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Abstract
The shadowgraphy technique enables visualising burning aluminium droplets during combustion in com-
bustion gases generated by a solid-propellant sample. To analyze these images, deep learning has already
proven its efficiency but requires refined detection. A new method of instance segmentation has been tested
with the Mask R-CNN network, which has been adapted to be more efficient. Diameter probability densi-
ties and velocity profiles for two pressures for a research composition were estimated from the detections
obtained by the network and compared. This study stands out in the existing literature as it provides a
substantial amount of data, enabling a rigorous and comprehensive investigation.

1. Introduction

Adding aluminium particles in solid-propellant composition increases propulsion performance by about 10% but can
also generate troublesome phenomena such as thermo-acoustic instabilities (ITHAC) [1–3], leading to pressure os-
cillations. Characterization of aluminium combustion above the propellant surface is decisive for understanding the
stability of solid-rocket motor (SRM) propulsion. Numerical simulation is to study complex instabilities; however, an
accurate aluminium-combustion model with realistic input data is crucial. But regardless of model precision, accurate
characterization of aluminium-droplet size and velocity remains limited in realistic combustion conditions. Given the
combustion conditions (high pressure, high temperature), these data are particularly complicated to obtain experimen-
tally. ONERA has been using a shadowgraphy [4] set-up to observe small solid-propellant samples in combustion at
a high repetition rate. Information-rich images contain multiple objects moving quickly in the gas flow. The com-
plexity of the shadowgraphy images has led to analyze images by deep learning neuronal network, first by semantic
segmentation [5, 6], then in this work by instance segmentation using a convolutional pre-trained network. Instance
segmentation combines semantic segmentation (providing detailed object shape) and object detection (giving access to
localization and classification) by segmenting images only in areas of interest (determined by the network). It gives
access to information on the characteristics of each object (shape, size, etc.), their place in the image, and their re-
lationship to other objects (location, distance to neighbours, etc.). The learning phase is conducted with a restricted
base of various annotated shadowgraphy images for different experimental conditions (solid-propellant compositions,
pressure, acquisition parameters, etc.). For this task, the Mask R-CNN [7], a widely adopted network for instance
segmentation, has been selected.

Nevertheless, classical deep learning approaches aim at optimizing global performance, combining detection
probability and false alarm rate without considering the objects’ size distribution, our goal for aluminium characteri-
zation. Under these conditions, the networks tends to favour detecting the most straightforward objects (typically the
largest droplets) while neglecting their counter-performance on the most challenging objects (smaller droplets), which
can bias the estimated granulometric proportions. To address this issue, the learning process has been modified to
enhance robustness to the size distribution, resulting in a modified network named MRCNN-A, as detailed in a sep-
arate publication [8]. The results obtained from the image analysis approach and statistical tools enable the precise
determination of droplet size distribution. Furthermore, a Kalman filter has been developed as a tracking approach to
capture droplet trajectories and estimate their velocity near the burning surface.

To highlight the efficiency of instance segmentation, we aim to establish a benchmark for the performance of
instance segmentation in analyzing the burning behaviour of aluminium drops. By comparing our results with state-
of-the-art techniques, we can assess the effectiveness and potential advantages of employing instance segmentation
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in this domain. This comparative analysis will provide insights into the capabilities of our method in capturing the
intricate dynamics of burning aluminium drops, highlighting any improvements in accuracy, computational efficiency,
and predictive capabilities.

Subsequently, the focus shifts towards evaluating physical quantities related to droplet size and velocity. Droplet
size plays a crucial role in combustion processes, influencing the surface area-to-volume ratio and hence the rate of
heat and mass transfer. Velocity, on the other hand, affects the Al-droplet burning time and mixing characteristics,
ultimately shaping the overall combustion behaviour. We investigate these important parameters for two different test
conditions for a single propellant composition to understand their influence on the burning characteristics of aluminium
drops. By employing MRCNN-A, we can gain a comprehensive understanding of how droplet size and velocity evolve
during the combustion process and unravel any underlying trends or correlations.

