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Abstract
Aerodynamic parameter estimation is crucial for creating precise simulation environments and achieving
more accurate aircraft dynamic modeling. However, dynamics of the aircraft involve non-linearity, and
the presence of noise from measurement sensors further complicates parameter estimation. One of the
nonlinear filtering techniques, Extended Kalman Filter (EKF), can filter out the noise and enable parameter
estimation. The EKF linearizes nonlinear system using a first-order Taylor series approximation. But, for
systems with highly non-linearity, the errors caused by linearization can be significant, making estimation
hard. To reduce such linearization errors, methods such as Iterated EKF and Unscented Kalman Filter
(UKF) have been proposed. In this paper, the estimation of aerodynamic coefficients for a fixed-wing
aircraft is conducted using the previously introduced filters, and their performance is compared. The
results show that under the same condition, IEKF provides more accurate parameter estimation.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have widely employed as flight test platforms by applying research on control.
When utilizing such platforms, one of the most crucial aspects is how to model the dynamics of UAVs.2 In aircraft
modeling, particularly for the establishment of an accurate model in preparation for flight experiments, aerodynamic
coefficients play a important role in creating a sophisticated simulation environment. In order to determine these
aerodynamic coefficients, traditional commercial manned aircraft have used methods such as Computational Fluid Dy-
namics (CFD) or wind tunnel testing. However, these are not suitable for UAVs with relatively short design cycle due
to their high cost and computational power requirements.11 Instead, parameter estimation and system identification
techniques that utilize experimental data to estimate aerodynamic coefficients offer a simpler and relatively more accu-
rate alternative to aforementioned methods, making them suitable for application in UAVs.
There are numerous methods available for parameter estimation and system identification. Among them, recursive
estimation, which utilizes only the latest sample data without requiring the entire time data, is considered a promising
approach for estimating the aerodynamic coefficients of UAVs. Real-time estimation of aerodynamic coefficients is
achieved by obtaining data from sensors mounted on UAVs. However, the measured flight data is contaminated with
various sources of noise, such as process noise, sensor noise and biases. Hence, in order to estimate the aerodynamic
coefficients, the application of noise filtering techniques is also necessary to mitigate the effects of noise. Filtering
techniques are a type of probabilistic methods and are predominantly employed for state estimation in the presence of
noise.7 In the aerospace industry, a Kalman Filter (KF) stands out as one of the most widely used for addressing noise
filtering issues.12 The Kalman Filter,10 as an linear estimator that employs the state-space equations of the system, is an
optimal data processing algorithm with a recursive structure. Nonetheless, the majority of systems in various industrial
fields exhibit non-linearity, leading to the impracticability of applying traditional Kalman filters. This has resulted in
the emergence of a need for nonlinear filtering techniques.
The Extended Kalman Filter (EKF), which is the most widely employed nonlinear noise filtering technique in today,
is utilized to address the non-linearity of systems and reduce the impact of noise. The EKF approximates non-linearity
by computing the Jacobian of the system dynamics and measurement equations around the current estimates, using
a first-order Taylor series expansion. If the non-linearity is severe, the EKF may not approximate it well, leading to
linearization errors that can affect the estimation performance or convergence of the filter. Despite its limitations, the
EKF is successfully employed not only for estimating aerodynamic coefficients but also in other aerospace applica-
tions.3, 4, 14
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To overcome the challenges posed by the EKF, several alternative algorithms, such as the Unscented Kalman Filter
(UKF)9 and the Iterated Extended Kalman Filter (IEKF),5, 13 have been developed and being applied.
By updating the linearization point using the current estimate, the IEKF addresses the limitations of the EKF and re-
duces the linearization error. In each iteration, the measurement Jacobian is recalculated based on the current estimate,
allowing for a more precise linearization of the nonlinear system. This iterative refinement process continues until the
desired accuracy or convergence is achieved.
The UKF, introduced by Julier and Uhlmann, is based on the Unscented Transform (UT).8 Instead of directly approxi-
mating the nonlinear functions using Taylor series, the UKF utilize the UT. This transform selects a set of sigma points
that are carefully extracted to capture the mean and covariance of the probability distribution. These sigma points are
then transformed through the nonlinear functions, providing an approximation of the transformed non-linearity.
In this paper, we compare the performance of various nonlinear filters for aerodynamic coefficient estimation using
simulation data from a fixed-wing aircraft.
The paper is organized as follows. In section 2, the algorithms of the introduced filters are explained, followed by the
presentation of the UAV model and simulation environment utilized for aerodynamic coefficient estimation. In the last
section, Section 3, results of parameter estimation from various filters are compared and analyzed.

