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Abstract
In this paper, we propose deep reinforcement learning (DRL)-based robust integrated guidance and control
(IGC) law for longitudinal missile dynamics corrupted with noise. The longitudinal missile model is de-
fined as the Markov decision process (MDP) and the IGC law is described as a policy network. The actor
networks are trained using soft actor-critic (SAC) method and the output of the proposed method is deter-
mined as the normalized action. Then, the action multiplied by a scale factor becomes tail fin deflection
command of the missile. Finally, numerical simulations are performed in learning and evaluation phases,
and the results are analyzed and compared with those of sliding mode guidance control (SMGC)-based
simulations.

1. Introduction

In general, the missile guidance and control systems have been developed using various methods such as nonlinear
control and optimal control. They consist of guidance and control and have been developed individually. The previous
studies were carried out under the premise that there is no coupling between the guidance loop and the control loop. In
ref [1], a three-loop structure was designed for missile control, and control gains were derived through linear quadratic
regulator. Ref [2] uses the backstepping technique and incorporates state reconstruction and a neural network to
enhance robustness. Ref [3] uses the nonlinear sliding mode control (SMC) technique to avoid the chattering problem
and analyzes the effect according to the boundary layer thickness. Although the performance of the previous studies is
satisfactory, designing and integrating guidance and control separately is complex and costly. In addition the controller
cannot follow the acceleration command due to the rapid geometrical change or the stability of the system cannot be
guaranteed.
To address these problems, an integrated guidance and control (IGC) method that handles the guidance and control
simultaneously has been developed. Ref. [4, 5] defined the dynamics of missiles and conducted the IGC research
based on model predictive control (MPC). Ref. [6] designed the SMC to minimize zero-effort-miss (ZEM) on the
premise that the maneuvering acceleration of the target is known. Ref. [7] developed the IGC system that is robust
to disturbances by combining the SMC technique with a robust disturbance observer. Ref. [8] considered the field-
of-view of a strap-down seeker that observes the state of the target. Ref. [9] considered the terminal impact angle to
enhance the effectiveness of the intercept. Ref. [10] conducted a study to respond to rapid geometric changes by using
two controllers, fast and slow. Even though the overall researches generated satisfactory performance, they did not
consider corrupted observation with noise.
To alleviate this problem, deep reinforcement learning (DRL) is attracting attention as a new approach. The DRL
is a field of reinforcement learning, which combines deep neural networks and reinforcement learning algorithms so
that an agent interacts with the environment and learns a policy with maximal rewards. This approach demonstrates
great potential in solving problems without predefined solutions, and has been utilized for the missile guidance and
control systems. Ref [11] conducted a study to replace the missile attitude controller using the deep deterministic
policy gradient (DDPG) technique. Ref. [12] attempted to replace the existing guidance technique using the DDPG
technique in 2D kinematics. However, the DRL-based studies are not being actively conducted in the IGC system.
In this study, to overcome the limitations of the above studies, we propose a DRL-based integrated guidance and control
law. This method proceeds by integrating guidance and control into the policy network. For this purpose, the missile
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longitudinal dynamics and engagement kinematics are defined as the markov decision process (MDP). The defined
MDP is designed using OpenAI’s Gym environment [13], and the policy network is trained using soft actor-critic
(SAC) method [14]. In addition, to improve the convergence of the policy to the optimal policy, the input and output
are normalized between -1.0 and +1.0. The output is multiplied by the scale factor so that the driving range of the tail
fin ranged from −30◦ to 30◦. In order to verify the performance of the proposed method, numerical simulations are
performed in an environment with seen/unseen observations and noise, and the results are analyzed. Additionally, the
performance of the proposed method is compared with sliding mode guidance and control (SMGC) [6].
The remainder of this paper is organized as follows: Sec. 2 defines the longitudinal engagement kinematics and
dynamics of the missile. In Sec. 3, the missile longitudinal engagement problem is defined as the MDP, and the
DRL-based integrated guidance and control framework is proposed. In Sec. 4, numerical simulations composed of
the learning and evaluation phases are performed and the results are analyzed. Sec. 5 describes the conclusion of this
paper.