In summary, this paper presents an efficient image analysis approach employing deep learning techniques to
characterize the evolution of aluminium droplets in solid-rocket propellants. It addresses the challenges associated with
accurately determining droplet size distribution and showcases the effectiveness of the proposed methodology. Addi-
tionally, incorporating a tracking approach using a Kalman filter further enhances the analysis of droplet trajectories
and velocity estimation, complementing studies already launched for tracking particles in shadwography images [6,9].
The number of monitoring sessions in this work is significantly higher than in the literature, making the resulting
analyses more robust.

2. Past work on shadwography analysis

2.1 Shadowgraphy images

Shadowgraphy makes it possible to observe solid propellants using an optical set-up to visualize the combustion pro-
cess. The setup used in this article has already been used to study solid propellants [4, 10]. Images are obtained at
high frame rates for relatively small propellant samples, averaging < 1.0 g. The propellants studied are AP/HTPB
composites for research. A typical shadowgraphy image is shown in Figure 1

Figure 1: Exemple of shadowgraphy image for a burning solid propellant

The image is divided into two distinct regions: a dark area at the bottom corresponds to the solid propellant sample. In
contrast, the lighter area represents the hot gas from propellant combustion. The latter shows the burning aluminium
droplets with the alumina cap resulting from droplet combustion and inert aluminium particles that have not yet ignited.
The bottom zone of the solid propellant appears more uniform, but its surface often displays complex shapes and
patterns. Numerous surface protuberances are generally associated with aluminium particle-related phenomena, such
as aluminium melting, ignition, droplet agglomeration and surface ejection [11]. The main objective of the present
work is to analyze and detect aluminium droplets as they burn, from the moment they leave the surface to the moment
they disappear from the image. However, this task may prove difficult due to the complexity of the images resulting
from the extreme conditions.
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2.2 Image analyses for shadowgraphy images

Different image analysis techniques have been tested on shadowgraphy images to detect aluminium drops. One of these
techniques is the MSER (Maximally Stable Extremal Regions) algorithm, as described in [12]. The MSER algorithm
is used for blob detection and region-based object recognition. It identifies stable regions in an image with consistent
intensity or color properties across different scales. This approach provides robustness to variations in the image and
noise, making it suitable for detecting aluminium drops in shadowgraphy images [5, 6, 10].
Another image analysis technique applied to shadowgraphy images is semantic segmentation [6, 13]. Semantic seg-
mentation involves dividing an image into different regions and assigning semantic labels to each pixel. The goal is
to classify and understand the contents of an image at the pixel level, providing a detailed understanding of the image
by assigning a label to each pixel. This technique allows for precise localization and delineation of objects or regions
within the image. One popular architecture used for semantic segmentation is U-Net, as described in [14]. U-Net
utilizes an encoder-decoder structure with skip connections, which helps capture local and global context information
while preserving fine-grained details, leading to accurate pixel-level predictions.
These two methods have been used for droplet detection [5, 6] and confronted [13]. The network was tested in several
classes for 45 training and 15 test images. This results in the detection performance being much better for semantic
segmentation than MSER (70% accuracy for U-Net vs 35% for MSER). However, the algorithm tended to confuse
the objects in the images, causing confusion between the different classes tested. A study on more images and fewer
classes would allow us to refine the segmentation.

Several tracking methods have been developed to track particulates in shadowgraphy images. In the study [6],
the velocity of droplets in the gas flow was compared with numerical simulations, while in [9], the velocity of detached
droplets was compared with that of detached agglomerates in images of solid propellant loaded with inert particulates.
Another approach involves coupling shadowgraphy and Al-PLIF (Aluminum-Planar Laser-Induced Fluorescence) im-
ages to enable simultaneous tracking in both types of images, resulting in improved accuracy [10]. However, these
tracking methods are limited in their ability to track many objects due to their detection performance (false detection
by droplet identification methods).

3. Instance segmentation for droplet detection

This section presents another segmentation method for drop detection, instance segmentation, and the neural network
chosen to perform it. It also presents our modification to this network to make it more robust to the physical constraints
of aluminium drops burning in a solid propellant.

