
Copyright  2023 by First Author. Posted online by the EUCASS association with permission. 

Entry Vehicle Trajectory Optimization using Convex 
Programming and Post-correction Technique 

Cheol-Goo Jung1, Tae-Hun Kim 2, Hyung-Sik Choi 3, and Chang-Hun Lee 4† 
1,4 Korea Advanced Institute of Science and Technology 

2Sunchon National University 
3Korea Aerospace Research Institute 

1jjulgoo22@kaist.ac.kr, 2thkim@scnu.ac.kr, 3chs@kari.re.kr, 4lckdgns@kaist.ac.kr 
† Corresponding Author 

Abstract 
This paper considers the trajectory optimization of entry vehicles using convex programming. Optimal 
entry trajectory satisfying path constraints on heating rate, dynamic pressure, and load factor is obtained 
with sequential second-order cone programming (SOCP). The nonlinear dynamics and path constraints 
are simplified by changing the independent variable into energy. To mitigate infeasibility and solution 
divergence problems, the post-correction technique is utilized as well as slack variables and trust-region. 
The step length of obtained solution at each iteration is modified based on the amount of linearization 
error. The robustness and effectiveness of the proposed method is demonstrated through numerical 
simulation.  

1. Introduction

The objective of the entry guidance is to steer the direction of the aerodynamic lift so as to guide the space vehicle 
from its entry interface point (EIP) to the terminal conditions. The entry guidance problem is identified as a challenging 
problem because of many entry path constraints as well as its highly nonlinear dynamics. These inequality entry path 
constraints on heating rate, dynamic pressure, and load factor should be taken into account when developing the entry 
guidance not to incur fatal damage on entry vehicles. In the past, entry guidance relies on approximate, and heuristic 
methods due to a lack of computational requirements. In [1], the entry guidance is designed based on the analytic 
solution of the drag-acceleration equation satisfying terminal conditions and constraints. Drag-energy-based guidance 
for trajectory control is proposed in [2]. In this paper, a linear control law for following the drag reference is derived. 
An adaptive entry guidance algorithm is presented for mission planning and trajectory updates during the onboard 
mission in [3]. The trajectory is obtained by maximizing the range of the vehicle. The predictor-corrector method is 
proposed in [4]. The main notable potential of this method is that the trajectory of the entry vehicle is adaptively 
modified when the trajectory largely deviates from the nominal trajectory without any path planning. The class of 
predictor-corrector method has been successfully applied to entry guidance problems in many literatures [5-8]. The 
main challenges of developing entry guidance law are path constraints on heating rate, dynamic pressure, and load 
factor which are crucial for the successful entry mission. Since the previous studies rely on analytic or heuristic methods, 
much effort and time are needed to handle the path constraints when deriving entry guidance law. Furthermore, this 
heuristic method can adversely affect and reduce the performance of the entry guidance.  
A trajectory optimization method which is one of the computational methods can be an effective alternative to handle 
these path constraints and performance degradation. The trajectory optimization method is a powerful tool for optimal 
control problems. The dynamics, path constraints, and performance index are discretized, and obtained static problems 
are solved using a numerical optimization solver. The optimal solution that satisfies nonlinear dynamics and path 
constraints can be obtained without relying on approximate and empirical relationships. As computational power 
increases and efficient optimization algorithms are developed, trajectory optimization is gaining popularity in 
aerospace engineering applications such as guidance and path planning. Convex programming is a promising 
optimization method for real-time applications because of its polynomial complexity and predictable and bounded 
calculation time. Convex problems can be solved by well-developed optimization algorithms such as the primal-dual 
interior point method [9]. Convex programming has been applied to many aerospace applications such as planetary-
powered landing [10], multiagent path planning [11], missile trajectory optimization [12], collision avoidance [13], 
and so on. Also, entry trajectory optimization using convex programming is carried out in some studies [14-17]. To 
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apply convex programming to entry trajectory optimization, the problem should be reformulated into a specific form 
suitable to convex programming. Since the convex programming requires the equations to be linear, the highly 
nonlinear dynamics of entry trajectory and path constraints should be successively linearized with respect to the 
previous solution as in most of the previous entry trajectory optimization studies in [14-17]. Then, the linearized 
problem is iteratively solved using successive convex programming. The significant challenge of this iterative process 
is that the linearized problem may become infeasible and the solution is prone to diverge due to large deviations from 
the original nonlinear dynamics. To tackle these problems, auxiliary methods such as the trust-region method are 
utilized to assist the convergence of solutions and to mitigate infeasibility problems.  
The technique developed in this paper focuses on alleviating the solution divergence and infeasibility problem that can 
easily occur during the successive convexification process. To handle the problem of inconsistency in linearization, 
additional slack variables are introduced in the quadratic trust-region and augmented to the performance index for 
stable convergence. Furthermore, the post-correction technique regulates the step length from the previous solutions 
and prevents excessive deviation from the original dynamics by estimating the error between linear and nonlinear 
dynamics. The control input is changed into new variables contained within the convex set. This change of control 
input helps to circumvent the undesirable jittering control profile caused by successive linearization of dynamics with 
respect to the control variables. By using energy as an independent variable, the path constraints on heating rate, 
dynamic pressure, and load factor are transformed into linear constraints of altitude which is implementable in convex 
programming without additional modification. By aggregating all these methods, the trajectory optimization problem 
is formulated and the optimal trajectory solution is obtained using successive convex programming. The proposed 
methods alleviate the oscillation of solution that occurs during the iterative process and show fast and smooth 
convergence. Numerical simulations are performed to demonstrate the effectiveness and some of the notable aspects 
of the proposed method. 
The remainder of this paper is organized as follows. The problem statement is given in section 2. Then, the trajectory 
optimization problem is reformulated into a form suitable for convex programming in section 3. Finally, the numerical 
simulation and conclusions are given. 

