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Abstract 

The open fan engine, featuring ultra-high propulsive efficiency, is considered one of the most realistic 

and sustainable option for civil aviation. The preliminary design of such architectures requires a robust 

and flexible modeling of the propulsor performance. An innovative approach based on induced velocity 

models combined with aerodynamic polars is proposed for an open fan consisting of a variable pitch 

propeller rotor and a variable pitch stator. An assessment of the method accuracy is provided, covering 

propeller map generation, static and reverse performance, and design parametric studies on diameter, 

aspect ratio and blades count. The proposed method is a good compromise between accuracy and 

numerical robustness, usable in a cycle performance model, for both design and off-design studies. 

Nomenclature 

A Area, m2 

AR Blade aspect ratio 

c Chord length, m 

CL, CD Lift and drag coefficients 

CP,120 P120 (ρ0 ∙ 𝑁120
3 ∙ 𝐷120

5)⁄

D Tip diameter, m 

F Force, N 

FN Net thrust, N 

i Angle of attack, rad 

k Calibration coefficient 

M Mach number 

NB Number of blades 

N120 Rotor rotational speed, rps 

Q Torque, N.m 

P120 Rotor power, W 

p Static pressure, Pa 

r Radius relative to tip 

R Tip radius, m 

u Induced velocity, m/s 

Ut Rotor tip speed, m/s 

V Velocity, m/s 

w Wake displacement velocity, m/s 

W Mass flow, kg/s 

Z Axial distance, m 

α Sound velocity, m/s 

β Pitch angle, ° 

Γ Circulation, m2/s 

ε Calibration exponent 

η Efficiency 

λ Stator clipping 

ν Hub-to-tip ratio 

ρ Air density, kg/m3

φ Flow angle, rad

Subscripts 

0 Free-stream 

d Drag 

h Hub 

id Ideal 

nac Related to nacelle 

ref Reference relative radius 

str Related to rotor stream-tube 

z Axial component 

θ Tangential component 

1. Introduction

A significant breakthrough in propulsive efficiency is expected from next generation unducted aero-engines [1]. These 

engines, also known as « open-rotor » layouts, feature ultra-low pressure ratio unducted propulsors able to minimize 

kinetic energy waste. Several options can be imagined for these engines in either pusher or puller configurations: 
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 Single propeller rotor, known as turboprop configuration. 

 Counter-rotating propeller rotors, known as CROR configuration (Counter Rotating Open Rotor). 

 Propeller rotor with active variable pitch stator, known as USF (Unducted Single Fan), SRV (Swirl Recovery 

Vane), ORAS (Open Rotor with Active Stator) or Open Fan. 

 

Although the performance modeling of legacy turboprop is well treated through the use of performance maps covering 

the rotor behavior at off-design conditions, the modeling of the more complex CROR and USF configurations requires 

significant adaptations to encompass the additional dimension of the rear propulsor stage behavior. Regarding the 

CROR configuration, a dedicated method has been proposed to predict the individual and combined off-design 

behavior of propeller rotors for a given set of blade geometries [2]. The propeller individual rotor map generation 

process has also been subject to innovative approaches, aiming at making a link between numerical mapping of 

performance and the aerodynamic behavior of the rotor [3]. Past studies also investigated the possibility of having a 

common propeller efficiency map for different propeller designs, by separating the induced and viscous losses when 

creating the propeller map [4], or by scaling an existing propeller map [5]. 

 

The design of the USF / Open fan architecture requires extending such modeling approaches, in order to tackle the 

combination of a variable pitch rotor with a variable pitch stator. A recent work on the USF architecture by Clark et al 

[6], used blade-element momentum theory to simulate both the rotor and stator, by calculating either extended propeller 

maps, or “lighter” six point tables, before integrating them with the rest of the engine performance model in the form 

of a propeller power management schedule. This approach requires the propeller performance to be evaluated 

individually for every propeller design, before the cycle performance evaluation, which might not be ideal if one wants 

to concurrently optimize engine and propulsor, while taking into account their interactions. 

1.1 Work aim and requirements 

Considering the specific USF / Open fan engine architecture, a key expectation is to be able to separate the performance 

of the rotor from the performance of the stator. Indeed, the location of the gas generator inlet after the propeller rotor 

and before the stator requires the prediction of the thermodynamic conditions after the rotor. In addition, preliminary 

design activities require the exploration of the propulsor and gas-generator design space and the corresponding impact 

on the overall engine performance. 

 

Furthermore, performance models are characterized by their ability to be run almost instantaneously, therefore relying 

on basic 0D or 1D physics. Iterative resolutions should be kept to a minimum number in order to enable such an 

acceptable behavior. Finally, the performance model should be numerically robust in order to predict any kind of 

operating condition, from design to extreme off-design ones, with the same convergence rate. 

1.2 Modeling perimeter 

The proposed model is based on the propulsive thrust and efficiency definition [7]. According to this definition, the 

thrust generated by the open fan takes into account the axial energy rise through the open fan propeller stream-tube. 

We separate the propeller stream-tube from the core stream-tube based on the mass quantity going into the engine 

relative to the flow going outside the engine. The calculation starts with the overall propulsive force which is defined 

as the momentum and pressure force difference on the exit and inlet surfaces of the propeller stream-tube. This force 

takes into account open fan forces, open OGV forces, nacelle forces and streamline forces (see Figure 1). 

 

 
Figure 1 : Forces for the blades-on configuration 

DOI: 10.13009/EUCASS2023-441



A PERFORMANCE MODEL FOR THE OPEN FAN PROPULSOR 

     

 3 

 
Figure 2 : Forces for the blades-off configuration 

To get to the propulsive force, the blade-off forces must be removed from the overall propulsive thrust. The net thrust 

is then free of the effect of the presence of the nacelle and its drag and gives a better understanding of the actual open 

fan performance. The idea is to remove the potential flow generated by the nacelle so that we get a more precise 

estimation of the free-air open fan performance, which is less sensitive to nacelle or spinner design iterations. 

 𝐅𝐍,𝟏𝟐𝟎 = 𝑭𝑶𝒑𝒆𝒏 𝒇𝒂𝒏 + (𝑭𝒆𝒙𝒕 𝒄𝒐𝒓𝒆 𝒕𝒖𝒃𝒆𝑩𝒍𝒂𝒅𝒆−𝒐𝒏
− 𝑭𝒆𝒙𝒕 𝒄𝒐𝒓𝒆 𝒕𝒖𝒃𝒆𝑩𝒍𝒂𝒅𝒆−𝒐𝒇𝒇

) (1) 

 𝐅𝐍,𝟏𝟐𝟓 = 𝑭𝑶𝑮𝑽 + (𝑭𝒏𝒂𝒄𝑩𝒍𝒂𝒅𝒆−𝒐𝒏
− 𝑭𝒏𝒂𝒄𝑩𝒍𝒂𝒅𝒆−𝒐𝒇𝒇

) + (𝑭𝒆𝒙𝒕 𝒏𝒐𝒛𝒛𝒍𝒆 𝒕𝒖𝒃𝒆𝑩𝒍𝒂𝒅𝒆−𝒐𝒏
− 𝑭𝒆𝒙𝒕 𝒏𝒐𝒛𝒛𝒍𝒆 𝒕𝒖𝒃𝒆𝑩𝒍𝒂𝒅𝒆−𝒐𝒇𝒇

) (2) 

 

The propulsive efficiency is then computed using this (blades-on – blades-off) net thrust, divided by the power 

consumption of the open fan in the propeller stream. This means that the blade is theoretically truncated by the stream 

line between propeller stream and core stream and only the torque above this line is computed. 

