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Abstract
In this work we explore the benefits of thrust vectoring to reduce the take-off distance of a combat aircraft.
To assess the aircraft’s pure performance and handling qualities, the optimal control method is proposed
herein to avoid the need to design preliminary Flight Control Laws (FCL) to simulate the aircraft. This
becomes even more relevant for combat aircraft, usually open-loop longitudinally unstable, where a sub-
optimal FCL might not fully exploit the capabilities of the plant and lead to misleading design decisions.
We conclude that without thrust vectoring, the aircraft is limited by its capability to rotate early on and
build up enough angle of attack, whereas with thrust vectoring it is limited by the maximum rotation angle
due to tail strikes. Overall, we find that the take-off distance is reduced by 38%. The optimal control
method helps to understand how thrust vectoring can be used efficiently, to introduce a pitch up moment
that induces the rotation, followed by a pitch down moment that stops it and prevents impacts against the
tarmac.

1. Introduction

The early design stages of a new aircraft are a multidisciplinary challenge in which a large number of configurations
of different nature are compared.

To study the capabilities of a particular design, the optimal control method is a powerful tool. This method solves
the vehicle’s control time-histories that minimize a given functional. In this work, we study the aircraft’s dynamics
as it takes–off and climbs, but many other targets are possible: minimizing fuel consumption, performing exercise
manoeuvers, following a given path, etc. The method has been widely used in the context of race–car simulation,12

launch and reentry flight,2, 9, 11 robotics,2, 14 orbital mechanics,2 and tumoral studies.7

Amongst all the optimal control methods, we have implemented a collocation solver that uses the trapezoidal
rule.5 Optimal control methods have been traditionally divided into direct and indirect methods. Their main difference
is that direct methods first discretize, then optimize the problem, whereas indirect methods first optimize, and then
discretize the problem. As a result, direct methods require to solve a nonlinear programming (NLP) problem using an
optimization toolbox (e.g. Ipopt15 or SNOPT4), whereas indirect methods require the user to first write the maximum
principle equations of their dynamic system,3 and then solve the resulting nonlinear equations. We have chosen the
direct collocation method since it results in a much simpler implementation, scallable, easier to parallelize, and with
the possibility to derive a generic optimal control toolbox that applies to any physical system (e.g. GPOPS-II11).

This technique allows us to study the effect of thrust vectoring on take–off. The main benefit of the optimal
control method is that it takes the handling of the aircraft out of the equation, since that responsibility falls on the
optimization process, while retaining all the dynamic effects of the simulation. Thus, the controls are optimal in the
sense that they are the best possible such that the aircraft best executes the desired manoeuvre, in this case, to maximize
the take–off final altitude. Other methods include the development of a manned simulator, but this requires the design
of ad hoc Flight Control Laws, which is not immediate for highly manoeuverable combat aircraft; or the study of the
pitch onset produced by thrust vectoring employing simplified models. The latter, however, does not consider all the
dynamic effects and may lead to inaccurate conclusions.

The rest of this work is organized as follows: in Sec. 2 we present the 3dof pitch aircraft model, in Sec. 3
we describe the collocation method and its application to the take–off problem, in Sec. 4 we show and discuss the
simulation results, and in Sec. 5 we draw the final conclusions.
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2. Aircraft model

In this work we consider the equations that describe the pitch motion of an aircraft. The velocity of the aircraft is
~v = (vx, 0, vz), and its angular velocity is ~ω = (0, q, 0), where the pitch rate q is the time derivative of the pitch angle θ.

The motion of the aircraft is described by the body–axes linear and angular momentum equations,

mv̇x + mqvz = fx,aero + fx,engine + fx,lg − mg sin θ, (1)
mv̇z − mqvx = fz,aero + fz,engine + fz,lg + mg cos θ, (2)

Iyyq̇ = my,aero + my,engine + my,lg, (3)

where m and Iyy are the aircraft’s mass and pitch inertia, ~faero are the aerodynamic forces, ~fengine are the propulsive
forces, ~flg are the landing gear forces, and g = 9.81 m/s2 is the gravity acceleration.

2.1 Aerodynamic model

The aircraft model is a simplistic dataset that depends on the angle of attack α = atan(vz/vx), and the HTP δhtp and flap
δflaps deflections,

fx,aero =
1
2
ρV2S Cx

(
α, δhtp, δflaps

)
, (4)

fz,aero =
1
2
ρV2S Cz

(
α, δhtp, δflaps

)
, (5)

my,aero =
1
2
ρV2S Cmy

(
α, δhtp, δflaps

)
, (6)

An example of an aerodynamic dataset for a combat aircraft can be found in.10 No atmospheric wind was considered
in the simulations presented herein.