3.1 Instance segmentation

Coupling object detection and semantic segmentation, instance segmentation combines the advantages of both methods.
It performs segmentation in bounding boxes providing detailed results but only on the targeted detection areas. It then
gives access to information on the characteristics of each object (shape, size, etc.), their place in the image, and
their relationship to other objects (location, distances to neighbours, etc.). In our case, the key advantage of instance
segmentation is its ability to distinguish individual droplets in cases where they overlap or are closely packed together.
By assigning a unique label and generating a separate mask for each droplet, instance segmentation allows for a granular
understanding of their characteristics and trajectories during the combustion.

3.2 Mask R-CNN

To perform instance segmentation of the image, we used the Mask R-CNN [7], which stands for Mask Region-based
Convolutional Neural Network, a deep learning model developed, for instance segmentation tasks which gives an
accurate mask for each detected object within an image. This means that in addition to identifying objects within an
image, it can precisely outline those objects’ boundaries, providing detailed segmentation. However, classical deep
learning approaches aim to optimize global performance metrics, combining detection probability and false alarm
rate without considering objects’ size and granulometric distribution. Under these conditions, the networks might
favour detecting the easiest objects (typically the largest drops) while neglecting their counter-performance on the
most difficult objects (small drops), which can bias the estimated granulometric proportions. The learning process has
therefore been modified to make it more robust to the size distribution. The goal is to accept a possible less efficient
detection of the network but which has a physical meaning closer to the ground truth for the droplet size distribution,
our goal. Until now, the learning process was focused on three tasks: detection, segmentation, and classification,
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followed by post-processing to evaluate the size distribution. Now this last aspect concerning granulometry is studied
inside the network. For this purpose, a term has been added to the loss function of the network measuring the deviation
between the size distributions of the ground truth and the prediction. This deviation is estimated by the Kullback-
Leibler divergence [15] (explained in more detail later in the study). A computer vision-oriented article [8] has been
published for more details on the method that we called MRCCN-A. The method is explained in depth in the other
publication where it is applied to other dataset

4. Image postprocessing for recovering physical parameters

This section overviews the image analysis tools employed to derive accurate physical parameters. It introduces tech-
niques for evaluating the accuracy of drop detections and tools for measuring the physical quantities related to the size
of aluminium drops based on these detections. The section concludes by discussing the tracking methods utilized to
monitor the motion of the drops within the gas flow.

4.1 Detection-performance evaluation

The study primarily focuses on the combustion of aluminium drops, distinguishing between two classes on images:
the background and the drops themselves. The annotation of images through manual labelling provides a ground truth
(GT), which serves to train and evaluate the learning methods of the network.
Segmentation into these two classes can be likened to a classification task, determining the presence or absence of the
object of interest. As such, relative classification metrics can be utilized. The GT provides a spatial map of the object
locations, enabling a comparison with the predictions. When an object is correctly located in the prediction image, it
is classified as a True Positive (TP). If an object is erroneously detected where none exists, it is a False Positive (FP).
Conversely, if an object in the GT is undetected, it is a False Negative (FN).
To assess detection performance, Precision and Recall serve as evaluation criteria. Precision measures the ratio of
correctly detected relevant objects of interest to all detected objects of interest, evaluating the network’s ability to
detect the desired objects accurately:

Precision =
TP

TP + FP
(1)

On the other hand, Recall examines the ratio of correctly detected relevant objects of interest to the total number
of relevant objects present in the image, evaluating the completeness of the detection:

Recall =
TP

TP + FN
(2)

In practice, it is important to balance Precision and Recall. If the network considers all objects in the image as objects
of interest, it may achieve high Recall but have low Precision. Conversely, if it only detects a few objects of interest
among the total, Precision may be high but Recall low. Typically, Recall is plotted against Precision to gain insight into
the metrics, but relying solely on these criteria is insufficient for network evaluation. To capture the trade-off between
Precision and Recall, a combined measure is computed, known as the F-Score. It provides a comprehensive assessment
of Precision and Recall by calculating their harmonic mean:

F = 2 ×
Precision × Recall
Precision + Recall

(3)

A higher F-Score indicates better detection quality of the network.

