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Abstract
Toxic substance contamination of the environment is a major issue. Remote sensing, which employs
unmanned aerial vehicles (UAVs) equipped with multispectral or hyperspectral sensors, provides high-
resolution data without requiring destructive samples and can detect plant distress before visual symptoms
occur. In this study, the effect of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons
(PAH) soil contamination on maize plant development was examined using multispectral data from a UAV,
and preliminary results with the usage of hyperspectral are discussed. The findings of this work demon-
strate the utility of UAV-based multispectral and/or hyperspectral analysis in predicting characteristic plant
changes caused by soil changes, giving useful information for improving environmental monitoring effi-
ciency.

1. Introduction

The problem of soil pollution is a widespread phenomenon worldwide and has severe impacts on human health and the
ecosystem.1 In particular, heavy metals are among the most dangerous pollutants as they do not degrade naturally and
can accumulate in the soil, contaminating both the soil and groundwater. The combined use of plant knowledge and
earth observation techniques constitutes an innovative element to improve environmental monitoring capabilities. The
key element is the ability of vegetation to function as a "sentinel" for multiple phenomena. In fact, several plants are able
to function as bio-indicators, modifying their characteristics when exposed to certain pollutants. The chemical/physical
changes that these bio-indicators show when subjected to stress often result in alterations of their optical properties and
can therefore be "read" by different remote sensors. The activities described in this work are part of the STOPP ("Earth
Observation Tools and Techniques in Proximity and Persistence") project, funded by the Italian Space Agency (ASI).
One of the objectives of the project is to investigate the relations between pollutants and bioindicators and the potential
applications of an environmental monitoring system based on the acquisition of data from sensors installed on proximal
and remote sensing platforms. The usage of small unmanned aerial vehicles (UAVs) equipped with multispectral,
hyperspectral or thermal sensors is becoming increasingly relevant in environmental monitoring.2 In particular, the use
of multispectral data collected from a UAV allows for the detection of changes in the plants’ spectral characteristics,
providing valuable information on a wide variety of uses, including plant distress detection, soil moisture assessment,
and crop monitoring. Furthermore, information on the impact of soil contamination on plant development thanks to
high-resolution data of the proximal and remote sensing sensors can be obtained without further requiring destructive
samples.3–6

Maize is a staple crop and an essential source of food for many people worldwide. In particular, it is the second
forage species cultivated in the Campania Region, also including the area referred to as "The Triangle of Death", the
area on which the studies of the STOPP project focus.7 UAV technologies have often been exploited to determine the
impact of environmental conditions on crop yield, especially to predict production losses or to manage the irrigation
system with minimal disturbance to the plants.8, 9
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UAV-based multispectral data has a wide range of environmental monitoring applications, including soil pol-
lution studies and maize plant monitoring.5, 10 The findings of some studies show the efficacy of UAV-based data
in forecasting distinctive plant changes caused by soil changes, emphasizing the need of utilizing this technology to
improve the effectiveness of environmental monitoring operations.

This study focuses on the use of multispectral and hyperspectral data acquired in proximal sensing using mini-
UAV systems to examine the effect of soil contamination caused by potentially toxic elements (PTEs) and polycyclic
aromatic hydrocarbons (PAH) on maize plant development. The findings of this study highlight the importance of this
technology in maize fields monitoring and the potential utility of these data within a bioindicator-based environmental
monitoring paradigm. This work is organized as follows. The experimental setup is described in Section 2. After that,
Section 3 describes the proposed methodology. The findings are then examined, followed by an analysis of the results
in Section 4 and potential future work in the last sections.

2. Experimental Setup

2.1 Soil contamination and humic treatment

The soil used in the experimentation was collected from the surface layer (0 - 20 cm) of clayey agricultural soil at the
experimental farm of the University of Naples Federico II, located in Castel Volturno (CE). The soil was developed on
ash and pumice pyroclastic parent material, and characterized by the following general properties: Vitrandic Haplucept
(USDA soil taxonomy), 8.5 pH (H2O), 24 % sand, 36 % silt, 40 % clay, 1.05 % organic carbon, 0.17 total nitrogen, 28.2
cmolkg−1 cation exchange capacity, 98.7gkg−1 total carbonates. After sampling, the soil was air-dried, sieved (5.00 Ø
sieve) and stored at room temperature for the contamination process. The concentrations used in the experimentation
were chosen on the basis of the soil contamination thresholds described by the Italian legislation (D.Lgs. 152/2006),
as exceeding tolerable levels of soil quality. In detail, the soil was spiked by adding 300 ml of an aqueous solution
containing a mixture of three inorganic contaminants (Zn, Pb, Cr) and benzopyrene to each pot (2.5 kg), considering
soil field capacity. After spiking, soil samples were incubated at room temperature for 10 days while moisture was
maintained at field capacity. The final concentration of each pollutant is reported in Table 3. The humic substances
used in the experimentation were extracted from a green compost produced in the composting facility of the same
experimental farm of the University of Napoli Federico II at Castel Volturno (CE). Compost was obtained by the
composting process of a static pile consisting of both horticultural and coffee residues under forced air insufflation.
Humic Substances (HS) were obtained by a KOH alkaline extraction from the dried compost and used in the form of
dried powder for the humic acid treatments. Briefly, humic solutions of 10gL−1 were prepared by dissolving the humic
acid powder extracted from the green compost in distilled water. The humic solutions were then added to each soil
sample by supplying 50 mL per pot at two different times of plant development: (i) at the transplant and (ii) at three
weeks after sowing.