2. Problem statement 

This section presents the details of the dynamics and path constraints of entry vehicles. Then, the trajectory 
optimization problem is defined with a specific performance index. 

2.1 Dynamics and constraints of entry vehicle 

The nondimensionalized dynamics of the entry vehicle with respect to energy variables is presented as follows [8] :  
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where 𝑟𝑟 is the radial distance between the center of the Earth and the entry vehicle, 𝜃𝜃 and 𝜙𝜙 are the longitude and 
altitude, respectively. 𝑉𝑉 is earth-relative velocity. 𝛾𝛾 is the flight-path angle of the velocity vector, and 𝜓𝜓 is the heading 
angle of the velocity vector measured clockwise from the north direction. The radial distance is normalized by the 
Earth’s radius 𝑅𝑅0= 6378.14 km. The time is normalized by �𝑅𝑅0/𝑔𝑔0 , where 𝑔𝑔0= 9.81 m/𝑠𝑠2 . From these two 

DOI: 10.13009/EUCASS2023-527



SHORT PAPER TITLE 
     

 3 

normalization factors, the velocity is normalized by �𝑅𝑅0𝑔𝑔0. The Earth’s rotation speed Ω is normalized by �𝑔𝑔0/𝑅𝑅0. 
The bank angle 𝜎𝜎 is the control input and is defined by the rotation angle of the entry vehicle about the velocity vector. 
The aerodynamic lift and drag are denoted by 𝐿𝐿 and 𝐷𝐷 which are normalized by 𝑔𝑔0 as follows : 
 

 2
0 ref

1 /
2 LL R V S C mρ=  (2) 

 2
0 ref

1 /
2 DD R V S C mρ=  (3) 

 
where 𝑆𝑆ref and 𝑚𝑚 are the reference area and mass of the entry vehicle, respectively. 𝜌𝜌 is the atmospheric density which 
is a function of 𝑟𝑟 and is modeled as follows : 
 

 0 0exp( ( ) / )sr R hρ ρ= − −  (4) 
 
where 𝜌𝜌0 is the density of the Earth’s surface and  ℎ𝑠𝑠 is constant which can be determined by the atmospheric density 
data. 𝐶𝐶𝐿𝐿 and 𝐶𝐶𝐷𝐷 are the lift and drag coefficients which are functions of the angle-of-attack and Mach number. To 
simplify the problem, the following models of lift and drag coefficient in the hypersonic range are chosen [18]. 
 