4.2 Droplet size-performance evaluation

4.2.1 Probability density function with Kernel Density Estimation

To estimate the probability density function (PDF) of the droplet’s diameter, we employ Kernel Density Estimation
(KDE) [16,17]. This non-parametric technique utilizes observed data points to smooth the data and derive an estimated
density. It achieves this by placing a kernel function on each data point and summing up these kernel functions to
obtain the density estimate.
Let x1, ..., xn be an independent and identically distributed sample (of n ∈ Z objects) from a random variable X with
density f . The density estimator is given by:
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f̂h(x) =
1

nh

n∑
i=1

K
( x − xi

h

)
(4)

Here, K represents a kernel function that follows a probability law density, and h is a smoothing parameter. The Kernel
Density Estimation technique enables flexible and smooth estimation of the underlying probability density function.
It provides valuable insights into the data distribution, even in cases where the underlying distribution is unknown or
complex.

4.2.2 Kullback-Leibler divergence

The Kullback-Leibler divergence [15], also known as KL divergence, is utilized to quantify the dissimilarity between
two probability distributions. While it does not conform to the properties of a distance measure, such as triangular
inequality or symmetry, it effectively assesses the difference between probability distributions.
Consider a dataset P = (p1, ..., pn) comprising n ∈ N observations, and let Q = (q1, ..., qn) be an approximation of P
with the same size. The Kullback-Leibler divergence of P with respect to Q at a specific point x is computed using the
following equation:

KL(P||Q) =
n∑

i=1

pi(x) log
(

pi(x)
qi(x)

)
(5)

This divergence is a valuable tool for comparing probability distributions of measured and reference sizes during the
learning process.

4.3 Droplet tracking

Droplet tracking was set up using Multi-object tracking (MOT) to establish droplet velocity profiles as the combustion
proceeds. It is a computer vision task that detects and tracks multiple objects in successive images. It aims to follow
object trajectories despite occlusions and appearance changes accurately. The main steps in MOT include object
detection, data association to establish correspondences between detections, trajectory estimation, occlusion handling,
track maintenance, and performance metrics evaluation. In our case, object detection is performed by MRCNN-A,
trajectory estimation by Kalman Filter, and the other task by post-processing.
The Kalman algorithm is a recursive filtering algorithm used for estimating the state of a dynamic system in the presence
of noise and uncertainty. It is widely applied in various fields, including robotics, control systems, and tracking.
The Kalman Filter has key features that include optimal state estimation based on noisy measurements, updating and
refining the state using a weighted average of predicted state and measurements, estimating the uncertainty with an
error covariance matrix, and achieving optimal filtering by dynamically adjusting weights based on uncertainties. The
Kalman Filter is particularly useful in situations with measurement noise and uncertainty, allowing for accurate state
estimation even in the presence of these disturbances, as in our study.

5. Results
This section presents a comparative analysis of deep learning techniques with state-of-the-art methods in studying
burning aluminium drops. Furthermore, it explores the evaluation of droplet size and velocity for two different test
conditions, shedding light on their impact on combustion behaviour. The physical quantities obtained were normalized
to reference values (diameter dre f , velocity vre f , height above sample Hre f ) . The study is performed on annotated
shadowgraphy images of several types of propellants at different test conditions (pressure, image resolution, etc.).

5.1 MRCNN vs U-Net

5.1.1 Repeatability of the networks

To study the repeatability of the networks, we consider learning as a random variable X. For each network, ten random
draws of X are performed. Each drawing consists of the random separation of the database into 45 images (more than
300 droplets) for learning and 15 (more than 100 droplets) for testing. The learning conditions being the same, the
draws are independent: they effectively lead to 10 different learning processes. The learning conditions for U-Net are
identical to those implemented in the previous studies [13]. The comparison of the instance segmentation with the state
of the art is based solely on the method’s performance. The Precision as a function of Recall for the ten draws for the
two networks is shown in Figure 2. The scatterplot for U-Net is much more dispersed than that for Mask R-CNN, so
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Figure 2: Comparison between Recall based on Precision for 10 training per network