 

Therefore, two kinds of calculations are required to get the data for the calibration of the models presented in this 

paper: blades-on and blades-off. Blades-on calculations include both the open fan and OGV. The calculations should 

cover several rotational speeds, flight Mach numbers, rotor/OGV pitch angles and core inlet/nozzle flow conditions. 

2. Rotor modeling 

All labels used in this section refer to the Figure 3 below. 

 

 
Figure 3 : Rotor velocities and forces 

2.1 Free-stream velocities, boundary conditions and geometry 

The rotor boundary conditions, that should be known before the calculation begins, include: the flight velocity V0, the 

air density ρ0 and velocity of sound for the given flight condition α0, the rotor tip velocity Ut, the rotor pitch angle 

β120 and the gas-generator inlet mass flow W20. Naturally, the rotor number of blades NB,120, hub-to-tip ratio ν120, 

diameter D120 and the rotor aspect ratio AR120 should also be known. The relative velocity at the rotor relative 

reference radius rref can then be calculated as follows: 

 𝐕𝟏𝟏𝟎 = √𝑽𝟎
𝟐 + (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟)𝟐 (3) 
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The rotor relative reference radius rref is commonly taken equal to 75%, as this is the approximate location of the rotor 

maximum loading, and the radius at which the rotor pitch angle is defined. 

2.2 Free-stream velocity including the nacelle effect 

The free-stream velocity including the impact of the engine nacelle on the rotor exit plane can be modeled as a function 

of the flight Mach number and a coefficient calibrated for a representative geometry, as follows: 

 𝐕𝐧𝐚𝐜,𝟏𝟐𝟒 = 𝐕𝟎 ∙ (𝟏 − 𝐤𝐧𝐚𝐜 ∙ 𝐌𝟎
𝟒) (4) 

 

The coefficient knac should be calibrated in order to match the axial velocity at rotor exit estimated by CFD calculations 

for a cruise condition. The rotor and stator aerodynamic plane velocities (planes 122 and 127 respectively), as well as 

the stator inlet plane (125) velocities, are obtained by assuming half the rotor exit plane induced velocity effect, i.e. 

Vnac,122 = Vnac,125 = Vnac,127 = V0 ∙ (1 − (1 − Vnac,124/V0)/2). 

2.3 Rotor plane velocities 

The assessment of velocity field in the rotor wake is based on reference [8], simplified in order to calculate the different 

quantities only for the reference radius rref. It must be underlined that the velocities induced by the stator on the rotor 

were neglected. The calculation requires iterating on the wake axial displacement velocity1 w. 

 

According to reference [8], in the rotor wake, the fluid particles are convected by the normal component of the helical 

wake sheets displacement w (one can picture a solid helical wake “sweeping” the fluid particles). One can then 

calculate the fluid particles axial and tangential velocities using trigonometric relations, and assuming that at the rotor 

plane the induced velocities are half of their far downstream values. As full wake contraction is obtained approximately 

on the stator plane, the free-stream velocity is taken equal to Vnac,125. 

 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝 = 𝟎. 𝟓 ∙ 𝐰 ∙ [𝟏 + (𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰)
𝟐

∙ (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟)−𝟐]
−𝟏

 (5) 

 𝐮𝛉,𝟏𝟐𝟐,𝐢𝐝 = 𝟎. 𝟓 ∙ 𝐰 ∙ (𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰) ∙ (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟)−𝟏 ∙ [𝟏 + (𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰)
𝟐

∙ (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟)−𝟐]
−𝟏

 (6) 

 

Knowing the axial and tangential induced velocities one can then calculate the rotor relative velocity and the 

corresponding flow angle, and angle of attack. 

 𝐕𝟏𝟐𝟐 = √(𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝)
𝟐

+ (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟 − 𝐮𝛉,𝟏𝟐𝟐,𝐢𝐝)
𝟐
 (7) 

 𝛗𝟏𝟐𝟐 = 𝐭𝐚𝐧−𝟏((𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝) (𝐔𝐭 ⋅ 𝐫𝐫𝐞𝐟 − 𝐮𝛉,𝟏𝟐𝟐,𝐢𝐝)⁄ ) [rad] (8) 

 𝐢𝟏𝟐𝟐 =
𝛑

𝟏𝟖𝟎
∙ 𝛃𝟏𝟐𝟎 − 𝛗𝟏𝟐𝟐 [rad] (9) 

 

The lift coefficient can then be calculated using Prandtl’s approximation of the Goldstein function, as follows: 

 𝐟 = 𝟐𝛑−𝟏 ∙ 𝐜𝐨𝐬−𝟏 𝐞𝐱𝐩 [−𝟎. 𝟓 ⋅
𝐍𝐁,𝟏𝟐𝟎

𝐤𝐍𝐁,𝟏𝟐𝟎
⁄ ∙ (𝟏 − 𝐫𝐫𝐞𝐟) ∙ √𝟏 + (𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰)

𝟐
∙ 𝐔𝐭

−𝟐 ⋅ |𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰|
−𝟏

⋅ 𝐔𝐭] (10) 

 𝐆 = 𝐟 ∙ 𝐫𝐫𝐞𝐟
𝟐 [𝐫𝐫𝐞𝐟

𝟐 + (𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰)
𝟐

⋅ 𝐔𝐭
−𝟐]

−𝟏

 (11) 

 𝐂𝐋,𝟏𝟐𝟎 = {
𝟐𝛑𝐃𝟏𝟐𝟎(𝐤𝐂𝐩,𝟏𝟐𝟎 ⋅ 𝐤𝐍𝐁,𝟏𝟐𝟎)(𝐜𝟏𝟐𝟎𝐍𝐁,𝟏𝟐𝟎)

−𝟏
⋅ 𝐆 ∙ 𝐰 ⋅ max(𝐰𝐦𝐕𝐧𝐚𝐜,𝟏𝟐𝟐, |𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐰|) ⋅ (𝐕𝟏𝟐𝟐𝐔𝐭)

−𝟏

𝒇(𝐢𝟏𝟐𝟐)
 (12) 

 

                                                           
1 The velocity with which the helical wake is moving downstream, similar to a solid screw. 
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In the above equations, the saturation minimum value of wm, and the absolute values were added by the authors in 

order to cover extreme operating conditions, such as the reverse thrust one. The saturation value wm is calculated on 

a reverse thrust, low-speed condition and a typical value would be 0.85. The coefficients kNB,120 and kCp,120 are design 

effect calibrations for the rotor blades number and the rotor load respectively. As explained later in §4.5, these 

coefficients are equal to one for the reference design for which the lift/drag polars are identified. 

 

The rotor circulation is then calculated in the following manner: 

 𝚪𝟏𝟐𝟎 = 𝟎. 𝟓 ⋅ 𝐕𝟏𝟐𝟐 ⋅ 𝐜𝟏𝟐𝟎 ⋅ 𝐂𝐋,𝟏𝟐𝟎 (13) 

 

The iterative scheme on 𝑤 is closed by equating expression 12 with the lift coefficient calculated using data for 

appropriate airfoils as function of the rotor angle of attack. In this work, the airfoil aerodynamic performance has been 

described using analytic expressions, as presented later on. 