 20.041065 0.016292 0.0002602LC α α= − + +  (5) 

 20.080505 0.03026 0.86495D L LC C C= − +  (6) 
 
Where 𝛼𝛼 denotes the angle-of-attack in degrees. The independent variable of the entry vehicle dynamics is an energy-
like variable 𝑒𝑒 that is defined by 
 

 
21

2
Ve

r
= −  (7) 

 
This energy variable monotonically increases when the Earth's rotation speed is neglected [8]. From Eq. (7), the 
velocity can be calculated at any given 𝑒𝑒 and 𝑟𝑟. Furthermore, velocity can be approximated by the following equation 
since the normalized 𝑟𝑟 is almost unity.  
 

 2(1 / ) 2(1 )V r e e= − ≈ −  (8) 
 
This denotes that velocity is determined only by the independent variable. The angle-of-attack profile is typically 
predesigned with respect to the velocity. The angle-of-attack profile is determined by considering the thermal 
protection, downrange/crossrange requirements, and trim flight. In this paper, the reference angle-of-attack profile in 
[14] is used. 
 

 
( )2 2
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The reference angle-of-attack profile is shown in Fig. 1. Where the angle-of-attack gradually decreases below Mach 
13. 
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Figure 1: Reference angle-of-attack profile 

 
The initial conditions of the state at a given initial energy 𝑒𝑒0 is presented below. The initial conditions are determined 
from the entry interface point. 
 

 * * * * *
0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( )r e r e e e eθ θ φ φ γ γ ψ ψ= = = = =  (10) 

 
The terminal conditions at the given terminal energy are shown below. The appropriate terminal conditions can be 
determined by the terminal area energy management phase.  
 

 * * * * *( ) , ( ) , ( ) , ( ) , ( )f f f f f f f f f fr e r e e e eθ θ φ φ γ γ ψ ψ= = = = =  (11) 
 
The common entry path constraints on heating rate, dynamic pressure, and load factor should be satisfied during the 
entry phase for safety issues. The heating rate constraint prevents the ablation caused by extreme aerodynamic heating. 
Excessive hinge moment of the aerodynamic fin can cause breakage of actuators and be prevented by dynamic pressure 
constraint. Finally, the load factor constraint is considered to avoid structural damage to the vehicle. The path 
constraints are presented as follows: 
 

 
3.15 3.15

0 0 maxQQ k g R V Qρ= ≤   (12) 

 2
0 0 max0.5q g R V qρ= ≤  (13) 

 2 2
maxn L D n= + ≤  (14) 

 
 The heating rate �̇�𝑄 is defined at a stagnation point on the surface of the vehicle. The heating rate is in  W/𝑚𝑚2 and 𝑘𝑘𝑄𝑄 
= 9.4369×10−5. The unit of dynamic pressure 𝑞𝑞� is given as N/𝑚𝑚2, and unit of load factor 𝑛𝑛 is in 𝑔𝑔0. Since the velocity 
V  is determined by the independent variable 𝑒𝑒 by Eq. (8) and density is a function of 𝑟𝑟 as Eq. (4), the path constraints 
of Eqs. (12-14) can be equivalently replaced by simple constraints on 𝑟𝑟 as follows: 
 

 ( ) ( ), ( ) ( ), ( ) ( )Q q nr e c e r e c e r e c e≥ ≥ ≥  (15) 
 
The path constraints of Eq.(15) can be simplified by a single constraint. 
 

 max( ) max{ ( ), ( ), ( ) } ( )Q q nr e c e c e c e c e≥ =  (16) 
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Finally, the bank angle 𝜎𝜎 is bounded by maximum and minimum values. The bank angle is bounded by the same 
magnitude since the entry vehicle typically has a nearly symmetrical body shape. 
 

 max maxσ σ σ− ≤ ≤  (17) 
 

2.2 Entry trajectory optimization problem 

The performance index of the trajectory optimization problem can be selected depending on the specific purpose. In 
this paper, the following performance index on total heat is considered to minimize the heat load. 
 