2. Model formulation

In this chapter, the longitudinal engagement kinematics and dynamics of missiles are considered and defined as MDP
to perform the DRL-based integrated guidance and control.

2.1 Engagement kinematics

Figure 1: Longitudinal engagement geometry.

As shown in Fig. 1, the longitudinal engagement kinematics of the missile and target are as follows:

Ṙ = Vr = VT cos(γT − λ) − VM cos(γM − λ) (1a)
Rλ̇ = Vλ = VT sin(γT − λ) − VM sin(γM − λ) (1b)

γ̇T =
aT

VT
(1c)

where (XI ,OI ,ZI) is Cartesian inertial reference frame. The variables D, λ,Vr and Vλ are relative distance, line-of-sight
(LOS) angle, speed in the approach direction, and speed perpendicular to the LOS, respectively. The variables Vi, ai

and γi are velocity, acceleration perpendicular to the velocity vector, and flight-path angle(i = M,T ), respectively. The
missiles and targets are denoted by subscripts M and T , respectively. The missile moves at a constant speed of 500
m/s, while the target has the initial attitude of γT and moves at a speed of 300 m/s. The acceleration of the target is a
constant, aT is applied by −5g

2.2 Missile dynamics

Fig. 2 shows the coordinate systems of the longitudinal dynamics of the missile. (Xb f ,OM ,Zb f ) is parallel to the inertial
frame and is at the center of gravity of the missile. The variable α is the angle-of-attack, θ is the pitch angle of the
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Figure 2: Missile coordinate systems.

missile. Based on the previous definition, the dynamics of the missile can be expressed as:

γM = θ − α (2a)

α̇ = q −
L(α, δ)
mVM

(2b)

q̇ =
M(α, q, δ)

I
(2c)

θ̇ = q (2d)

δ̇ =
δc − δ

τs
(2e)

where q represents the pitch rate of the missile. M and L are the pitch moment and the lift force, respectively. I refers
to the moment of inertia, and m is the mass. The angle of the missile’s tail fin, denoted as δ, is modeled as a first-order
dynamic system that tracks the desired command, δc, with a time constant of τs. The lift and pitch moment of Eqs. (2)
are expressed as follows:

L(α, δ)/m = LB
α f1(α) + Lδ f2(α + δ) (3a)

M(α, q, δ)/I =MB
α f3(α) +Mqq +Mδ f4(α + δ) (3b)

LB
α = Lα − Lδ (3c)

MB
α =Mα −Mδ (3d)

fi(·), i = 1, 2, 3, 4, where fi represents a bounded function, describe the nonlinear aerodynamic characteristics of the
missile. The range of the boundary condition was set from −30◦ to 30◦, and the missile model parameters used are
shown in Table 1.

Table 1: Missile characteristics

Variable Value Unit
LB
α 1190 m/s2

Lδ 80 m/s2

MB
α -234 s−2

Mδ 160 s−2

Mq -5 s−1

τs 0.02 s
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3. DRL-based integrated guidance and control system

In this chapter, we propose the DRL-based integrated guidance and control law. To implement this, the kinematics and
dynamics model of the missile and target are defined as the MDP, and the policy network is trained using the SAC
method.

3.1 Soft actor-critic

The Soft Actor-Critic (SAC) algorithm was developed as a solution to address the limitations of policy-based ap-
proaches in the reinforcement learning. The SAC introduces an off-policy technique that enhances sample efficiency
by storing and reusing previous experiences stored in a replay buffer. Moreover, the SAC is well-suited for continuous
action spaces as it leverages the maximum entropy model, leading to improved convergence speed towards the optimal
policy.

The SAC algorithm adopts an actor-critic architecture comprising an actor and a critic. The actor generates actions
based on the current observation, while the critic evaluates these actions and provides feedback to the actor to update
the policy accordingly. The critic plays a crucial role in estimating the Q-function, which assesses the value of observed
state-action pairs based on the current policy. By doing so, the actor learns to optimize its policy by seeking the
maximum return within the given environment, thereby facilitating effective learning.