2.4 Rotor exit plane average velocities 

The vortex theory, based on the ideal wake assumption, allows to calculate the rotor thrust and torque with sufficient 

accuracy, but is less accurate when it comes to the actual rotor exit velocities prediction at take-off conditions, where 

the wake geometry is far from ideal. Furthermore, the induced velocities have been calculated for a reference relative 

radius of 75% and do not necessarily represent the average values required for defining the flow-field attacking the 

stator. Hence, one needs to add empirical corrections on top of the ideal values calculated by equations 5 and 6.  

 

First, a corrected rotor aerodynamic plane average axial velocity (station 122) can be calculated as the sum of the 

nacelle velocity and a modified axial induced velocity, using the correction given below as function of the flight speed 

and of the wake contraction (expressed by the ratio of velocities of Eq. 14). This velocity will be used later on for a 

more accurate calculation of the rotor mass flow. 

 𝛍 = (𝐕𝟎 + 𝟐 ⋅ 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝) ⋅ (𝐕𝟎 + 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝)
−𝟏

 (14) 

 𝐤𝐳,𝟏𝟐𝟐 = {

𝐦𝐢𝐧(𝟐𝛆𝐳 , 𝐤𝐳,𝟏𝟐𝟐,𝐦𝐚𝐱) 𝐕𝟎 ≤ 𝟎

𝟏 𝐕𝟎 > 𝟎 & 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝  ≤ 𝟎

𝐦𝐢𝐧(𝛍𝛆𝐳 , 𝐤𝐳,𝟏𝟐𝟐,𝐦𝐚𝐱) 𝐕𝟎 > 𝟎 & 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝  > 𝟎

 (15) 

 𝐕𝐳,𝟏𝟐𝟐 = 𝐕𝐧𝐚𝐜,𝟏𝟐𝟐 + 𝐤𝐳,𝟏𝟐𝟐 ⋅ 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝 (16) 

 

Taking the rotor inlet as the axial distance reference (Z120 = 0), one can assume that the rotor exit axial distance is 

equal to the average rotor chord (Z124 = c120). The rotor exit axial velocity is calculated as the sum of the nacelle 

velocity Vnac,124, and the “average” induced velocity (kz,122 ⋅ uz,122,id) corrected for the flow stream contraction for 

the axial position z124, as shown in Eq. 17. 

 𝐕𝐳,𝟏𝟐𝟒 = 𝐕𝐧𝐚𝐜,𝟏𝟐𝟒 + 𝐤𝐳,𝟏𝟐𝟐 ⋅ 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝 ⋅ [𝟏 + 𝐙𝟏𝟐𝟒 ⋅ (𝒁𝟏𝟐𝟒
𝟐 + 𝑹𝟏𝟐𝟎

𝟐)
−𝟎.𝟓

] (17) 

 

The parameters εz and kz,122,max need to be calibrated using CFD calculations for a representative geometry. More 

specifically, εz is calculated on a take-off condition by matching the mass-average axial velocity calculated using CFD 

at rotor exit, with the ideal one estimated by Eq. 17. The saturation parameter kz,122,max is calculated in the same 

manner based on an average axial velocity representative of static conditions. 

 

Turning now to the tangential velocities, the stator model requires the precise calculation of its mass average on the 

rotor exit plane, used for the stator global performance calculations, and of its localized value on the reference radius 

where the stator pitch is defined, i.e. at 75% of the stator tip radius. Knowing that at rotor exit the tangential velocity 

is twice the one in the rotor aerodynamic plane, and that the wake-induced velocities have already been calculated for 

the reference radius of 75%, one can estimate the rotor exit tangential velocity at 75% of the tip radius as follows: 

 𝐕𝛉,𝟏𝟐𝟒,@𝐫𝐫𝐞𝐟
= 𝟐 ⋅ 𝐮𝛉,𝟏𝟐𝟐,𝐢𝐝 ⋅ 𝐤𝐍𝐁,𝟏𝟐𝟎 ⋅ 𝐤𝐂𝐩,𝟏𝟐𝟎

−𝟏
 (18) 

 

Subsequently, one can correct the local velocity, in order to obtain the mass-averaged one, as follows: 
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 𝐕𝛉,𝟏𝟐𝟒 = 𝐕𝛉,𝟏𝟐𝟒,@𝐫𝐫𝐞𝐟
⋅ (𝐫𝐫𝐞𝐟 �̅�𝛉⁄ ) (19) 

 

The radius r̅θ, corresponding to the average tangential velocity, is given as a function of the rotor circulation: 

 �̅�𝛉 = (�̅�𝛉,𝐦𝐚𝐱 − �̅�𝛉,𝐦𝐢𝐧) ⋅ [𝟏 − exp(−�̅�𝛉,𝐚 ⋅ |𝚪𝟏𝟐𝟎 𝚪𝟏𝟐𝟎,𝐝𝐞𝐬⁄ |)]
𝟖

+ �̅�𝛉,𝐦𝐢𝐧 (20) 

 

The parameter Γ120,des is the rotor circulation on the cruise design point. Table 1 gives typical values for the different 

parameters of Eq. 18, as a function of the relative Mach number based on V110, determined by comparing the mass-

averaged rotor exit tangential velocity calculated by CFD with the one given by the model. The CFD calculations 

should cover several flight conditions and pitch angles. 

 

M110 < 0.750 = 0.825 > 0.900 

�̅�𝜽,𝒎𝒂𝒙 0.715 0.700 0.685 

�̅�𝜽,𝒎𝒊𝒏 0.650 0.575 0.250 

�̅�𝜽,𝒂 2.735 3.830 4.375 

Interpolation Linear 

Table 1 : Typical values of the calibration coefficients for the rotor exit tangential velocity 

 

It should be underlined that the calculation of all calibration coefficients is conducted by imposing for each operating 

condition the rotor thrust and torque calculated by CFD, while the lift and drag coefficient are free to vary. In that 

manner the flow field will be calibrated for the target rotor performance. 

2.5 Rotor aerodynamic hub radius 

As explained in §1.2, the propulsor thrust does not include the flow-stream ingested by the engine gas generator. Hence, 

the integration of blade forces should be carried out starting from the “aerodynamic” hub radius, defined by the stream-

line separating what is ingested by the engine core, from the rest of the propulsor mass flow. The rotor mass flow can 

be calculated using the rotor total area and the previously estimated axial velocity for the rotor aerodynamic plane, Eq. 

21. A lower limit is added equal to the ingested mass flow, to cater for extreme operating cases where the propeller 

does not produce the necessary flow. 