 
0

3.15 3.15
0 0

ft

Qt
J k g R V dtρ= ∫  (18) 

 
This performance index can be replaced with respect to 𝑒𝑒 as follows : 
 

 
0

3.15 / ( )fe

J e
J k V DV deρ =  ∫  (19) 

 
where the constant 𝑘𝑘𝐽𝐽 is 𝑘𝑘𝑄𝑄�𝑅𝑅0𝑔𝑔0

3.15
. By aggregating dynamics, initial and terminal conditions, path constraints, and 

performance index, the entry trajectory optimization problem is defined. 
 
 

Problem 1 (entry trajectory optimization problem) : 

 minimize : (19) 

subject to : (1), (10), (11), (16), (17) 

 

3. Solution by successive convex programming 

In this section, Problem 1 is reformulated into a form suitable for application to convex programming.  

3.1 Control input change 

To utilize convex programming, successive linearization of nonlinear dynamics is necessary. However, it is revealed 
that the linearization with respect to control input 𝜎𝜎 causes a jittering input solution profile of high frequency. This 
jitter in solution results in a slow convergence rate during the successive process. The reason for this jittering profile 
is the coupling between states and control in dynamics. To address this problem, a pair of controls are introduced by 
following [15].  
 

 1 2cos , sinu uσ σ= =  (20) 
 
Since new control inputs 𝑢𝑢1 and 𝑢𝑢2 are not independent, the following additional constraint should be satisfied.  
 

 2 2
1 2 1u u+ =  (21) 
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Instead of linearizing Eq. (21), it is relaxed to the second-order cone constraint of Eq. (22). The following constraint 
satisfies the convex set and can be directly applied to convex programming. 
 

 2 2
1 2 1u u+ ≤  (22) 

 
It was proved that this relaxation does not change the optimal solution and the solution of control input remains in Eq. 
(21) with an appropriate regularization term [15]. The proof of the exactness of relaxation is extensively explained in 
[15]. In this paper, we used the relaxation method without proof and the regularization term is explained in the 
following subsections. The constraint on the magnitude of the control input of Eq. (17) is converted into the following 
constraint. 
  

 1 1,max maxcosu u σ≥ =  (23) 
 
By defining states and control vectors as 𝐱𝐱 = [𝑟𝑟 𝜃𝜃 𝜙𝜙 𝛾𝛾 𝜙𝜙]𝑇𝑇 and 𝐮𝐮 = [𝑢𝑢1 𝑢𝑢2]𝑇𝑇, the dynamics of Eq. (1) is reformulated 
into the following compact form. 
 

 ( ) ( ) ( )B Ω′ = + +x f x x u f x  (24) 
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The derivative ( )′ denotes the differentiation with respect to 𝑒𝑒. The third term of Eq. (24) is related to the rotation rate 
of the Earth and is relatively small than the other terms. This term can be easily derived from Eq. (1) and is not presented 
here.   

3.2 Linearization 

Since the dynamics of Eq. (24) is highly nonlinear, this cannot be utilized in convex programming. Suppose that the 
solution of 𝑘𝑘-th iteration is 𝐱𝐱(𝒌𝒌) = �𝑟𝑟(𝒌𝒌) 𝜃𝜃(𝒌𝒌) 𝜙𝜙(𝒌𝒌) 𝛾𝛾(𝒌𝒌) 𝜙𝜙(𝒌𝒌)�𝑇𝑇.  Then, the linearized dynamics is derived as follows : 
 

 ( ) ( ) ( )( ) ( ) ( )k k kd A B C
de

= + +
x x x x u x  (25) 

where 
( ) ( )( ) ( ),k kA ∂

=
∂

fx x
x

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )k k k k kC A Ω= − +x f x x x f x  