the network is much less stable than Mask R-CNN. On average, performance seems much better with Mask R-CNN.
In fact, even if U-Net’s Precision is equivalent to Mask R-CNN in a few cases, Mask R-CNN’s Recall is always much
better (more real objects detected). Regarding detection performance, the network appears more effective than U-Net,
as confirmed by Table 1, where the F-Score for each case is represented. On average, the F-Score calculated for Mask
R-CNN is much higher than that for U-Net. Instance segmentation seems to perform better than semantic segmentation,

Table 1: Comparison between F-score for each run for each network

U-Net Mask R-CNN
1 0.38 0.64
2 0.35 0.60
3 0.01 0.60
4 0.26 0.55
5 0.05 0.55
6 0.03 0.59
7 0.45 0.58
8 0.14 0.36
9 0.52 0.66

10 0.29 0.62
Average 0.25 0.58

Standard deviation 0.17 0.08

taking into account the individuality of objects.

5.1.2 Comparison of estimated physical quantities

The PDFs of the detected drops by combining the 10 draws are shown in Figure 3a for U-Net and 3b for Mask R-CNN
and their GT to estimate which method is representative of the true physical quantities. If the GT PDF for the two
networks are different, this is due to the random selection of images. The U-Net network significantly underestimates
drop size, as shown by the peak at low diameter values certainly attributed to false detections. The prediction made by
Mask R-CNN is closer to the GT, even if it shows less efficient detection at the level of large drops.

A much lower KL divergence for Mask-RCNN (0.08) than for U-Net (0.35) confirms this. Instance segmentation,
therefore, appears to be much more relevant and efficient in detecting and for the quantitative values of physical
quantities.
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Figure 3: Comparison between probability density function of droplet’s diameter between each pressure

5.1.3 Comparison of time performance

The processing time for each method is a crucial factor when evaluating its performance and practical use. During
the training process, much time is spent annotating the required GT images. On average, it takes around 5 minutes
to annotate each image. Subsequently, the trained model is validated using test images. If the model is sufficiently
versatile, i.e. if it has been trained on various experimental conditions with different settings, it can be directly applied
to complete sequences of shadowgraphy images corresponding to an entire test. As a result, there is no need to train
the method for each individual test, nor is there a need for image annotation each time. This makes the method highly
adaptable and less time-consuming once trained.

Table 2 illustrates the projected GPU processing times for training a model on 45 images and applying it to
sequences comprising 3000 images using the MSER, U-Net, and Mask R-CNN methods. The estimated durations for
the MSER method are derived from prior research experiences [5, 6, 13]. The main aspect is the need to adjust MSER
settings for each sequence in order to achieve reasonable detection performance via a simple try-and-test approach.
The term "Object detection" refers to the use of the CNN model or the MSER algorithm in order to detect droplets in
the image.

Table 2: Comparison between time processing and detection quality for each method

MSER U-Net Marsk R-CNN

Detection quality Repeatability + + +++

Performance + ++ +++

Processing Time

Learning process Annotation 0 5h 5h
Train 0 1/2h 1/4h

Image sequence analyse
Parameter adjustment 2h 0 0

Object detection 4h 1h 1/2h
Post-processing 1h 1/4h 1/4h

Total time 1 sequence 7h 1h1/4 3/4h
5 sequences 35h 6h1/4 3h3/4

The results indicate that Mask R-CNN surpasses other methods not only in terms of detection accuracy but also
in terms of processing time; the network is sightly faster than U-NET on our hardware setting. With Mask R-CNN, it
is possible to perform droplet detection and analysis in under an hour once the experimental tests are completed. Once
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the model is trained, droplet detection would be possible in parallel on the experimental measurements, which offers
excellent flexibility.