 𝐖𝟏𝟐𝟎 = 𝐦𝐚𝐱 (𝐖𝟐𝟎 ,  𝛒𝟎 ⋅ |𝐕𝐳,𝟏𝟐𝟐| ⋅ 𝛑 ⋅ 𝑹𝟏𝟐𝟎
𝟐 ⋅ (𝟏 − 𝛎𝟏𝟐𝟎

𝟐) ) (21) 

 

The aerodynamic hub radius can then be calculated as follows: 

 𝐑𝐡,𝟏𝟐𝟎,𝐚𝐞𝐫𝐨 = 𝐑𝟏𝟐𝟎 ⋅ min([𝟏 − (𝐖𝟏𝟐𝟎 − 𝐖𝟐𝟎) 𝐖𝟏𝟐𝟎⁄ ⋅ (𝟏 − 𝛎𝟏𝟐𝟎
𝟐)]𝟎.𝟓, 𝟏. 𝟓 ⋅ 𝛎𝟏𝟐𝟎) (22) 

2.6 Rotor global performance 

By integrating along the rotor blades height starting from the aerodynamic hub radius, one can calculate the total rotor 

thrust, torque and efficiency, using the following equations: 

  

 𝐅𝐍,𝟏𝟐𝟎 =
𝛒𝟎

𝟐
⋅ 𝐍𝐁,𝟏𝟐𝟎 ⋅ 𝐜𝟏𝟐𝟎 ⋅ 𝐕𝟏𝟐𝟐

𝟐 ⋅ (𝐂𝐋,𝟏𝟐𝟎 ⋅ 𝐜𝐨𝐬 𝛗𝟏𝟐𝟐 − 𝐂𝐃,𝟏𝟐𝟎 ⋅ 𝐬𝐢𝐧 𝛗𝟏𝟐𝟐) ⋅ (𝐑𝟏𝟐𝟎 − 𝐑𝐡,𝟏𝟐𝟎,𝐚𝐞𝐫𝐨) (23) 

 

 𝐐𝟏𝟐𝟎 =
𝛒𝟎

𝟐
⋅ 𝐍𝐁,𝟏𝟐𝟎 ⋅ 𝐜𝟏𝟐𝟎 ⋅ 𝐕𝟏𝟐𝟐

𝟐 ⋅ (𝐂𝐋,𝟏𝟐𝟎𝐬𝐢𝐧𝛗𝟏𝟐𝟐 + 𝐂𝐃,𝟏𝟐𝟎𝐜𝐨𝐬𝛗𝟏𝟐𝟐)(𝐑𝟏𝟐𝟎 − 𝐑𝐡,𝟏𝟐𝟎,𝐚𝐞𝐫𝐨) ⋅ 𝐫𝐫𝐞𝐟 ⋅ 𝐑𝟏𝟐𝟎 (24) 

 

The rotor chord 𝑐120 can be calculated from the rotor height and aspect ratio. Rotor efficiency is then: 

 𝛈𝟏𝟐𝟎 = (𝐅𝐍,𝟏𝟐𝟎 ⋅ 𝐕𝟎) (𝐐𝟏𝟐𝟎 ⋅ 𝐔𝐭 ⋅ 𝐑𝟏𝟐𝟎
−𝟏)⁄  (25) 
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2.7 Rotor lift and drag polars 

Similar to the calculation of the flow-field calibration coefficients, the calibration of the rotor lift and drag polars is 

performed by imposing the rotor thrust and torque for a given operating condition. The lift and drag coefficient are 

therefore a fallout of the calculation. 

 

Starting with the lift coefficient, the CFD calculations carried out for a modern open-fan geometry indicated that lift is 

an almost linear function of the angle of attack, but with a separate slope for positive and negative angles of attack. 

Furthermore, the lift coefficient was found to also be a function of M110 and on the velocities ratio (V0 Ut⁄ ). Taking 

into account all these considerations, the following equations were implemented: 

 𝐂𝐋,𝟏𝟐𝟎 = {
𝐂𝐋,𝟎,𝟏𝟐𝟎 + 𝐂𝐋,𝐚−,𝟏𝟐𝟎 ⋅ 𝐬𝐢𝐧(𝐢𝟏𝟐𝟐 − 𝐢𝟎,𝟏𝟐𝟐) 𝐢𝟏𝟐𝟐 ≤ 𝐢𝟎,𝟏𝟐𝟐

𝐂𝐋,𝟎,𝟏𝟐𝟎 + 𝐂𝐋,𝐚+,𝟏𝟐𝟎 ⋅ 𝐬𝐢𝐧(𝐢𝟏𝟐𝟐 − 𝐢𝟎,𝟏𝟐𝟐) 𝐢𝟏𝟐𝟐 > 𝐢𝟎,𝟏𝟐𝟐

 (26) 

 

In the above equation, the coefficients CL,0,120, CL,a−,120, CL,a+,120 and i0,122 are tabulated as functions of M110 and the 

velocities ratio (V0 Ut⁄ ) to best fit the lift coefficient calculated by imposing the CFD thrust and torque values. 

 

With respect to the drag coefficient, it is expressed as a function of the lift coefficient, in addition to the previously 

mentioned dependencies on M110 and on the velocities ratio (V0 Ut⁄ ). 

 𝐂𝐃,𝟏𝟐𝟎 = {
𝐂𝐃,𝐦𝐥,𝟏𝟐𝟎 + 𝐂𝐃,𝐚𝟏−,𝟏𝟐𝟎(𝐂𝐋,𝟏𝟐𝟎 − 𝐂𝑳,𝐦𝐥,𝟏𝟐𝟎)

𝟐
+ 𝐂𝐃,𝐚𝟐−,𝟏𝟐𝟎(𝐂𝐋,𝟏𝟐𝟎 − 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟎)

𝟒
𝐂𝐋,𝟏𝟐𝟎 ≤ 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟎

𝐂𝐃,𝐦𝐥,𝟏𝟐𝟎 + 𝐂𝐃,𝐚𝟏+,𝟏𝟐𝟎(𝐂𝐋,𝟏𝟐𝟎 − 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟎)
𝟐

+ 𝐂𝐃,𝐚𝟐+,𝟏𝟐𝟎(𝐂𝐋,𝟏𝟐𝟎 − 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟎)
𝟒

𝐂𝐋,𝟏𝟐𝟎 > 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟎

 (27) 

 

Similar to the lift equation, the coefficients CD,ml,120, CL,ml,120, CD,a1−,120, CD,a1+,120 are tabulated as functions of M110 

and the velocities ratio (V0 Ut⁄ ) to best fit the drag coefficient calculated by imposing the CFD thrust and torque values. 

On the other hand, CD,a2+,120 is calculated for a typical take-off condition and kept constant. CD,a2−,120 is calculated 

for a typical reverse condition and kept constant too. 

2.8 Adaptation for a standalone propeller rotor 

The model presented in the previous paragraphs can also be used to simulate a conventional standalone propeller rotor, 

with only one minor adaptation. The aerodynamic hub radius can be set equal to the propeller geometric radius, 

i.e. Rh,120,aero = Rh,120, in which case the engine inlet conditions need to be calculated based on the velocities of §2.4. 

Furthermore, if one is interested in the propeller rotor global performance and requires only a first order estimation of 

engine inlet conditions (their impact on global engine performance is generally less than 1%), the model calibration 

requires the definition of only the rotor polars described in §2.7 (i.e. eight 2D tables and 2 coefficients). Simpler rotor 

polar formulations could also be envisaged, depending on the level of precision required. 