Table 1: Experimental Setup.

Name Treatment # Replicates
A Control (Untreated) 12
B Spiked Soil 12
C Control + HS 4
D Spiked + HS 4

2.2 Plant Experiment

Maize seeds (Zea Mays L.) were sown in the soil pots and grown from September to December 2022, under greenhouse
conditions at ambient temperature (15-25 °C) and natural light. Basal fertilization (120, 60, and 166 mgkg−1 of N, P
and K, respectively) was applied to all soil pots, while the water-holding capacity of the soil was maintained between
40 and 70 % throughout the experiment. The experimental design consisted of the following thesis, as reported in
Table 1: control (untreated, A), spiked soil (B), control plus humic acid treatment (C), and sparked soil plus humic acid
treatment (D). The control A and spiked thesis B were replicated 12 times, while the humic acid treatments (C and D)
were both replicated four times. Sampling was performed eleven weeks after sowing, collecting the youngest and fully
expanded leaves. Biomass was determined (fresh and dry weight) to provide the plants yield for each treatment.
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2.3 Micasense Altum

The Micasense Altum is a compact and high-performance multi-spectral and thermal imager for UAV mapping.11 It
collects imagery in 5 spectral bands (blue, green, red, red edge, near-infrared as shown in Tab.2) and thermal. It has a
48-degree-by-37-degree field of vision with a GSD of 5.2 cm at 120 meters, making it excellent for plant phenotyping.
In addition to its image sensor specs, the Micasense Altum is equipped with a GPS and a Downwelling Light Sensor

Table 2: The Micasense Altum bands

Name Center Bandwidth
Blue 475 nm 20 nm
Green 560 nm 20 nm
Red 668 nm 10 nm
Red edge 717 nm 10 nm
Near infrared 840 nm 40 nm

(DLS). The DLS is an advanced incident light sensor that connects directly to the camera. During a mission, the DLS
measures the ambient light and sun angle and records this information, along with GPS location, in the metadata of
the captured images by the camera. This information can then be corrected for global lighting changes in the middle
of a flight, such as those that can happen due to clouds covering the sun. Jointly using the recorded metadata and an
appropriate calibration panel, it will be possible to compare acquisitions made at different times.

Figure 1: Configuration of plants arrangement.

3. Proposed Analysis

3.1 Test Description

To carry out the experiment, a customized Foxtech Hover 1 quadcopter has been used.12, 13 The drone was equipped
with the Micasense Altum camera and its DLS, as shown in Fig. 4. In order to ensure the right light acquisition,
the DLS was installed on top of the drone. The camera is, however, installed on the button of the vehicle without
the gimbal. In this way the camera and its Downwelling Light Sensor are integral. The drone’s original battery has
been replaced with a more performing one, capable of higher current despite the autonomy. In this configuration, the
complete system weight is around 3.5 kg with battery autonomy of approximately 20 minutes. The Drone performed

Table 3: The used doses of soil pollutants.

Pollutants Limit concentration Reagents Used dose
mgkg−1 Reagents mgkg−1

Cr 150 CrCl3 6H2O 450
Pb 100 PbCl3 300
Zn 150 ZnS O4 7H2O 450
Benzopyrene 0.1 benzopyrene 0.3

3

DOI: 10.13009/EUCASS2023-551



SHORT PAPER TITLE

Figure 2: Workflow on Micasense Altum bands.

two flights on plants grown in pots by Cermanu at the Reggia di Portici On November 8, 2022, and December 7, 2022.
The camera frame rate and drone flight plan were set, respectively, to 1 FPS and at an altitude of 15 m. In this way,
we obtained a GSD approximately equal to 0.4 mm and it was possible to avoid the waving tree phenomena induced
by the airstream generated by drone propellers. Regarding these drone flights, we segregated the area and ensured
that all individuals present were under mission control. In the next experiments, we will be flying at higher altitudes
in accordance with regulations. Before take-off, a camera calibration phase is needed. Figure 3 shows the calibration
panel used.