2. Nonlinear Filtering

2.1 Extended Kalman Filter (EKF)

If we consider a general continuous-time nonlinear stochastic dynamic and a discrete-time nonlinear measurement
model, the can be expressed as follows.

ẋ = f (x, u, t) + w

zk = hk(xk) + νk
w(t) ∼ N(0,Q)
νk ∼ N(0,Rk)

(1)

where x is the state variable vector with an initial value of x0 at time t0, u is the input vector of the system, and zk is the
measurement vector at time tk. The continuous-time process noise w and the discrete-time measurement noise νk are
assumed to be independent Gaussian white noise with zero mean and covariance Q and R, respectively.
The EKF is a filter based on the first-order Taylor series approximation, which approximates the mean and covariance
during the update process. The EKF consists of two steps: time update and measurement update. The time update,
also known as prediction, is referred to as the process of using the previous time step’s state vector, covariance matrix
to compute a predicted state vector and covariance matrix at the current time step, using the system model. The mea-
surement update, also known as correction, is performed after the time update stage. It involves adjusting the predicted
state vector and covariance matrix using the measured values. As a result, estimated state vector and covariance matrix
for the next time step are calculated. Mathematically, it can be represented as follows.

1) Time update

x̂k(−) = f (x̂k−1(+), uk−1)

Pk(−) = FPk−1(+)FT + Qk−1
(2)

where F is the Jacobian matrix of f with respect to x, and is evaluated at x̂k(−). The Pk represents the error covariance
matrix. The "-" denotes a priori estimate of state vector before processing the measurement. While the "+" represents
a posteriori estimate of state vector after processing the measurement.

2) Measurement update

S k = HPk(−)HT + Rk

Kk = Pk(−)HT S −1
k

x̂k(+) = x̂k(−) + Kk (zk − hk(x̂k(−)))

Pk(+) = (I − KkH)Pk(−)

(3)

where H is the Jacobian matrix of hk(xk) with respect to x, it is also evaluated at x̂k(−). When constructing the EKF
using the aforementioned process, several initial values need to be set beforehand. When there is less information
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available about the estimated states, it is recommended to set a larger initial value for the error covariance matrix,
denoted as P0. In other words, as Pk increases, the estimation error also increases, and Pk decreases, the estimation
error decreases. The process noise covariance Q and measurement noise covariance R should also be defined prior
to the estimation process. Since Q can be challenging to set, it needs to be adjusted through experimentation. The
determination of R is specific to the sensors used for measurements and can be obtained from the sensor manufacturer.
The Euler integration method can be used for the computation of the EKF algorithm in (1).

2.2 Iterated Extended Kalman Filter (IEKF)

The EKF linearizes the nonlinear system equations by expanding them using a Taylor series and neglecting higher-
order terms, considering only the first-order terms for linearization. However, if the system model and measurement
model exhibit strong non-linearity, there is a potential for significant degradation in the performance of the EKF due to
linearization errors.
To address the inaccuracies caused by theses errors, various techniques have been proposed, and the IEKF is one of
them. Both EKF and IEKF linearize the system model around the priori estimate, x̂k(−), but there is a difference in
their approach. In EKF, the measurement model linearization is performed only once, using the first-order Taylor
series expansion for the measurement update step. On the other hand, IEKF takes an iterative approach by updating
the linearization point of the measurement model iteratively based on the most recent posteriori estimate, x̂k(+). In
other words, when x̂k(+) is obtained, the IEKF relinearizes the measurement model around this estimate and get a
new posteriori estimate of x̂k(+). By iteratively performing this process to acquire an improved estimate, it mitigates
errors caused by the linearization. The iteration process is terminated when the maximum predetermined number of
iterations is reached or when the change in values between consecutive iterations becomes negligible. We can describe
the algorithm for IEKF6 as follows:

Step 1: (initialization) Set the iteration i = 0, and set the predictive estimate

x̂0
k(+) = x̂k(−)