3. Stator modeling 

All labels used in this section refer to Figure 4. The stator modeling employs a blade element approach applied on a 

single radius, coupled with a self-induced velocity calculation based on the theory of thin elliptic wings. It should be 

underlined here that the stator model can be decoupled from the rotor one. As a matter of fact, although the stator 

performance prediction requires a few input from the upstream rotor model, the way this rotor is modelled can be freely 

chosen. For example, one can choose to replace the rotor model described in the previous paragraphs, with an 

interpolation of a conventional propeller map. 

3.1 Geometry 

Apart from the stator pitch angle β125 that needs to be defined for each operating condition, one should also provide 

the stator axial distance from the rotor Z125, the stator clipping λ125, the stator hub radius Rh,125 (it can also be defined 

relative to the rotor one), the stator number of blades  NB,125 and the stator aspect ratio AR125. The stator diameter can 

be calculated from the rotor diameter, rotor hub-to-tip ratio and the given clipping in the following manner: 

 𝐃𝟏𝟐𝟓 = 𝐃𝟏𝟐𝟎 ⋅ [𝛎𝟏𝟐𝟎 + 𝛌𝟏𝟐𝟓 ⋅ (𝟏 − 𝛎𝟏𝟐𝟎)] (28) 

DOI: 10.13009/EUCASS2023-441



Nicolas Tantot, Panagiotis Giannakakis, Henri Yesilcimen, Anthony Binder 

     

 8 

 

The stator chord 𝑐125 can be calculated from the stator height and aspect ratio. 

 

 

Figure 4 : Stator velocities and forces 

3.2 Stator inlet plane velocities 

Before getting into the stator performance calculation, one needs to transpose the velocities calculated for the rotor exit 

plane 124, to the stator inlet plane 125. In order to do this, one needs to know the axial distance between the stator and 

rotor aerodynamic planes and use it in order to calculate the stator axial position Z125. The rotor stream-tube axial 

velocity is then calculated at the stator inlet plane as the sum of the nacelle velocity Vnac,125, and the “average” rotor 

induced velocity (kz,122 ⋅ uz,122,id) corrected for the flow stream contraction for the axial position 𝑍125, as shown in 

Eq. 29. The equivalent tangential velocity can be taken equal to the average tangential velocity at rotor outlet, i.e. 

Vθ,str,125 = Vθ,124. 

 𝐕𝐳,𝐬𝐭𝐫,𝟏𝟐𝟓 = 𝐕𝐧𝐚𝐜,𝟏𝟐𝟓 + 𝐤𝐳,𝟏𝟐𝟐 ⋅ 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝 ⋅ [𝟏 + 𝐙𝟏𝟐𝟓 ⋅ (𝒁𝟏𝟐𝟓
𝟐 + 𝑹𝟏𝟐𝟎

𝟐)
−𝟎.𝟓

] (29) 

 

After having calculated the velocities in the rotor stream-tube, one needs to differentiate the operating scenarios shown 

in Figure 5 and described in the following paragraphs, in order to estimate the stator tangential inlet velocities. With 

respect to the stator axial inlet velocity, this quantity can be estimated by assuming Vz,125 = Vz,str,125, without any 

significant impact on accuracy. 

 (𝐕𝐳,𝐬𝐭𝐫,𝟏𝟐𝟓 𝐕𝐳,𝟏𝟐𝟐⁄ )
𝐬𝐚𝐭

= {
𝟏 + 𝐙𝟏𝟐𝟓 ⋅ (𝒁𝟏𝟐𝟓

𝟐 + 𝑹𝟏𝟐𝟎
𝟐)

−𝟎.𝟓
𝐕𝟎 ≤ 𝟎

𝟏 𝐕𝟎 > 𝟎 & 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝  ≤ 𝟎

𝐕𝐳,𝐬𝐭𝐫,𝟏𝟐𝟓 𝐕𝐳,𝟏𝟐𝟐⁄ 𝐕𝟎 > 𝟎 & 𝐮𝐳,𝟏𝟐𝟐,𝐢𝐝  > 𝟎

 (30) 

 𝐑𝐭,𝐬𝐭𝐫,𝟏𝟐𝟓 = 𝐑𝟏𝟐𝟎 ⋅ [(𝟏 − 𝐑𝐡,𝟏𝟐𝟎,𝐚𝐞𝐫𝐨
𝟐 ⋅ 𝑹𝟏𝟐𝟎

−𝟐) ⋅ (𝐕𝐳,𝐬𝐭𝐫,𝟏𝟐𝟓 𝐕𝐳,𝟏𝟐𝟐⁄ )
𝐬𝐚𝐭

−𝟏
+ 𝐑𝐡,𝟏𝟐𝟓

𝟐 ⋅ 𝑹𝟏𝟐𝟎
−𝟐]

𝟎.𝟓

 (31) 

 𝐀𝐬𝐭𝐫,𝟏𝟐𝟓 = 𝛑 ⋅ (𝐑𝐭,𝐬𝐭𝐫,𝟏𝟐𝟓
𝟐 − 𝐑𝐡,𝟏𝟐𝟓

𝟐) (32) 

 𝐤𝛉 = 𝐦𝐚𝐱(𝟏, 𝐤𝛌,𝟏𝟐𝟓 ⋅ [𝐑𝐬𝐭𝐫,𝟏𝟐𝟓 𝐑𝟏𝟐𝟓⁄ ]
𝛆𝛉

) ⋅ 𝐦𝐢𝐧(𝐀𝐬𝐭𝐫,𝟏𝟐𝟓 𝐀𝟏𝟐𝟓⁄ , 𝟏) (33) 

 𝐕𝛉,𝟏𝟐𝟓 = 𝐕𝛉,𝐬𝐭𝐫,𝟏𝟐𝟓 ⋅ 𝐤𝛉 (34) 

 

For the operating condition where the stator tip radius is inside the stream-tube (left side of Figure 5), the stator sees 

only part of the rotor exit flow. Hence, one needs to correct the average tangential velocity attacking the stator. Equation 

33 proposes such a correction, where the first term is a function of the stream-tube radius, relative to the stator radius. 

Equations 30 and 31 are used in order to calculate the required stream-tube radius, from the upstream rotor induced 
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axial velocity. This correction is saturated to one when the stream-tube radius is lower than the stator one. The 

calibration exponent 𝛆𝛉 is calculated by matching the averaged stator inlet tangential velocity calculated with CFD for 

both a take-off and cruise conditions. 

 

 
Figure 5 : Operating scenarios for calculating the stator inlet velocities 

 

When, on the other hand, the stator radius is higher than the stream-tube radius, the stator is fed both by the rotor exit 

flow and by “external flow”. Assuming, that the tangential velocity is zero outside the stream-tube, the second term of 

Eq. 33 corrects for this phenomenon by multiplying the averaged rotor exit velocity with the ratio of the stream-tube 

area (calculated using Eq. 32), to the stator area. Once more, this correction is saturated to one, for the case where the 

stream-tube area is higher than the stator area. Consequently, the stator thrust decreases, if its diameter becomes larger 

than the rotor stream-tube. The calibration coefficient kλ,125 is used to capture the stator clipping effect (cf. §4.5). 