 
Since the derivation of the Jacobian matrix 𝐴𝐴 is straightforward, the detailed description is omitted. The only state-
dependent value in matrix B is cos𝛾𝛾. In the entry flight phase, the flight path angle 𝛾𝛾 is small and slowly varying. From 
this observation, 𝜕𝜕𝜕𝜕/𝜕𝜕𝐱𝐱 is neglected. The third term of Eq. (24) is a very small value and simply lagged using the 
previous state solutions. 
In convex programming, the performance index should be linear in the variables. The performance index of Eq. (19) 
is linearized as follows : 
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Note that the velocity and drag coefficient are determined by the independent variable 𝑒𝑒 from Eq. (6), (8), and (9). The 
constraints on the terminal position of 𝜃𝜃  and 𝜙𝜙  are rarely satisfied in early iterations. The problem may become 
infeasible because the linearized dynamics derived from the initial guess is inconsistent. To address this difficulty, the 
terminal conditions on 𝜃𝜃 and 𝜙𝜙 are replaced by the soft constraints as follows : 
 

 *( ) ,f fe sθθ θ− ≤   *( )f fe sφφ φ− ≤  (27) 

 
The auxiliary variables 𝑠𝑠𝜃𝜃  and  𝑠𝑠𝜙𝜙 are augmented to the performance index. The performance index is presented below 
by adding the regularization term for exact relaxation. 
 

 
0

0

fe

e

J J w s w s w deθ θ φ φ ψ ψ= + + + ∫  (28) 

 
The weights 𝑤𝑤𝜃𝜃 , 𝑤𝑤𝜙𝜙 , and 𝑤𝑤𝜓𝜓  should be selected to be small enough so that the original performance index 𝐽𝐽0  is 
essentially unaffected.  

3.3 Discretization and trust-region method 

In this section, the dynamics, constraints, and performance index in the continuous-time domain are discretized. The 
independent variable 𝑒𝑒 is divided into the uniformly distributed 𝑁𝑁+1 node points with a step size of Δ𝑒𝑒 = (𝑒𝑒𝑓𝑓 − 𝑒𝑒𝑜𝑜)/𝑁𝑁. 
The discretized node points are denoted by 𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑜𝑜 + 𝑖𝑖Δ𝑒𝑒 (𝑖𝑖 = 0,1, . . . ,𝑁𝑁). The states corresponding to each node point 
are simplified by 𝑟𝑟𝑖𝑖 = 𝑟𝑟(𝑒𝑒𝑖𝑖) , 𝜃𝜃𝑖𝑖 = 𝜃𝜃(𝑒𝑒𝑖𝑖) ,  𝜙𝜙𝑖𝑖 = 𝜙𝜙(𝑒𝑒𝑖𝑖) ,  𝛾𝛾𝑖𝑖 = 𝛾𝛾(𝑒𝑒𝑖𝑖) , and  𝜓𝜓𝑖𝑖 = 𝜓𝜓(𝑒𝑒𝑖𝑖) . The dynamics of Eq. (25) is 
integrated using the trapezoidal rule. 
 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 ,

2
k k k k k k

i i i i i i i i i i i i
e A B C A B C− − − − − −

∆  = + + + + + + x x x u x u  1,2,...,i N=  (29) 

where 
( )( ) ( ) ( )k k

m iA A e= x , ( )( ) ( ) ( ) ,k k
m iB B e= x  ( )( ) ( ) ( )k k

m iC C e= x   

 
To address the inconsistency problem of dynamics linearization, the following trust-region constraint is typically 
utilized in successive linearization processes. 
 

 ,k
i i− ≤x x δ  0,1,2,...,i N=  (30) 

 
where 𝜹𝜹 is the constant vector that confines the change of each state. However, it is difficult to determine the proper 
magnitude of 𝜹𝜹 for each state. The problem may become infeasible if inappropriate 𝜹𝜹 is selected. In this paper, the 
following trust-region is used. 
 

 ,
Tk k

i i i i it   − − ≤   x x x x  0,1,2,...,i N=  (31) 
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The auxiliary variables 𝑡𝑡𝑖𝑖(𝑖𝑖 = 0,1, . . . ,𝑁𝑁) are multiplied by a weight 𝑤𝑤𝑡𝑡𝑡𝑡  and augmented to the performance index. 
This modified trust-region method can address the infeasibility problem even though the initial trajectories are roughly 
guessed.   
The initial and terminal conditions are formulated using the discretized node points. Note that the terminal conditions 
on 𝜃𝜃 and 𝜙𝜙 are replaced by soft constraints from Eq. (27).  
 