5.2 Estimation of physical quantities

This section compares two different test conditions for a single propellant composition to show the efficiency of the
instance segmentation approach. The models were derived from MRCNN-A on a database of 250 shadowgraphy
images from different test conditions (various propellant compositions, various pressure and various spatial resolution).
Figure 4 showcases the outcome of applying the model trained with the MRCNN-A network on one image that has not
been used for learning. Each identified drop is accurately segmented and enclosed within a bounding box. Above each
box is shown a score, indicating the likelihood of the detected object being a drop, is displayed. The network itself
generates this score.

Figure 4: The MRCNN-A network is employed to detect drops, leveraging its trained model

The learned model was then applied to sequences of shadowgraphy images from two testings, one at 9 bar and
the other at 11 bar. The two sequences each contain more than 3,000 images. The following Table 3 summarises the
characteristics obtained from the images. This is the first time there has been such a large-scale study of aluminium
combustion using image analysis.

Table 3: Characteristic details obtained from image sequences by applying the model

Pressure Number of images Number of detections Number of tracks
9 bar 3874 52938 1240

11 bar 3363 53186 1285

In this study, every detection and track has been meticulously validated and carefully sorted through automated
post-processing methods to ensure that only accurate data is considered. This meticulous filtering process eliminates
any false detection or unexpected trajectories. The resulting dataset contains an extensive collection of reliable trajec-
tories and accurate detections, thus providing a robust foundation for the statistical investigations of various physical
properties described below. Consequently, the statistical analyses conducted on these physical quantities accurately
represent the real phenomena occurring above the surface of the propellant during combustion.

5.2.1 Visualisation of droplets’ trajectory

Figure 5 illustrates the trajectories of three distinct drops, each with a different size, leaving the propellant surface.
These drops can be classified as follows: a small drop (#5887), a medium-sized drop (#6315), and a large drop (#7962).
Although all drops generally exhibit a linear trajectory with minimal horizontal variation, their behaviour differs de-
pending on size. The primary factor influencing their behaviour is the drop size: larger drops take a longer time to
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(a) Start (b) Middle 1 (c) Middle 2 (d) Middle 3 (e) Middle 4 (f) End

Figure 5: Comparison of positions of 3 droplets of different sizes: small (#6887), medium (#6315) and large (#7962)

detach from the surface (as depicted in Figure 5d), resulting in a seemingly slower overall speed. This can be observed
by the greater number of successive positions documented towards the end of the trajectory, as demonstrated in Figure
5f. Interestingly, it is worth noting that automatic tracking of smaller drops poses a greater challenge due to their lower
number of occurences in the captured images. Consequently, the tracking data for smaller drops are comparatively less
informative, leading to less precise predictions of their next positions.

5.2.2 Droplet size

From each of these trajectories, statistical analyses were conducted to investigate the behaviour of the droplets; an
averaged diameter is attributed to the track. PDFs for different experimental conditions are depicted in Figure 6.
Notably, the combustion of aluminium in the propellant at 9 bar results in the formation of larger droplets compared
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Figure 6: Probability density function of droplet’s diameter for 9 bar and 11 bar pressures

to higher pressure conditions. This observation is consistent with existing literature, which suggests that the size of
aluminium droplet agglomerates tends to decrease with increasing pressure due to the facilitated ignition of aggregates
[18]. Also noteworthy is that the droplets appear slightly less dispersed at 11 bar than at 9 bar. It would be interesting
to explore the influence of higher pressures on this phenomenon for instance, by analyzing tests up to 30 bar.

5.2.3 Droplet velocity

By tracking the droplet’s motion during combustion, it becomes possible to establish velocity profiles as a function of
its diameter by considering the distance from the surface. This relationship is illustrated in Figure 7, with the left side
corresponding to 9 bar and the right side to 11 bar.
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Figure 7: Comparison between the dispersion of velocity profiles for pressures 9 and 11 bar. The colorscale corresponds
to the normalized diameter.