P0
k , (+) = Pk(−)

(4)

Step 2: (measurement update iterations) Compute the Jacobian matrix at the best state estimate available, the
Kalman gain, and the next iteration of the state estimate as

Hi
k =
∂hk(x)
∂x

∣∣∣∣∣
x=x̂i

k

Ki
k = Pk(−)

[
Hi

k

]T
(
Hi

kPk(−)
[
Hi

k

]T
+ Rk

)−1

x̂i+1
k (+) = x̂k(−) + Ki

k

(
yk − h(x̂i

k(+)) − Hi
k(x̂k(−) − x̂i

k(+)
) (5)

Repeat Step 2 with i = i + 1 until a stopping condition is met.

Step 3: (updating the state and covariance matrix) Save the last iteration as the new filtering mean and compute
the covariance matrix based on the last iteration.

x̂k(+) = x̂i
k(+)

Pk(+) = (I − Ki
kHi

k)Pk(−)
(6)

In the above algorithm, x̂i
k denotes the posteriori estimate of xk obtained after conducting the relinearization of the

measurement model. Similarly, Ki
k and Hi

k represent the Kalman gain and the Jacobian matrix of the measurement
model, respectively, computed using the estimate x̂i

k in the current iteration.

2.3 Unscented Kalman Filter (UKF)

One of the another method to address the problem of linearization errors in EKF is the UKF. If EKF resolves the non-
linearity in system and measurement models through linearization, UKF, on the other hand, eliminates the linearization
process and approximates non-linearity using Unscented Transform (UT) method introduced by Julier and Uhlmann.8

The UT is a method that approximates the nonlinear transformation of the mean and covariance using a small number of
specially selected samples. That is, it calculates the predicted values of the state variable and error covariance without
directly using the system model equation, but instead utilizing a representative subset of data.
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To perform the UT, the first step is to determine the 2nx + 1 sigma points, which are a set of samples. These sigma
points are essential for capturing the statistical properties of the distribution. Additionally, weights need to be assigned
to each sigma point to represent their relative importance. Here, nx represents the number of system and parameters
begin estimated. The UKF may appear quite different from the EKF algorithm, but apart from using UT instead
of linearization, the iterative structure of prediction and correction remains the same. In the prediction phase, the
estimation and error covariance prediction are computed using the sigma points and UT, without directly relying on
the system model. In the EKF algorithm, the covariance of measurement error was not required. However, in UKF,
it is necessary for calculating Kalman gain, and it is also obtained using the sigma points and UT, rather than directly
the measurement model. Finally, the covariance matrix (Pxz), between the state and the measurement is computed,
followed by the calculation of the Kalman gain. After that, the estimated state and the error covariance are updated.
In summary, the UKF algorithm can be described as follows:

Step 1 : Initialize (x̂0, P0)

Step 2 : Calculation sigma points and weights

χ0 = x̄, W0 =
κ

(nx + κ)

χi = x̄ +
( √

(nx + κ)Pxx

)
i
, Wi =

1
2(nx + κ)

, i = 1, ..., n

χi+n = x̄ −
( √

(nx + κ)Pxx

)
i
, Wi+n =

1
2(nx + κ)

, i = 1, ..., n

(7)

Step 3 : Prediction of the estimated state and error covariance

[x̂k(−), Pk(−)]←− UT ( f (χi),Wi,Q) (8)

Step 4 : Prediction of the measured values and error covariance[
ẑk, Pz

]
←− UT (h(χi),Wi,R) (9)

Step 5 : Calculation Kalman gain

Pxz =

2n+1∑
i=1

Wi { f (χi) − x̂k(−)} {h(χi) − ẑk}
T

Kk = PxzP−1
z

(10)

Step 6 : Calculation of the estimated states and error covariance

x̂k(+) = x̂k(−) + Kk(zk − ẑk)

Pk(+) = Pk(−) − KkPzKT
k

(11)

where χi is the sigma points, Wi is the weights,
√

Pxx is the i th column of the matrix square root of Pxx and κ is an
arbitrary design constant.