 

Finally, the total stator inlet velocity and flow angle can be calculated as follows: 

 𝐕𝟏𝟐𝟓 = √𝐕𝐳,𝟏𝟐𝟓
𝟐 + 𝐕𝛉,𝟏𝟐𝟓

𝟐 (35) 

 𝛗𝟏𝟐𝟓 = {
𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓| 𝐕𝛉,𝟏𝟐𝟓⁄ ) 𝐕𝛉,𝟏𝟐𝟓 > 𝟎

𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓| 𝐕𝛉,𝟏𝟐𝟓⁄ ) + 𝛑 𝐕𝛉,𝟏𝟐𝟓 ≤ 𝟎
     [rad] (36) 

3.3 Stator plane velocities 

According to the theory describing the flow around finite wings, the wing vortex sheet and especially the tip vortices 

induce a velocity component, called “downwash” that is perpendicular to the free-stream velocity and opposite in sign 

to the lift force vector [9]. For the stator case, the free-stream velocity is represented by the one created by the presence 

of the rotor, as calculated by equations 35 and 36. Similar to the rotor, the calculation requires iterating on the stator 

induced velocity 𝑢127 (downwash) divided by the stator upstream velocity 𝑉125. Knowing the downwash allows the 

calculation of the induced velocity axial and tangential components: 

 𝐮𝐳,𝟏𝟐𝟕 = 𝐮𝟏𝟐𝟕 ∙ 𝐜𝐨𝐬 𝛗𝟏𝟐𝟓 (37) 

 𝐮𝛉,𝟏𝟐𝟕 = 𝐮𝟏𝟐𝟕 ∙ 𝐬𝐢𝐧 𝛗𝟏𝟐𝟓 (38) 

 

Finally, the total stator plane velocity and flow angle can be calculated as follows: 

 𝐕𝟏𝟐𝟕 = √(𝐕𝐳,𝟏𝟐𝟓 + 𝐮𝐳,𝟏𝟐𝟕)
𝟐

+ (𝐕𝛉,𝟏𝟐𝟓 − 𝐮𝛉,𝟏𝟐𝟕)
𝟐
 (39) 

 𝛗𝟏𝟐𝟕 = {
𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓 + 𝐮𝐳,𝟏𝟐𝟕| (𝐕𝛉,𝟏𝟐𝟓 − 𝐮𝛉,𝟏𝟐𝟕)⁄ ) 𝐕𝛉,𝟏𝟐𝟓 − 𝐮𝛉,𝟏𝟐𝟕 > 𝟎

𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓 + 𝐮𝐳,𝟏𝟐𝟕| (𝐕𝛉,𝟏𝟐𝟓 − 𝐮𝛉,𝟏𝟐𝟕)⁄ ) + 𝛑 𝐕𝛉,𝟏𝟐𝟓 − 𝐮𝛉,𝟏𝟐𝟕 ≤ 𝟎
     [rad] (40) 

 

As discussed in §2.4, the above velocities represent the average flow-field seen by the stator, and the ones that will be 

used to calculate its performance. However, as the stator pitch angle is defined for the reference relative radius of 75%, 

the angle of attack that corresponds to this pitch should also be defined based on a more localized view of the flow-
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field, for this specific relative radius. This is achieved in the following equations, which are based on the local, 

reference radius rotor exit tangential velocity calculated by Eq. 18. 

 𝐕𝛉,𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟
= 𝐤𝛉 ⋅ 𝐕𝛉,𝟏𝟐𝟒,@𝐫𝐫𝐞𝐟

− 𝐮𝛉,𝟏𝟐𝟕 (41) 

 𝛗𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟
= {

𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓 + 𝐮𝐳,𝟏𝟐𝟕| 𝐕𝛉,𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟
⁄ ) 𝐕𝛉,𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟

> 𝟎

𝐭𝐚𝐧−𝟏(|𝐕𝐳,𝟏𝟐𝟓 + 𝐮𝐳,𝟏𝟐𝟕| 𝐕𝛉,𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟
⁄ ) + 𝛑 𝐕𝛉,𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟

≤ 𝟎
     [rad] (42) 

 𝐢𝟏𝟐𝟕 =
𝛑

𝟏𝟖𝟎
⋅ 𝛃𝟏𝟐𝟓 − 𝛗𝟏𝟐𝟕,@𝐫𝐫𝐞𝐟

 [rad] (43) 

 

The lift coefficient can then be calculated using the Kutta-Joukowski theorem, assuming an elliptical wing planform, 

high aspect ratio and thin airfoils: 

 𝐂𝐋,𝟏𝟐𝟓 = {
𝛑 ⋅ 𝐤𝐍𝐁,𝟏𝟐𝟓 ⋅  AR𝟏𝟐𝟓 ⋅ 𝐤𝐣

−𝟏 ⋅ 𝐮𝟏𝟐𝟕 ⋅ 𝐕𝟏𝟐𝟓
−𝟏

𝒇(𝐢𝟏𝟐𝟕)
 (44) 

 

Given that the stator geometry does not have an elliptical planform, the calibration coefficient kj has been added. This 

coefficient is calibrated in order to obtain a matching between the optimal stator aspect ratio obtained with the model, 

and the one obtained with a higher fidelity method. The calibration coefficient kNB,125 improves the modelling of the 

stator blades count effect (cf. §4.5) and is equal to one for the reference design for which the polar is identified. 

 

Similar to the rotor, the iterative scheme on u127 is closed by equating expression 44 with the lift coefficient calculated 

using data for appropriate airfoils as function of the stator angle of attack. This can be achieved with the analytical 

expressions that will be presented further on. 

3.4 Stator global performance 

By integrating along the stator blades height starting from the hub radius, one can calculate the total stator thrust, stator 

torque and propulsor total efficiency, using the following equations: 

  

 𝐅𝐍,𝟏𝟐𝟓 =
𝛒𝟎

𝟐
∙ 𝐍𝐁,𝟏𝟐𝟓 ∙ 𝐜𝟏𝟐𝟓 ∙ 𝐕𝟏𝟐𝟕

𝟐 ∙ (𝐂𝐋,𝟏𝟐𝟓 𝐜𝐨𝐬 𝛗𝟏𝟐𝟕 − 𝐂𝐃,𝟏𝟐𝟓 𝐬𝐢𝐧 𝛗𝟏𝟐𝟕)(𝐑𝟏𝟐𝟓 − 𝐑𝐡,𝟏𝟐𝟓) + 𝐤𝐩 ⋅ 𝐀𝟏𝟐𝟓 ⋅ 𝐩𝟎 (45) 

 

 𝐐𝟏𝟐𝟓 =
𝛒𝟎

𝟐
∙ 𝐍𝐁,𝟏𝟐𝟓 ∙ 𝐜𝟏𝟐𝟓 ∙ 𝐕𝟏𝟐𝟕

𝟐 ∙ (𝐂𝐋,𝟏𝟐𝟓𝐬𝐢𝐧𝛗𝟏𝟐𝟕 + 𝐂𝐃,𝟏𝟐𝟓𝐜𝐨𝐬𝛗𝟏𝟐𝟕)(𝐑𝟏𝟐𝟓 − 𝐑𝐡,𝟏𝟐𝟓) ⋅ 𝐫𝐫𝐞𝐟 ∙ 𝐤𝐐 ∙ 𝐑𝟏𝟐𝟓 (46) 

 

 𝛈𝐭𝐨𝐭 = (𝐅𝐍,𝟏𝟐𝟎 + 𝐅𝐍,𝟏𝟐𝟓) ⋅ 𝐕𝟎 (𝐐𝟏𝟐𝟎 ⋅ 𝐔𝐭 ⋅ 𝐑𝟏𝟐𝟎
−𝟏)⁄  (47) 

 

The coefficient kQ is calibrated in order to match the averaged swirl angle at the stator exit, calculated with CFD for 

typical take-off and cruise conditions. It should be noted that the same rref should be used for the rotor and stator. The 

stator thrust is complemented with a static pressure term that corresponds to the pressure forces on the surface of the 

stator blade hub, calibrated for a given geometry using the kp coefficient (constant between different designs). 