3.2 SAC-based integrated guidance and control law

Fig. 3 shows the overall conceptual diagram of the proposed integrated guidance and control system. Since the actual
missile system observes the state information of the target through a sensor such as a strap-down seeker, it is assumed
that the target’s LOS angle, LOS angular rate, and missile state can be used.

Figure 3: Conceptual diagram of the proposed SAC-based IGC framework

Using the two-dimensional longitudinal kinematics and dynamics model of the missile and target, the following MDP
is constructed.
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S = [SM ,ST ]
(SM = [xM , zM , αM , qM , θM , δM],ST = [xT , zT , γT ])

O =
[
sin(λ − γM), cos(λ − γM), λ̇, q, δ

]
A = δ̄c

R =

−100, if R > Rprev

−(ZEM/1e4)2 otherwise
(4)

The state vector (S) consists of six missile states and three target states. To ensure the continuity of the observation
vector (O), the relationship between λ and γM is represented using trigonometric functions, specifically the sin and
cos functions. This representation allows for maintaining smooth transitions in the target state information even when
it exceeds the range of -π to π, while also facilitating the normalization effect. Furthermore, to enforce continuity in
the state information for the policy network, three observation vectors are stacked and used as input. The action (A)
represents the output of the policy network and ranges from -1 to 1. The final control command for the missile’s control
system is obtained by multiplying the output by a scale factor of 30 degrees. The reward function (R) is designed to
enable the missile to guide itself towards the target. R is a relative distance between the missile and the target, and the
relative distance at the previous time step, denoted as Rprev. If R is greater than Rprev, it is considered a failure, while if
R becomes smaller than 3, it is considered a success. The value ZEM in the reward function is defined as follows:

ZEM =
RVr√

V2
r + V2

λ

(5)

4. Validation

In this chapter, numerical simulations are conducted to validate the performance of the proposed integrated guidance
and control system. The results are then analyzed to evaluate its effectiveness. Furthermore, a comparison is made with
the sliding mode guidance and control (SMGC) system to provide a comparative analysis of the outcomes.

4.1 Experiment setup

The structure of the actor and critic network of The SAC is shown in Table. 2. All networks have an input layer,
two hidden layers with 256 nodes, and an output layer. The well-known function ReLU was utilized for the activation
function. The actor network receives the latest three stacked observations to create an action. The critic network creates
a Q value through stacked observation and actions. The actor network takes the three latest observations as input and
generates an action. The critic network takes the three observations and actions as input and evaluates the current actor
network.
Table. 3 shows the hyperparameters of the SAC for the learning. The learning process begins after 100 episodes have
been performed to build up the replay buffer. Each episode ends when the end terminal condition is stisfied or 5000
timestep is exceeded. The timestep required for the entire learning was set to 2e7.

Table 2: SAC network architecture

actor network critic network
layers unit activation unit activation
input obs dim Linear obs dim + act dim Linear

hidden 256 ReLU 256 ReLU
hidden 256 ReLU 256 ReLU
output act dim Linear 1 Linear

The missile longitudinal engagement environment was created with the OpenAI Gym python module. When deriving
the next state from the environment, it was integrated at 100 Hz using the fourth-order Runge-Kutta method. The
overall simulation is composed of the learning and evaluation phases which were determined as follows:
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Table 3: Hyperparameter of SAC

Variable Value
learning rate 0.0003

discounting factor 0.99
replay buffer size 1e6

learning start 100
batch experience 256
episode timestep 5e3

total timestep 2e7

• Learning phase

▷ The initial positions of the missile and target are (0, 0) m and (5000, 0) m, respectively.

▷ The velocities of the missile and target are assigned as 500 m/s and 300 m/s, respectively.

▷ The missile’s initial angle-of-attack is randomly selected in 1◦ intervals within the range of 0◦ to 5◦.

▷ The missile’s initial pitch angle is randomly determined in 10◦ intervals ranging from 0◦ to 50◦.

▷ The target’s initial pitch angle is randomly determined in 10◦ intervals between 110◦ and 150◦.