2.2 Engine model

The engine model is also a simplified linear thrust model,

T = Tmaxδpla (1 − p0|δtv|) , (7)
fx,engine = T cos δtv, (8)
fz,engine = −T sin δtv, (9)

my,engine = ~rplume ∧ ~fengine, (10)

where δpla is the power lever angle in [0, 1], δtv is the deflection angle of the thrust-vectoring-capable nozzle, and ~rplume
is the position of the nozzle with respect to the center of gravity. Note that we have included an efficiency term on the
thrust that accounts for losses due to the deflection of the nozzle.

The dynamics of the engine are also taken into account by adding a first order lag filter on the pilot command,

2δ̇pla + δpla = δpla,cmd. (11)

2.3 Landing gear model

While on land, the aircraft uses the nose and main landing gear to move along the runway. From the position and
orientation of the aircraft, we can compute the vertical position of the wheels’ contact points, znose and zmain, and from
its velocity and rates we can compute their derivatives, żnose and żmain.

Thus, we compute the loads on each of the landing gears as those produced by the spring and damping of the
suspension and tire carcass,

Ni = max (0, kizi + ciżi) > 0, (12)

where ki is the spring stiffness and ci is the damping constant.
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2.4 Summary

We stack all the equations and write them as a system of first order ordinary differential equations,

q̇ = f (q,u) , (13)

where q =
(
z, vx, vz, θ, q, δpla

)
∈ RNq=6 is the state vector and u =

(
δhtp, δflap, δpla,cmd, δtv

)
∈ RNu=4 is the control vector.

3. Optimal control

In this section we describe the optimal control methodology used throughout this work. Among the different techniques
in the literature, we implement a first order collocation method known as the trapezoidal rule. This method is selected
mainly due to its ease of implementation and for being plant independent, as opposed to indirect methods, which
require to derive a set of mathematically intense equations from Pontryagin’s principle.6 Ultimately, this enables one
to implement an optimal control toolbox which can be applied to any dynamic system.11

3.1 Dynamic equations

Since we are interested in controlling the aircraft during the take–off and climb phases, it is beneficial to use the position
along the runway instead of the time as the independent variable. Thus, we rewrite the dynamic equations (13) using
ẋ = vx,

dq
dx

=
1
vx

f (q,u) − f? (q,u) . (14)

This is a common practice in other fields such as race–car simulation, where the vehicle must follow a curvilinear
trajectory along a two–dimensional racetrack.12

Next, we discretise the runway into a mesh of n + 1 points, x = (x0, x1, ..., xn), where x0 = 0 and xn = L is the
length of the runway. Then, we define qi = q (xi) and ui = u (xi) as the approximations of the states and controls at
each point of the mesh.

We use the trapezoidal rule to numerically approximate the integral of the dynamic equations in the n elements
ei = [xi, xi+1],

qi+1 − qi =
1
2

∆xi

(
f?i + f?i+1

)
, i = 0, ..., n, (15)

where f?i = f?
(
qi,ui

)
, and the mesh spacing (which is allowed to spatially vary) is ∆xi = xi+1 − xi. Note that the

resulting scheme is implicit.
Usually, when simulating a dynamic system one knows the positions of the controls at each point ui (either

imposed if the plant is open loop, or derived from the control laws) and can sequentially solve the equations from the
initial to the final positions. However, in the optimal control method, the controls are unknown and they result from
the solution of an optimization problem. Thus, we recast (15) as a set of constraints for the optimization problem,

ci = qi+1 − qi =
1
2

∆xi

(
f?i + f?i+1

)
= 0, (16)

note that n × Nq constraints are required to approximate the full aircraft dynamics in the complete mesh.