3.5 Stator lift and drag polars 

As for the rotor polars, the calibration of the stator lift and drag polars is performed by imposing the stator thrust and 

torque for a given operating condition. At the same time, the rotor should operate at the rotational speed and power of 

the target aerodynamic data. 

Starting with the lift coefficient, the CFD calculations carried out for a modern open-fan geometry indicated that lift is 

an almost linear function of the angle of attack. Furthermore, the lift coefficient was found to also be a function of M110 

and on the velocities ratio (V0 Ut⁄ ). As a result, the following equation was implemented: 

 𝐂𝐋,𝟏𝟐𝟓 = 𝐂𝐋𝟎,𝟏𝟐𝟓 + 𝐂𝐋,𝐚,𝟏𝟐𝟓 ⋅ 𝐬𝐢𝐧(𝐢𝟏𝟐𝟕) (48) 
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In the above equation, the coefficients 𝐶𝐿,0,125 and 𝐶𝐿,𝑎,125 are tabulated as functions of M110 and the velocities 

ratio (V0 Ut⁄ ) to best fit the lift coefficient calculated by imposing the CFD thrust and torque values. With respect to 

the drag coefficient, this is expressed as a function of the lift coefficient, in addition to the previously mentioned 

dependencies on M110 and on the velocities ratio (V0 Ut⁄ ). 

 𝐂𝐃,𝟏𝟐𝟓 = {
𝐂𝐃,𝐦𝐥,𝟏𝟐𝟓 + 𝐂𝐃,𝐚−,𝟏𝟐𝟓 ⋅ [𝐜𝐨𝐬𝐡(𝐂𝐋,𝟏𝟐𝟓 − 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟓)

𝛆𝐝−
− 𝟏] 𝐂𝐋,𝟏𝟐𝟓 ≤ 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟓

𝐂𝐃,𝐦𝐥,𝟏𝟐𝟓 + 𝐂𝐃,𝐚+,𝟏𝟐𝟓 ⋅ [𝐜𝐨𝐬𝐡(𝐂𝐋,𝟏𝟐𝟓 − 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟓)
𝛆𝐝+

− 𝟏] 𝐂𝐋,𝟏𝟐𝟓 > 𝐂𝐋,𝐦𝐥,𝟏𝟐𝟓

 (49) 

 

Similar to the lift equation, the coefficients CD,ml,125, CL,ml,125, CD,a−,125, CD,a+,125 are tabulated as functions of M110 

and the velocities ratio (V0 Ut⁄ ) to best fit the drag coefficient calculated by imposing the CFD thrust and torque values. 

On the other hand, the exponents εd− and εd+ are calculated to minimize the fitting errors of the drag coefficient for a 

given lift coefficient on all conditions and kept constant. 

4. Case study 

The following paragraphs present an application of the method on a modern open fan geometry, including a validation 

with respect to CFD calculations on a few design points, the demonstration of the method’s off-design calculations 

capacity including extreme operation conditions, and finally the verification of the method’s design capabilities. 

4.1 Propulsor specification and geometry 

All the results shown in the following sections are based on the top level requirements given in Table 2 below. Unless 

otherwise stated, the stator pitch angle is set on its optimal value in terms of total efficiency for each operating point. 

 

 Take-off Max-climb Cruise 

Altitude 0 ft 35000 ft 37000 ft 

Mach 0.25 0.8 0.8 

𝑈𝑡  800 ft/s 680 ft/s 680 ft/s 

𝐹𝑁 23000 lbf 5100 lbf 4100 lbf 

𝑊20 110 lbm/s 40 lbm/s 35 lbm/s 

𝛽125 Optimal Optimal Optimal 

Table 2 : Propulsor specification points 

 

The objective function for the design studies, is the efficiency averaged on the above three points, with a 5% 

contribution for take-off, 32% for max-climb and 54% for cruise. The Table 3 below gives the reference geometrical 

parameters for the rotor and stator. 

 

 Rotor Stator 

Diameter 13 ft 12.5 ft 

Hub to tip ratio 0.25 0.3 

Number of blades 12 10 

Aspect ratio 3 3 

Table 3 : Baseline propulsor geometrical parameters 

4.2 Model validation 

For the above geometrical parameters and specification points, a 3D propulsor geometry has been designed, and CFD 

calculations have been carried out for 150 operating points. The calibration presented here was based on 22 take-off 

points, 14 max-climb, 14 cruise, 14 approach, 16 flight-idle, 14 reverse thrust and 14 for static conditions. These data 

have been used in order to calculate the different coefficients and the rotor/stator lift and drag analytical expressions. 

This included the calibration of a total of 11 constants, three one-dimensional tables and 14 two-dimensional tables (4 

additional coefficients are required in order to calibrate the design variations described in §4.5). Subsequently, the 

model predictions have been compared with the CFD calculations for different flight conditions, by imposing the same 

rotor speed and power, the same stator pitch angle and the same inlet core flow between the two. The figure below 

presents the discrepancies between the two for different operating points in terms of rotor thrust and propulsor total 
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thrust. It is readily seen that the model predictions are close to the CFD results. Although not shown here, rotor pitch 

discrepancies are lower than 0.10°. 

 

 
Figure 6 : Validation of the model against CFD results 

4.3 Map generation 

With a calibrated and validated model, it is fairly fast and robust to generate an entire propeller for a given relative 

Mach number M110, many different rotor pitch angles and the stator pitch angle that is optimized for each operating 

point to attain the best overall propulsor efficiency. The generated map representing the global propulsor performance 

in Figure 7 for 𝑀110 = 0.93 (typical max-cruise condition). It should be underlined that the relative Mach number is 

preferred to the flight Mach number, as the map topology does not change significantly between different relative 

Mach numbers. By observing the different operating points on the maps, one can see that the cruise and climb points 

are close to the total performance optimum location, which confirms that the propeller optimization achieved its target. 

Finally, one can notice a visible kink point on the constant rotor pitch lines, which is related to the two-branch modeling 

of the rotor lift coefficient (Eq. 26). 

 

 
Figure 7 : Rotor and stator combined performance 

4.4 Extreme operating conditions 

The proposed modeling approach is also capable of predicting more extreme operating points, notably the static and 

reverse conditions. Figure 8 compares the model predictions for a sea-level static condition, for a given rotor speed, 

and given stator pitch angle. It is shown that the model is very close to the CFD calculations up to the power level 

where stall begins, and the model starts over-estimating the generated thrust. 
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Figure 8 : Static condition prediction compared to CFD results 

Figure 9 compares the models predictions with CFD simulations for a sea-level, M0 = 0.15 condition. As shown, the 

model achieves similar results with the CFD calculation. More specifically, the model accurately predicts the pitch 

angle that gives the minimum power, which is an important parameter for the control system design. Furthermore, the 

model accurately estimates the propulsor drag for a typical aircraft landing operating point, which is an important 

information for the aircraft manufacturer. 