 * * * * *
0 0 0 0 0 0 0 0 0 0, , , ,r r θ θ φ φ γ γ ψ ψ= = = = =  (32) 

  * * * * *, , , ,N f N f N f N f N fr r s sθ φθ θ φ φ γ γ ψ ψ= − ≤ − ≤ = =  (33) 

 
The input constraints are discretized in the following form. 
 

 ( )1 1,max ,iu u≥  0,1,2,...,i N=  (34) 

 ( ) ( )2 2

1 2 1,i iu u   + ≤     0,1,2,...,i N=  (35) 

 
The final performance index is presented. The soft constraints on 𝜃𝜃 and 𝜙𝜙, the regularization term, and the modified 
trust-region are considered. 
 

 ( )
0.15

1 2
0 0 0

( ) ( )
( )

N N N
k ki

J i i i i tr i
i i iD i

VJ k c r c e w s w s w e w t
C θ θ φ φ ψ ψ

= = =

 
= + ∆ + + + ∆ + 

 
∑ ∑ ∑  (36) 

where 
( ) ( )

1 1 2 2( ) ( ), ( ) ( )k k k k
i i i ic c r c c r= =  

 
From the discretized dynamics, constraints, and performance index, the convex programming problem is defined by 
the following. 
 

Problem 2 (convex programming problem) : 

 minimize : (36) 

subject to : (29), (31), (32), (33), (34), (35) 
 
Problem 2 is sequentially solved using convex programming until the following termination condition is satisfied. 
 

 1max k k
i i ci

−− <x x ε  (37) 

 
where 𝜺𝜺𝑐𝑐 is the constant vector. If the difference between the previous solution and the current solution is smaller 
than 𝜺𝜺𝑐𝑐, successive convex programming is terminated.      
 

3.4 Post-correction technique 

Even though the soft constraints on terminal conditions and the turst-region method are used in successive processes, 
the solution diverges or very slowly converges to the final solution in some flight scenarios. This is because the entry 
flight phase has narrow solution space and significant deviation from the true dynamics caused by the linearization of 
highly nonlinear dynamics. To circumvent this difficulty, the post-correction technique is introduced. First, the error 
between nonlinear and linearized dynamics for each state and node is as follows : 
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 ( ) ( )( ) ( ) ,k k
i L= −E f x f x 0,1,2,...,i N=  (38) 

where  
( )( ) ( 1) ( ) ( 1) ( 1) ( 1)( ) ( ) ( ) ( )k k k k k k

L A A− − − −= + −f x x x f x x x  

 
The linearization error 𝐄𝐄𝑖𝑖 is calculated using the solution of 𝑘𝑘-th iteration 𝐱𝐱(𝒌𝒌). The 𝐟𝐟𝑳𝑳(𝐱𝐱(𝒌𝒌)) is obtained by substituting 
the solution 𝐱𝐱(𝒌𝒌) into (𝑘𝑘 -1)-th linearized dynamics. 𝐄𝐄𝑖𝑖 indicates how much the obtained solution deviates from the 
true nonlinear dynamics. By utilizing this linearization error, the step size of the solution update is modified. The state 
is updated by following the algorithm.  
 

State update algorithm : 

 
( )( ) ( 1) ( ) ( 1)

, , , , ,

( ) ( )
, , ,

,

,

k k k k
i j updated i j i j i j

k k
i j updated i j

β− − ← + −


←

x x x x

x x
   ,if

otherwise
i j LEε>E

  

 
where 𝐄𝐄𝑖𝑖,𝑗𝑗 denotes the linearization error at 𝑖𝑖-th node of 𝑗𝑗-th state. 𝛽𝛽 is the step size between 0 and 1. The variable 𝐱𝐱𝑖𝑖,𝑗𝑗 
is the 𝑗𝑗-th state of 𝑖𝑖-th node (e.g. 𝐱𝐱3,1 is range 𝑟𝑟 at the third node). If the linearization error at a specific node and state 
is sufficiently larger than the threshold 𝜺𝜺𝐿𝐿𝐿𝐿, the state is updated with a small step size to prevent excessive deviation 
from the true dynamics. The overall iterative process of the proposed method is summarized as follows : 
 

Solution by successive convex programming and post-correction technique : 
 
Step 1) Initial trajectory guess : 𝐱𝐱𝑖𝑖0(𝑖𝑖 = 0,1, . . . ,𝑁𝑁) at every node point is selected. And set 𝑘𝑘 = 1. 
 