3.2 Fitness function

The dynamic equations impose Nq equations per computational point, but the Nu degrees of freedom of the control
variables ui remain free. Thus, they are computed such that they maximize a given fitness function. In the take–off

case, we maximise the altitude of the aircaft at the mesh’s endpoint,

fz = z
(
t f

)
=

∫ t f

0
żdt =

∫ L

0

ż
vx

dx ≈
n∑

i=0

∆xi

2

((
ż
vx

)
i
+

(
ż
vx

)
i+1

)
. (17)

Usually, the solution to optimal control problems yield unpractical solutions due to very high frequency compo-
nents in the control variables. A common practice to limit these oscillations is to augment the fitness function with a
term that penalises the control rates,

fu =

Nu∑
c=1

∫ L

0
εcu̇2

cdx ≈
n∑

i=0

∆xi

2

Nu∑
c=1

εc

(
u̇2

c,i + u̇2
c,i+1

)
, (18)
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Table 1: Variable bounds for the states and control positions and rates
State variables z [m] vx [m/s] vz [m/s] q [deg/s] δpla [-]

(−∞,−2.2] [0.6, 200.0] [−100.0, 100.0] [−50, 50] [0, 1]

Control variables δhtp [deg] δflap [deg] δpla,cmd [-] δtv [deg]
position [−25, 25] [−30, 30] [0, 1] [−10, 10]
rate [−70, 70] (−70, 70) [−100, 100] [−40, 40]

where εc are Nu dissipative constants that can be tuned: small values lead to more oscillatory controls, while larger
values lead to slower ones.

Thus, the fitness function to be minimized is

f =

n∑
i=0

∆xi

2

((
ż
vx

)
i
+

(
ż
vx

)
i+1

)
+

n∑
i=0

∆xi

2

Nu∑
c=0

εc

(
u̇2

c,i + u̇2
c,i+1

)
. (19)

3.3 Time derivatives of the controls

Since we have involved the time derivatives of the controls in the fitness functions, we need n × Nu extra variables (the
time derivatives of the controls along the mesh, u̇i) and constraints in the problem to compute them,

ui+1 − ui −
∆xi

2

((
u̇
vx

)
i
+

(
u̇
vx

)
i+1

)
= 0, i = 0, ..., n. (20)

Including the time derivatives of the controls has an extra benefit, as it allows us to bound them, introducing
actuator rate limit effects in the system.

3.4 Stability constraints

We add two extra constraints that represent restrictions to the optimal control solution on all mesh points:

1. The aircraft’s angle of attack shall remain within 0◦ 6 α 6 30◦

2. The aircraft’s rearmost point must always maintain a minimum clearance with the ground, ztail 6 −0.5 m.

3.5 Variable bounds

As part of the optimization problem, we have specified bounds for the search space in all of the unknowns (state,
controls, and control derivatives). The full set of bounds is listed in Table 1.

3.6 Summary: nonlinear programming (NLP)

The optimal control problem is casted in its NLP form,

min f (x) , s.t. (21)
c (x) = 0 (22)

dL 6 d (x) 6 dU (23)
xL 6 x 6 xU (24)

where x =
(
q1,u1, u̇1, ..., qn+1,un+1, u̇n+1

)
∈ Rn×(Nq+2Nu), c ∈ Rn×(Nq+Nu) represents the concatenation of all the dynamic

(15) and control derivatives (20) equations, d ∈ R2n represents the two stability constraints per point, and xL and xU

are the variable bounds.
The NLP is solved using Ipopt,15 an open source package for large–scale optimization which implements the

interior point method. Typically, this software is able to find solutions to the optimal control problem in less than 500
iterations.
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3.7 Automatic differentiation (AD)

The interface of the NLP to Ipopt requires the evaluation of the gradient and Hessian of the fitness function and
constraint function. Two common approaches are

1. the numerical evaluation of derivatives using finite differences,8

2. the exact calculation of derivatives (by hand or symbolic math toolboxes),

3. the evaluation of derivatives using automatic differentiation.13

The first approach is numerically expensive and inaccurate, and the second approach is tedious and error–prone.
In this work, we use automatic differentiation to compute the first and second order derivatives. Automatic differ-
entiation evaluates derivatives via operator overloading of the equations in the software. By recording a tape of the
computations, the software is able to reproduce the steps to compute their first and second order derivatives. To compute
the derivatives required to interface our NLP, we have used the open–source software CppAD.1

Finally, some of the functions used in the model need to be sufficiently smooth so that their derivatives are well
defined. Thus, we use the following approximations for the absolute value and max functions,

max (0, x) ≈
1
2

(
x +
√

x2 + ε2
)
, |x| ≈ x tanh (x/ε) , (25)

with ε being a sufficiently small constant number.