 

 
Figure 9 : Reverse condition prediction compared to CFD results 

4.5 Design studies 

A significant advantage of the approach proposed in this paper is the capability to carry out design studies around a 

given geometry, both for the rotor and stator modules. In order to do that, it is necessary to identify the four calibration 

exponents εCp,120 , ελ,125 , εNB,120 , εNB,125 defined by equations 50-53. These calibration exponents are calculated 

using target efficiency variations calculated for a few geometry modifications, starting from the reference design 

geometry for which the lift and drag polars have been identified. They can then be kept constant. 

 𝐤𝐂𝐩,𝟏𝟐𝟎 = (
𝐂𝐏,𝟏𝟐𝟎

𝐂𝐏,𝟏𝟐𝟎 @𝐃𝐞𝐬𝐢𝐠𝐧 𝐑𝐞𝐟
⁄ @𝑪𝒓𝒖𝒊𝒔𝒆 𝑫𝒆𝒔𝒊𝒈𝒏 𝑷𝒐𝒊𝒏𝒕)

𝛆𝐂𝐩,𝟏𝟐𝟎

 (50) 

 𝐤𝛌,𝟏𝟐𝟓 = (
𝛌𝟏𝟐𝟓

𝛌𝟏𝟐𝟓 @𝐃𝐞𝐬𝐢𝐠𝐧 𝐑𝐞𝐟
⁄ )

𝛆𝛌,𝟏𝟐𝟓

 (51) 

 𝐤𝐍𝐁,𝟏𝟐𝟎 = (
𝐍𝐁,𝟏𝟐𝟎

𝐍𝐁,𝟏𝟐𝟎 @𝐃𝐞𝐬𝐢𝐠𝐧 𝐑𝐞𝐟
⁄ )

𝛆𝐍𝐁,𝟏𝟐𝟎

 (52) 
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 𝐤𝐍𝐁,𝟏𝟐𝟓 = (
𝐍𝐁,𝟏𝟐𝟓

𝐍𝐁,𝟏𝟐𝟓 @𝐃𝐞𝐬𝐢𝐠𝐧 𝐑𝐞𝐟
⁄ )

𝛆𝐍𝐁,𝟏𝟐𝟓

 (53) 

 

Turning now to the design case studies, the rotor and stator aspect ratio is proportional to the blade chord for a fixed 

diameter and controls the value of the lift coefficient. As shown in Figure 10, the choice of aspect ratio considered in 

the sample geometry used leads to a rotor lift coefficient slightly to the left of the optimum for the cruise condition and 

slightly to the right of the optimum for the climb (although not shown here, the same is true for the stator). 

 

Figure 11 illustrates that this gives an optimum choice of aspect ratio in terms of weighted efficiency, both for the rotor 

and stator, which confirms that the coefficient kj has been calibrated correctly against the CFD simulations. The model 

is capable of predicting the aspect ratio impact by correctly capturing the effect on the position on the drag polars, and 

the impact on the induced velocities. 

 

 
Figure 10 : Aspect ratio optimization effect on rotor lift coefficient and aerodynamic efficiency 

 

 
Figure 11 : Aspect ratio optimization in terms of weighted efficiency for the rotor and stator 

Figure 12 presents the model prediction when the rotor diameter changes. For this study, the rotor and stator aspect 

ratios have been optimized for each diameter value, while all other geometric parameters are kept constant (hub-to-tip 

ratio, blades number and stator clipping). The results show that the model accurately matches the CFD results, with 

higher efficiencies predicted for higher diameter values. 

 

Figure 13 presents the model prediction when the stator diameter changes for a fixed rotor diameter, i.e. the clipping 

effect. The modified stator diameter was achieved using a constant stator hub radius and a constant stator mean chord, 

leading to variations of stator hub-to-tip ratio and aspect ratio. For a clipping variation of up to 10%, the model is in 

agreement with the only CFD calculation available. Furthermore, the model correctly predicts a degradation in 

performance when the stator tip radius becomes larger than the rotor stream-flow. 

 

Figure 14 presents the model prediction when the number of blades changes for the rotor and stator, from the reference 

values of 14/12 to a reduced count of 12/10. For this study, the diameter and hub-to-tip ratio has been kept constant 
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for both stages, while their aspect ratio varied to maintain the same solidity. The results show that the model gives 

satisfactory predictions relative to the CFD simulation, with decreased performance for the lower blade count. 

 

 
Figure 12 : Rotor diameter effect predicted with the model, compared with CFD 

 

 
Figure 13 : Stator clipping effect on cruise efficiency predicted with the model, compared with CFD 

 

 
Figure 14 : Decreased number of blades (12/10 from 14/12) effect predicted by the model, compared with CFD 
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5. Conclusions 

An analytical approach has been proposed to simulate the detailed aero performance behavior of the rotor and stator 

modules of an open fan engine architecture. This approach can be implemented using a limited number of CFD 

computations and simple calibrations of analytical expressions, enabling the modeling of the global rotor and stator 

performance. This method is sufficiently flexible and lightweight so that it can be directly integrated into 

thermodynamic cycle performance models, with almost instantaneous execution time and numerical robustness up to 

extreme operating conditions such as static, idle and reverse operation. Additionally, the approach offers the capability 

to explore blade geometry variations around the initial calibration, with good accuracy and limited effort when 

compared to full CFD design studies.  

 

References 

[1] Lambey, M., N. Tantot, A. Binder, and A. Lebrun. 2019. Open Rotor Engines for Short/Medium Range Aircraft. 

ISABE-2019-24386. 

[2] Dubosc, M., N. Tantot, P. Beaumier, and G. Delattre. 2014. A Method for Predicting Contra Rotating Propellers 

Off-design Performance. ASME GT2014-25057. 

[3] Tantot, N., T. Brichler, M. Dubosc, and S. Ghebali. 2015. Innovative Approaches to Propellers off-design 

Performance Modeling. ASME GT2015-42145. 

[4] Giannakakis, P., P. Laskaridis, T. Nikolaidis, and A. Kalfas. 2015. Toward a Scalable Propeller Map. Journal of 

Propulsion and Power. Vol. 31, No. 4, 1073–1082. 

[5] Giannakakis, P., I. Goulos, P. Laskaridis, P. Pilidis, and A. Kalfas. 2016. Novel propeller map scaling method. 

Journal of Propulsion and Power. Vol. 32, No. 6, 1325-1332. 

[6] Clark, R. A., C. Perron, J. C. Tai, B. J. Airdo, and D. N. Mavris. 2023. Development of an Open Rotor Propulsion 

System Model and Power Management Strategy. AIAA 2023-0309. AIAA SCITECH 2023 Forum. 

[7] SAE International. 2012. AIR4065A - Propeller-Propfan In-flight Thrust Determination. 

[8] Wald, Q. 2006. The aerodynamics of propellers. Progress in Aerospace Sciences, Vol. 42, Issue 2, 85-128. 

[9] Anderson, J. D. 2011. Fundamentals of aerodynamics, 5th edition. McGraw-Hill. 416-417. 

 

DOI: 10.13009/EUCASS2023-441