Step 2) Solving the convex programming problem : For 𝑘𝑘 ≥ 1, new optimal solutions 𝒙𝒙𝑖𝑖𝑘𝑘 ,𝒖𝒖𝑖𝑖𝑘𝑘  (𝑖𝑖 = 0,1, . . . ,𝑁𝑁)  is 
calculated by solving Problem 2 with the previous solutions 𝐱𝐱𝑖𝑖𝑘𝑘−1,𝐮𝐮𝑖𝑖𝑘𝑘−1 (𝑖𝑖 = 0,1, . . . ,𝑁𝑁).  
 
Step 3) State update : The state is updated using State update algorithm. If 𝐸𝐸𝑖𝑖,𝑗𝑗 >  𝜀𝜀𝐿𝐿𝐿𝐿, the j-th state of the i-th node 
point  𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘  is updated by 𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘−1 + 𝛽𝛽�𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘 − 𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘−1�. 
 
Step 4) Termination condition check : If the maximum values of the difference between 𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘  and 𝐱𝐱𝑖𝑖,𝑗𝑗𝑘𝑘−1  satisfy the 
condition  max

𝑖𝑖
�𝐱𝐱𝑖𝑖𝑘𝑘 − 𝐱𝐱𝑖𝑖𝑘𝑘−1� < 𝜺𝜺𝑐𝑐, the iteration is finished and the optimal solution is set as 𝒙𝒙𝑖𝑖𝑘𝑘,𝒖𝒖𝑖𝑖𝑘𝑘 (𝑖𝑖 = 0,1, . . . ,𝑁𝑁). 

Otherwise, go to Step 2).  
 

4. Numerical simulation 

In this section, the proposed method is applied to the entry trajectory optimization problem. The parameters used in 
the simulations are summarized in Table 1. The initial and terminal conditions of the first simulation are shown in 
Table 2. The initial trajectories of states are assumed to be the line connecting the initial and terminal conditions ( i.e. 
𝐱𝐱𝑖𝑖0 = 𝐱𝐱0∗ + 𝑖𝑖 ∙ �𝐱𝐱𝑓𝑓∗ − 𝐱𝐱0∗�/𝑁𝑁 ).  The initial control inputs 𝒖𝒖𝑖𝑖𝑜𝑜 are set to zero on all nodes. The initial and terminal energies 
are given as 𝑒𝑒0 = 0.5403 and 𝑒𝑒𝑓𝑓 = 0.9888. The step size 𝛽𝛽  is 0.7 and the termination condition is 𝜀𝜀𝑐𝑐 =
[100 m, 0.6 deg, 0.6 deg, 0.6 deg, 1 deg]. The proposed method is compared with successive convex programming 
(SCP) without the post-correction technique and the general-purpose optimal control software (GPOPS). Figs. 2-3 
shows the altitude profile solution at every iteration with velocity as the x-axis for the proposed method and SCP 
without post-correction technique. As shown in Fig. 2, the altitude profile stably and rapidly converges to solution with 
10 iterations. The altitude profile at 4-th iteration is already almost converged to the final solution profile. However, 
SCP without the post-correction technique results in divergence of solution as shown in Fig. 3. The proposed post-
correction technique can alleviate the solution divergence problem. 
 