Figure 3: Calibrated Reflectance Panel.

Figure 4: The customized Foxtech Hover 1 quadcopter.

The contaminated (B-D) and non-contaminated (A-C) plants were arranged following the configuration shown
in Fig. 1 (the NIR image is shown in one of the acquired frames). Treatments C and D have a treatment with humic
substances. The acquired dataset contains both images with all the samples of the experiment and images with only
a subset of them. Using images with partial plant coverage, in this phase of the project, is useful to investigate the
techniques to generate orthophoto and 3d reconstruction. This arrangement aimed to simulate as much as possible a
canopy analysis, which is not currently possible, so it was decided to carry out an analysis only on the pixels related to
the leaves.14

3.2 Proposed Image Processing

Due to the close proximity of the drone to the object or to the significant variation in distances between the captured
objects in the images, the acquired data comprising 5 bands exhibits a pronounced spatial misalignment. This misalign-
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ment was compensated by exploiting the subpixel image registration by cross-correlation, proposed by.15 This registra-
tion provides the same degree of accuracy as the FFT upsampled cross-correlation method while requiring substantially
less calculation time and memory. The used registration begins by utilizing an FFT to acquire an initial estimate of
the cross-correlation peak. It then increases the accuracy of the shift estimation by using a matrix-multiply DFT to
upsample the DFT in close proximity to that estimate. This approach ensures that the upsampled cross-correlation is
computed using all picture points.

In Fig. 5, the RGB false-color image with the misalignment and the corrected one are shown. The drone serves
as a flying camera carrier, with all picture processing handled by specialist software. After the preprocessing phase, we
consider the Normalized Difference Vegetation Index (NDVI) and Modified Soil-Adjusted Vegetation Index (MSAVI)
between the plethora of vegetation indices commonly used by the remote sensing community.16–18 The considered
indexes are both commonly used in remote sensing and they take advantage of different reflection modes of vegetation
at red and NIR wavelengths.

Thus, starting from the preprocessed image, the NDVI and MSAVI were calculated using the following defini-
tions:

NDVI =
NIR − RED
NIR + RED

MS AVI =
1
2

(
(2 · NIR + 1) −

√
(2 · NIR + 1)2 − 8 · (NIR − RED)

)
(1)

where NIR is the Near-infrared band, centered at the wavelength of 840 nm (for multispectral camera), and the band
closer to the central wavelength of 770 nm for the hyperspectral camera; while RED is the Red band, centered at 668 nm
(for the MS camera), and the band closer to the central wavelength of 650 nm for the hyperspectral. On one hand, the

Figure 5: In the image on the left there is a visible misalignment in RGB that was compensated in the image on the
right.

NDVI is a simple and easy index to calculate that it is widely used to assess the health and/or productivity of vegetation.
On the other hand, the MSAVI is designed to correct for the effect of the soil on the values of NDVI.19 In particular,
by exploiting the NDVI, an unsupervised segmentation was carried out in order to isolate only the leaves within the
image, in order to simulate a "canopy", i.e. a field in which all the pixels were covered by maize plants. Thus, we used
a segmentation based on a threshold, obtained as the mean between the centroids obtained from the two-class k-means
on the NDVI index. This threshold is applied to the NDVI index to have a two-class vegetation (leaves)/non-vegetation
segmentation. At this point, we have reported on the leaf pixels average values of NDVI and MSAVI for each of
the described treatments.20 After restricting our analysis to the leaves, we use a morphological opening operation to
eliminate the thin spots on the obtained image segmentation. In Fig. 2, the phases of the described processing are
summarized and replicated for acquisitions for both flights.

4. Results

Firstly, after the preprocessing phase on the images, we compare the different considered treatments based on the
spectral signatures (with only 5 points, one for each band acquired). In Fig. 6, we showed the 4 different spectral
signatures, but this analysis is not particularly informative. However, the greatest difference between the NIR and Red
bands, which are used by the traditional vegetation indices, may be seen in the D treatment.