2.4 State space model of UAV

The flight data was obtained by modeling the Aerosonde UAV using parameters from Small Unmanned Aircraft Theory
and Practice1 and simulating it in MATLAB/Simulink. The data was acquired under trimmed conditions. To estimate
parameters using the filters mentioned earlier, a state space model is required to generate predicted values and compare
them with measurements. The system model employed the longitudinal dynamics of an aircraft, and the measurements
model is as follows:

V̇ = −
q̄S
m

CD − g sin (θ − α) +
FT

m
cos (α + σT )

α̇ = −
q̄S
mV

CL + q +
g
V

cos (θ − α) −
FT

mV
sin (α + σT )

θ̇ = q

q̇ =
q̄S c̄
Iyy

Cm +
FT

Iyy
(lT x sinσT + lTz cosσT )

(12)
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where the aerodynamic coefficients are modeled as follows.

CL = CL0 +CLαα +CLδeδe +CLq

qc̄
2V

CD = CD0 +CDαα +CDδeδe

Cm = Cm0 +Cmαα +Cmδeδe +Cmq

qc̄
2V

(13)

The measurement equations are the following:

Vm = V

αm = α

θm = θ

qm = q

q̇m =
q̄S c̄
Iyy

Cm +
FT

Iyy
(lT x sinσT + lTz cosσT )

axm =
q̄S
m

Cx +
FT

m
cosσT

azm =
q̄S
m

Cz −
FT

m
sinσT

(14)

where the longitudinal and vertical force coefficients, Cx and Cz, are provided as follows.

Cx = CL sinα −CD cosα
Cz = −CL cosα −CD sinα

(15)

In (6), V is the airspeed, α is the angle of attack, θ is the pitch angle, q is the pitch rate, δe is the elevator deflection.
q̄ (= 1/2ρV2) is the dynamic pressure, FT is the thrust, m is the mass of the UAV, S is the wing area, c̄ is the chord
length. σT represents the inclination angle of the engines, Iyy is the moment of inertia, ρ is the density of air.

2.5 Application of the filter

To estimate parameters using filter methods, it is necessary to augment the existing system state vector by expanding
the unknown variables and defining them as additional state vectors in the system model. Assume that The unknown
parameters for estimating aerodynamic coefficients are constants with zero derivatives and they can be expressed as a
vector as follows:

X = [CD0 ,CDα ,CL0 ,CLα ,Cm0 ,Cmα ] (16)

Therefore, by augmenting the existing state variables and the unknown parameters in (16), we can represent the new
state vector as xnew:

xnew =

(
x
X

)
(17)

Now, by utilizing (17), we can create the augmented and (1) is substituted with (18).

ẋ = f (xaug, u, t) + w

zk = hk(xaug) + νk
(18)

It is difficult to estimate unknown parameters using filters without excitation. Therefore, to provide excitation, we
applied double 3-2-1-1 elevator input in longitudinal motion at different times, as shown in Figure 1.
The flight simulation data and the estimated responses through the filter are shown in Figure 2. In airspeed estimation,
the IEKF provides accurate estimates, while EKF and UKF show slightly deviated estimation results, but overall all
the filters provide good estimations.
Next, The results of the aerodynamic parameter estimation is displayed. The initial values for estimating aerodynamic

5

DOI: 10.13009/EUCASS2023-529



AERODYNAMIC PARAMETER ESTIMATION USING IEKF

coefficient using each filter are the same, and their results are illustrated in Figure 3. It can be observed that the
IEKF performs better in aerodynamic parameter estimation than the EKF and the UKF under the same conditions and
with limited measurements. Figure 4, which represents the estimation errors, illustrates that the IEKF exhibits faster
convergence time and minimal error compared to other two filters.

Figure 1: Deflection angle

Figure 2: Estimated response

3. Conclusion

In this paper, three nonlinear recursive filters are used to perform aerodynamic coefficient estimation, and their per-
formance is compared. The filters used in this study are EKF, Iterated EKF, UKF. The result indicates that the IEKF
exhibits remarkable performance in the estimation process compared to the other two filters under the same conditions.
However, a high-order approach of EKF, known as IEKF, suffers from the drawback of longer computation time com-
pared to the other two filters, as it involves iterative measurement updates until a termination condition is met.
Future work will involve considering all aerodynamic coefficients of the Aerosonde UAV and applying methods from
an optimization viewpoint to enhance the performance of parameter estimation, including improving the convergence
and computation time of IEKF.
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Figure 3: Aerodynamic coefficient estimation

Figure 4: Estimation error of filters
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