 
 

DOI: 10.13009/EUCASS2023-527



SHORT PAPER TITLE 
     

 10 

Table 1: Simulation parameters 

Parameter Value Parameter Value 

Mass, 𝑀𝑀 105 000 [kg] Max heating rate, �̇�𝑄𝑚𝑚𝑚𝑚𝑚𝑚 1000 [kW/𝑚𝑚2] 

Reference area, 𝑆𝑆𝑡𝑡𝑟𝑟𝑓𝑓  300 [𝑚𝑚2] Max dynamic pressure, 
𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚  17 [kN/𝑚𝑚2] 

Surface density, 𝜌𝜌0 1.225 [kg/𝑚𝑚3] Max load factor, 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 3.5 [g] 

Density parameter, ℎ𝑠𝑠 8420 [km] Number of nodes, N 120 

Max bank angle, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  80 [deg] Weight of P.I., 
(𝑤𝑤𝜃𝜃 ,𝑤𝑤𝜙𝜙 ,𝑤𝑤𝜓𝜓,𝑤𝑤𝑡𝑡𝑡𝑡) (200, 200, 0.1, 0.005) 

 
Table 2: Initial and terminal conditions of Simulation 1 

Initial/terminal 
conditions 

𝑟𝑟 − 𝑅𝑅0, 
[km] 𝜃𝜃, [deg] 𝝓𝝓, [deg] 𝜸𝜸, [deg] 𝝍𝝍, [deg] 

𝐱𝐱0 105 0 0 -0.5 0 

𝐱𝐱𝑓𝑓 30 15 70 -10 15 

 

 
 
Figure 4 presents the convergence of the performance index of the proposed method which shows the stable 
convergence. The changes of states from the previous solution are shown in Fig. 5. As shown in Fig. 5, every change 
of state rapidly converges to zero which denotes the stable convergence of iterative processes. Then, the solution of 
the proposed method is compared to that of GPOPS. The proposed method only takes about 0.08~0.12 sec to solve 
Problem 2 at each iteration with Intel Core i5-12500 at 3GHz, and the total calculation time is 1.20 sec. On the other 
hand, GPOPS takes 16.13 sec. Fig. 6. Shows the very similar altitude profiles between the proposed method and 
GPOPS. Also, the path constraints on heating rate, dynamic pressure, and load factor are satisfied. The bank angle and 
position profiles show considerable similarity with little difference as shown in Fig. 7-8. It can be seen that the 
maximum bank angle command of 80 deg is given at around flight time of 600 sec and 850 sec. 
 

 
Figure 2: Altitude profile of every iteration (proposed 

method) 
 

Figure 3: Altitude profile of every iteration (w/o post-
correction technique)   
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The initial and terminal conditions of the second simulation are shown in Table 3. Although not shown in the figures, 
it is confirmed that the performance index and change of states stably converge as in the first simulation. The results 
of the proposed method are compared to that of GPOPS. As shown in Fig. 9, the proposed method results in an altitude 
solution profile similar to GPOPS. The bank angle profiles are almost indiscernible from that of GPOPS except for the 
last flight time. 
 

 
Figure 4: Performance index 

 
Figure 5: Change of states from the previous solutions  

 
Figure 6: Altitude profile 

 
Figure 7: Bank angle profile 

 
Figure 8: Longitude and Latitude profile 
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Table 3: Initial and terminal conditions of Simulation 2 

Initial/terminal 
conditions 

𝑟𝑟 − 𝑅𝑅0, 
[km] 𝜃𝜃, [deg] 𝝓𝝓, [deg] 𝜸𝜸, [deg] 𝝍𝝍, [deg] 

𝐱𝐱0 100 0 0 -0.5 0 

𝐱𝐱𝑓𝑓 32 20 70 -10 40 

 

5. Conclusions 

This paper presents a successive convex programming to solve the entry trajectory optimization problem. The 
technique developed in this paper focuses on alleviating the solution divergence and infeasibility problem that can 
easily occur during the successive linearization process. The original dynamics is reformulated using energy as the 
independent variable. The path constraints on heating rate, dynamic pressure, and load factor are equivalently replaced 
by simple linear inequality constraints on the radial distance from the Earth’s center. Then, the control input constraint 
is relaxed into a convex set without alternation of the optimal solution. To address the inconsistency caused by 
linearization, the modified trust-region method and post-correction technique are utilized. The proposed method 
alleviates the oscillation of the solution during the iterative process and results in fast and stable solution convergence.  
 

 
Figure 9: Altitude profile 

 
Figure 10: Bank angle profile 

 
Figure 11: Longitude and latitude profile 
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