4. Simulations

In this section we show the capabilities of the optimal control solver to simulate a aircraft take–off, and the improvement
in the take–off distance that the thrust vectoring attains. In all simulations, the thrust power lever angle is fixed to
maximum reheat, i.e., not part of the optimal control solution. The simulation takes into account the engine dynamics
from idle to maximum power by means of the engine dynamic model (11).

4.1 Take–off without thrust vectoring

We start by fixing the engine nozzle to its nominal position to study the aircraft without thrust vectoring. Results are
shown in Fig. 1. We have solved the optimal control problem in a runway of 600 m discretized into 801 points, for
which Ipopt took 250 iterations. The simulation includes two cases: without flaps (blue), and with the flaps fully
deflected (red). In this simulation, only the HTP is used to control the aircraft. In the plots, the circle represents the
instant at which the nose gear lifts and the aircraft starts its rotation, and the cross represents the instant when the main
gear lifts and the aircraft takes off.

We see that the aircraft’s take off is mostly limited by its capability to effectively rotate and build up a large angle
of attack, neccessary to lift the aircraft. The HTP deflects to its maximum pitch-up position as the speed increases.
When the aircraft reaches a certain speed, the nose gear lifts and the aircraft starts the rotation, which increases the
angle of attack and the lift of the aircraft. Then, when a sufficient angle of attack is reached, the HTP starts to reduce the
pitch up since the aircraft is highly unstable longitudinally, and the clearance point constraint comes into play. Finally,
the main gear separates from the gound and the aircraft lifts off. The HTP is used from then on to stabilise the aircraft,
but no longer saturated in position nor rate.

We confirm that the aircraft with flaps is able to reduce the take–off distance, but not much, since the aircraft is
limited by its capability to rotate and the control power of the HTP rather than the capability of the wings to generate
lift. Thus, the use of thrust vectoring is expected to be very beneficial to reduce the take–off distance.

4.2 Take–off with thrust vectoring

We recompute the solutions to the optimal control problem, this time, using both the HTP and thrust vectoring to
control the aircraft’s attitude. Fig. 2 summarizes the results. In this case, we consider the aircraft with the flaps fully
deflected to max. lift configuration. In blue, we have represented the solution without thrust vectoring (nozzle at 0
deg), and in red the solution with thrust vectoring in the loop. It is evident that thrust vectoring makes a difference
since the take–off distance (the abcissa of the cross marker in the plot) is reduced from 360m to 225m (38%).

In the simulation with thrust vectoring, the sum of the HTP and the thrust vectoring can produce the required
amount of torque to rotate the aircraft at any speed, but they must wait until the speed is large enough to produce the
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Figure 1: Optimal control simulation without thrust vectoring. We compare the aircraft’s performance without (blue)
and with (red) fully deflected flaps.

Figure 2: Optimal control simulation with thrust vectoring. We compare the aircraft’s performance without (blue) and
with (red) fully deflected flaps.
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required lift once the aircraft reaches the maximum angle of attack. Recall that the maximum angle of attack on ground
is limited by the minimum tail-ground clearance condition.

Thus, after the aircraft has started to rotate, the HTP and the thrust vectoring must reduce the pitch up to prevent
the aircraft’s tail hitting the ground. Consequently, as opposed to the case without thrust vectoring, where the take–off

distance was limited by the capability of the aircraft to rotate, in the case with thrust vectoring the take–off distance is
limited by the minimum speed at which the aircraft produces enough lift at the maximum angle of attack. We see that
the aircraft with thrust vectoring accelerates less than the aircraft with a fixed nozzle, due to the reduction in engine
efficiency caused by the nozzle deflection.

5. Conclusions

In this work we have studied the benefits of a thrust vectoring control system to reduce the take–off distance of a
combat aircraft. To do so, we have studied solutions to an optimal control problem applied to the vehicle’s longitudinal
dynamics, as opposed to other traditional techniques which require the development of ad hoc Flight Control Laws to
stabilise aircraft that may have relaxed open-loop stability characteristics, or the study of pitch onset and acceleration
metrics employing reduced models that don’t make use of the available aerodynamic dataset in its entirety.

This methodology was applied to compare several optimal take–off manoeuvres with and without thrust vector-
ing, to conclude that the take–off distance is reduced by 38% in the former case. We have seen that deflecting the flaps
accelerates the take–off but the gain is not remarkable, since the aircraft is limited by its capability to rotate early on
due to the control power of its HTP surface. The thrust vectoring control can overcome this difficulty as the aircraft
can rotate and reach its maximum angle of attack earlier, thus decreasing the take–off distance.
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