Another comparison was realized between the average values of NDVI and MSAVI on leaves’ pixels for each
treatment, derived from both acquisition dates (November 8, 2022, and December 7, 2022), which are reported in Ta-
bles 4 and 5. For each soil condition, the average values of the NDVI and MSAVI calculated on the leaves for the flight

5

DOI: 10.13009/EUCASS2023-551



SHORT PAPER TITLE

Figure 6: The spectral signatures of the four different contamination treatments.

on December 7, 2022, were also directly compared with the dry biomass, as shown in Figures 7 and 8. In particular,
we found that plants grown in contaminated soils had higher values than the corresponding controls (B >A e D> C), in
line with the results of the biomass analysis.21 In fact, the addition of PTE and PAH pollutants in the soil only slightly
affected maize growth, as it was revealed by similar shoot dry matter weights measured at harvest for treatments A-B
and C-D. These results are in contrast with the widely reported toxic effect on corn development of both heavy metals
and PAH.22 A possible explanation concerns the physical-chemical properties of the soil used for the experimentation,
which is characterized by high carbonates content, alkaline pH and low organic carbon amount. These soil character-
istics may have adversely affected maize plants development even in the uncontaminated control treatments (Figures 7
and 8). Indeed, it has recently been reported that calcareous soils possess poor physicochemical characteristics, such
as low soil-water relations, soil crusting, and insufficient nutrients availability, which could cause chlorosis and stunted
plants growth.23 These adverse soil conditions can also alter several plants physiological processes, including leaf
morphology, chlorophyll synthesis, and photosynthetic efficiency, which probably induced a change in the spectral re-
sponse of the control maize plants. On the other hand, the similar or even slightly higher biomass production observed
for corn plants grown under spiked soils (B-D) as compared to their controls (A-C) (Figures 7 and 8) could be related
to the poor mobility and bioavailability of the applied pollutants. For example, an elevated pH and the presence of
carbonates in the soil leads to an increased retention of heavy metals, mainly lead (Pb) and chromium (Cr), as reported
in.24 Furthermore, the addition of zinc (Zn) may have positively affected maize plants growth, since this crop is highly
sensitive to Zn deficiency, whose bioavailability is reduced by some soil proprieties such as the high pH and carbonates
content, and the low quantity/quality of organic matter.25 In plants, zinc plays a key role in many important biochemical
pathways, such as photosynthesis and the integrity maintenance of biological membranes,26 that indirectly influence
the leaf spectral response. Therefore, the external amount of Zn supplied in B and D treatments may have facilitated
the development of maize seedlings in the alkaline-calcareous soil used for the experimentation. In fact, as already
described, we found slightly higher values of vegetation indices for these plants.

4.1 Physical, chemical and biological properties

The comparison between the NDVI and MSAVI indices calculated on the leaves for the flight on December 7, 2022 also
revealed higher values for plants grown in soils added with humic substances than untreated ones, which means C >A
and D > B. Again, this result is consistent with that of the biomass analysis. In fact, the addition of humic substances
(HS) in both uncontaminated (C) and spiked soil (D) significantly improved the shoot biomass of maize plants (Figures
7 and 8). These results are in line with the widely demonstrated role of HS in improving soil physical, chemical
and biological proprieties. Humic substances (HS) are relatively small heterogeneous molecules resulting from the
biotic transformation of plant and animal tissues and held together by multiple weak interactions in supramolecular
associations.27 It has been shown that the addition of humic matter leads to better soil quality by enhancing aggregates
stability, regulating water flow, reducing run-off and erosion, influencing nutrient availability, and stimulating microbial
proliferation.28 Recently, humic substances were also found to be good complexing factors for many metal ions,
since their several functional units (carboxylic, hydroxylic, phenolic, and aliphatic groups) influence the mobility and
availability of contaminants in soil.29 Furthermore, humic substances are recognized as plant biostimulants, as they
can positively affect several plants physiological and metabolic processes as hormone-like molecules.30 In particular,
different crops treated with humic substances showed an increase in shoot and roots growth, chlorophyll content,
photosynthetic efficiency and biosynthesis of essential compounds also involved in plant-stress tolerance.31 These
studies all support the greater biomass production observed for maize plants under C and D soil conditions as compared
with both A and B treatments, as well as the higher values of the calculated vegetation indices, which may indicate a
better health status of these corn plants.

By repeating the same processing on images from the second flight, acquired on a different day, different average
values are found, but some characteristics are maintained (in Table 5). The treatments with humic substances (C and
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D) have higher average NDVI and MSAVI values compared to that without contamination. A clear distinction is found
between treatments C-D and treatments A-B in terms of both average NDVI values and MSAVI values. In particular,
between A and all other treatments the distinction in terms of NDVI average values is particularly distinguishable.

Basically, in both the acquisition campaigns, the first in November and the second in December, we have found
that the NDVI and MSAVI values follow this trend: D > C > B > A.

Table 4: The mean values and standard deviations of NDVI and MSAVI for each soil contamination (SC) after 7 weeks
from the sowing.