• Evaluation phase

▷ The initial positions, velocities, and angle-of-attack of the missile are the same as those in the learning
phase.

▷ The initial positions and velocities of the target are the same as those in the learning phase.

▷ The missile’s initial pitch angle is randomly determined in 1◦ intervals ranging from 0◦ to 70◦.

▷ The target’s initial pitch angle is randomly determined in 1◦ intervals between 110◦ and 170◦.

In addition, in order to implement the noise generated in the environment, the observations were contaminated with
noise. During the learning phase, a relatively low noise level (µ = 1, σ = 0.001) was used, while during the evaluation
phase, a higher noise level (µ = 1, σ = 0.01) was employed.

4.2 Results

In this section, the performance of the proposed method is analyzed. The SAC was trained for 2e7 timesteps in the
learning phase. In order to evaluate the performance of the policy network after learning was completed, 1000 samples
of Monte Carlo simulation were performed in the evaluation phase with noise N(1, 0.001/0.01). Fig. (4-7) show the
results of 100 out of 1,000 verifications. Fig. 4 represents the flight trajectory of the missile and target. Fig. 5 is
the angle-of-attack, pitch angles, and pitch angular rates among missile states, respectively. Fig. 6 shows the vertical
acceleration of the missile due to the tail fin. The vertical acceleration is the lift force divided by the mass in Eqs. (3).
Fig. 7 shows the control command generated by the policy network with a control gain of 30◦. In the evaluation phase,
the policy network encounters situations not experienced in the learning phase. Nevertheless, the performance of the
policy network is similar to the results in the learning phase.
In order to further prove the validity of the proposed method, a comparative analysis was conducted with the SMGC
method. That is, the success rate was analyzed by changing the magnitude of the acceleration applied to the target. In
addition, the corrupted λ and λ̇ with noise were utilized in the SMGC method, while the observation were corrupted
with noise in the proposed method. Table. 4 shows the success rate according to the target’s maneuvering acceleration
and noise. As shown in the table, the proposed method shows a consistent performance according to the variation of the
target’s maneuvering acceleration and noise magnitude while the success rate of the SMGC method is not maintained
similarly depending on the noise and acceleration.
In summary, it can be confirmed that the proposed method in this study guarantees consistent performance, while the
SMGC techniques have difficulty maintaining performance in a situation where the size of noise increases and the
acceleration of the target changes.
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Figure 4: Trajectories of missiles.

Figure 5: Angular states of the missiles.

Figure 6: Vertical acceleration of the missiles.
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Figure 7: DRL-based tail fin control command and response.

Table 4: Success rate of the proposed method and SMGC

DRL(our method) SMGC [6]
Target aT N(1, 0.001) [%] N(1, 0.01) [%] N(1, 0.001) [%] N(1, 0.01) [%]
−7g 100 100 82.9 60.8
−6g 100 100 81.8 60.7
−5g 100 99.8 98.0 97.4
−4g 99.2 99.3 99.3 99.9
−3g 92.8 92.2 97.9 97.4

5. Conclusion

In this study, we proposed the integrated guidance and control law that is robust to noise based on the SAC method. To
this end, the kinematics and dynamics models of the missile and target were integrated and defined as the MDP, and the
reinforcement learning environment was created using OpenAI Gym. The proposed method consists of the learning
phase and the evaluation phase. In the learning phase, it proceeded with limited initial conditions. In the evaluation
phase, it was verified with the initial conditions and increased noise that were not encountered in the learning phase.
Additionally, a simulation using the SMGC method was performed and the results were compared and analyzed. In the
case of the SMGC method, the performance degradation was observed to be significant and dependent on the presence
of noise and the acceleration variation of the target. In contrast, the SAC-based IGC exhibited a remarkably consistent
and high success rate, even when confronted with observations and noise that were not encountered during the learning
phase. Based on the obtained results, it is anticipated that an integrated guidance and control system considering not
only longitudinal but also lateral motion can be developed. The proposed method can operate only with the information
that the sensor can acquire. Therefore, if the stability of the learning results can be ensured, it is expected that it can be
applied to the real-world environment.
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