralize SAMs 
and reach the goal within limited steps. The results manifested high success rates under the specified constraints. 
The implications of our developed centralized mission planning strategy for real-world applications are noteworthy. 
By effectively integrating and leveraging manned and unmanned platforms, military operations could benefit from 
superior situational awareness, augmented lethality, and enhanced survivability. The integration of AI-driven mission 
planning systems holds the potential to curtail mission failures, optimize resource allocation, and ultimately safeguard 
valuable resources and lives. 
Nonetheless, the scope for further research and enhancements remains. Future work could delve into more intricate 
and dynamic battlefield environments, incorporate advanced multi-agent frameworks for precise collaboration between 
Fighter and Jammer units, and contemplate communication limitations for realistic decision-making. 
In conclusion, our research furnishes a comprehensive solution for mission planning in SEAD operations by harnessing 
the potential of reinforcement learning and the PPO algorithm. The outcomes affirm the efficacy of the proposed 
strategy in enhancing mission efficiency and success rates. This work significantly contributes to the military 
technology domain, emphasizing the criticality of integrating manned and unmanned systems for optimal mission 
outcomes. 
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