SC NDVI σNDVI MSAVI σMS AVI

A 0.3765 0.12 0.8616 0.18
B 0.3837 0.11 0.8980 0.17
C 0.4000 0.11 0.9028 0.18
D 0.4092 0.13 0.9090 0.19

Table 5: The mean values and standard deviations of NDVI and MSAVI for each soil contamination (SC) after 11
weeks from the sowing.

SC NDVI σNDVI MSAVI σMS AVI

A 0.3634 0.11 0.8773 0.16
B 0.4087 0.13 0.9110 0.18
C 0.4111 0.12 0.9437 0.17
D 0.4226 0.14 0.9582 0.18

Figure 7: Comparison of the average values of the NDVI and the dry biomass.

A further analysis was made on the spatial resolution, noting that getting closer to the resolutions that could be
obtained at higher altitudes, for example from a satellite or stratospheric platform, it is no longer possible to carry out a
segmentation at the leaf level and therefore it is seen as the absence of a canopy leads to the impossibility of analyzing
only the vegetation, given that inside the pixel the values also relating to the ground would fall. In fact, the NDVI
values correspond to one vegetation absent in particular in this phase of growth, while the MSAVI values at one scarce
vegetation, as shown in Table 6.

In conclusion, an analysis is needed in a phase in which there is a canopy, limiting the contribution of the soil, in
particular, taking into account the resolutions towards which the project tends. Further, problems with image distortion,
bad weather, and safety issues can arise for drone-based images. Utilizing image stabilization techniques, scheduling
flights for the best weather, putting safety procedures into place, and adding redundancy measures are some ways to
mitigate these difficulties.

4.2 Discussion and Future Perspective

The results obtained with the multispectral camera are, on average, in agreement with the data acquired through de-
structive biomass measurements. However, hyperspectral data can also be exploited for more specific analyses that

7

DOI: 10.13009/EUCASS2023-551



SHORT PAPER TITLE

Figure 8: Comparison of the average values of the MSAVI and the dry biomass.

Table 6: NDVIseg and MS AVIseg represent the average values after the unsupervised segmentation step, instead
NDVIimm and MS AVIimm represents the average values after an upsampling process.

SC NDVIseg NDVIimm MS AVIseg MS AVIimm

0.3 - 0.4 mm 30 - 40 cm 0.3 - 0.4 mm 30 - 40 cm
A 0.3634 -0.0614 0.8773 0.4275
B 0.4087 -0.0529 0.9110 0.4300
C 0.4111 -0.0337 0.9437 0.4627
D 0.4226 0.0278 0.9582 0.5405

investigate the electromagnetic spectrum in greater detail. In our example, we considered a hyperspectral camera, the
Cubert Ultris 5, which provides 51 bands covering the electromagnetic spectrum from 450 to 850 nm with a sampling
interval of 8 nm. Such data allows for the preliminary results on the NDVI and MSAVI indices (Figure 7) to obtain
the ability to distinguish between treatment with and without humic substances as for the Micasense Altum camera.
Instead, further investigation on the capability of distinguishing the considered four treatments is needed. Currently,
the shown analyses are only introduced to highlight the potentiality of the usage of hyperspectral data for future ex-
periments. In particular, by observing the spectral signatures in Figure 9 distinguishing between pots with humic
substances (HS) and pots without HS, we will possibly define an index with greater specificity for the given problem.

Table 7: NDVIseg and MS AVIseg represent the average values after the unsupervised segmentation step.

SC MS AVIseg NDVIseg

A + B 0.8632 0.8164
C + D 0.8743 0.8234

5. Conclusion

This study demonstrates the feasibility of using drone-based multispectral and hyperspectral analysis to assess the
impact of different treatments on plant growth. The results indicate that drone-acquired data can effectively detect
subtle changes in maize plant growth when exposed to a mixture of heavy metals and polycyclic aromatic hydrocarbons.
In particular, the results obtained with the multispectral UAV pave the way forward, and hyperspectral data enables
further exploration of spectral signature analyses to extract more specific indications, leveraging its superior spectral
resolution. Although the findings from the multispectral imaging system highlight a promising trajectory and the
utilization of hyperspectral data offers deeper insights into spectral signatures, leading to more specific and targeted
conclusions, further research is necessary to fully validate these results. This study provides valuable insights and lays
the foundation for future studies. Additionally, it highlights the significance of remote sensing technology, such as mini
UAVs, for monitoring soil contamination and vegetation health.
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Figure 9: The spectral signatures from the hyperspectral camera (Cubert Ultris 5) for the treatments with and without
the humic substances (HS).
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