The variation in speed observed in Figure 5, e.g. smaller droplets moving faster, is corroborated here. For both
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pressures, it is evident that larger droplets, depicted by yellow/orange colours, exhibit lower velocities compared to
smaller droplets (purple/mauve colour). While the drag force FD is proportional to the droplet diameter D (FD ∝ D),
the droplet inertia is proportional to the cube of the droplet diameter (m ∝ D3). The droplet acceleration a is hence
decreasing with its diameter increasing (a ∝ 1

D2 ) [9]. This is visible with the steeper slope on velocity profiles for small
droplets. The graph can be easily divided into distinct zones for large, medium, and small droplets, which could be
further explored in future investigations.
It is also possible to see that the velocity is lower as the pressure increases: for drops of the same diameter, their
velocity will be lower on average at 11 bar than at 9 bar. For example, drops with a normalized diameter of 12 (in dark
orange) have a normalised speed of 1-1.5 for 9 bar compared with 0.5-1 for 11 bar. This is consistent with the decrease
in gas velocity with increasing pressure. This shows the capacity of the present analysis method to detect a velocity for
a relatively small pressure variation ( 20%).

It is feasible to observe the initial velocities vinit of the droplets, which refers to their speed upon leaving the
surface of the propellant. The initial velocity is a key parameter simulation since it is an input parameter for droplets
seeded into the flow. These velocities are depicted in Figure 8 through their probability density functions (PDFs). The
initial velocities are slightly lower at 11 bar compared to 9 bar.
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Figure 8: Probability density function of droplet’s initial velocity for 9 bar and 11 bar pressures

More precisely, it is interesting to see if the initial velocity depends strongly on diameter. Figure 9 displays the
distribution of droplets across these two quantities. The X and Y axes represent, respectively, initial velocity and
diameter. The droplet’s points are grouped into rectangular bins based on their values along the X and Y axes. The
colour of each bin represents the percentage of droplets found within that particular bin.
It can be compared to the one presented in the article [19], where the drop diameter is plotted against the velocity
of the drop upon leaving the burning surface. Both graphs show a similar trend, indicating that as the particle size
increases, the initial velocity decreases. However, the authors of [19] had noted a wider dispersion of values compared
to what is observed here. This difference can be attributed to the number of velocities studied, with 176 analyzed in the
article [19] compared to more than 1200 velocities per pressure shown in the accompanying figures.

In accordance with the PDFs (Figure 8), the initial velocities are higher for 9 bar than for 11 bar. However, the
dispersion of vinit as a function of diameter seems much smaller for 9 bar than for 11 bar, where the values cluster
around particular diameters. The dependence between droplet diameter and initial velocity, therefore, appears to be
greater for higher pressures. Further studies could be carried out to investigate this correlation in particular by looking
at the dispersion of vinit by size class.

6. Conclusion and perspectives

This paper provides evidence for the effectiveness of deep learning-based instance segmentation in characterizing
aluminium combustion of solid propellant. When compared to the current state of the art, instance segmentation
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Figure 9: Comparison between the dispersion of droplet’s initial velocity for 9 bar and 11 bar pressure in function of
their diameter

exhibits significant superiority, not only in detection but also in the accurate estimation of relevant physical quantities.
This approach enables the development of a robust and reliable droplet prediction model, which can be applied to entire
sequences of shadowgraphy images, representing a novel advancement in the field.
By utilizing instance segmentation, it becomes possible to derive physical quantities from existing literature. What sets
these quantities apart is their derivation from a substantial number of measurements, ensuring the stability and statistical
reliability of the subsequent analyses. Overall, this research demonstrates the potential of instance segmentation by
deep learning in advancing the understanding of combustion processes and obtaining valuable insights from extensive
measurement data.
In the future, it would be valuable to expand the study by including a wider range of pressures. This would enable a
comprehensive comparison and analysis of the combustion process across various pressure conditions. Additionally,
extending the investigation to different types of propellants would allow for a thorough exploration of their dissimilar-
ities during combustion.
Moreover, the analysis of physical quantities could be further developed to explore additional phenomena, such as
the acceleration of the droplets. By delving into these aspects, a deeper understanding of the underlying physics and
dynamics of the combustion process could be achieved. This could contribute to advancements in the field and provide
insights into the behaviour of droplets and propellants under varying conditions.
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