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Abstract 

The design of solar HALE drones remains a major challenge for aircraft designers because of their 

design features of large span wings, necessarily very flexible, which are sensitive to external loads and 

subject to large displacements. They are thus susceptible to aeroelastic instabilities, which in turn tend 

to destabilize the drone in flight. For pre-design steps, in view of developing reliable tools that are 

founded on low order or medium fidelity full nonlinear approaches, this paper presents different dynamic 

stall models and an aeroelastic study to investigate stall flutter prediction on a two degree of freedom 

typical aeroelastic section. Three semi-empirical dynamic stall models chosen from the literature have 

been selected and implemented to investigate differences in their hypothesis, complexity, and 

performances to predict highly nonlinear aerodynamics. They were assessed by comparison with 

experimental data and test cases from the literature, in terms of aerodynamic coefficient prediction for 

an imposed pitch oscillation with different amplitude and reduced frequency and then, in terms of flutter 

critical airspeed and LCO prediction.  

Notations 

1. Introduction

HALE fixed-wing solar UAVs, such as NASA Helios and Airbus Zephyr prototypes, are among the innovative 

concepts for applications in the field of observation and telecommunications [1]. The design of such a solar UAV 

remains a major challenge for aircraft designers. Because such drones require a very good aerodynamic efficiency and 

a large surface area for solar panels to be fitted, most of the designs feature large span wings, which are necessarily 

very flexible, sensitive to external loads and subject to large displacements and rotations. They are thus susceptible to 

aeroelastic instabilities, which in turn tend to destabilize the drone in flight. The aeroelastic performance of this type 

of wing remains a scientific and technological challenge on which research efforts must still be carried out to improve 

its modelling and simulation combining structural dynamics, unsteady and nonlinear aerodynamics, and flight 

mechanics. Aeroelastic phenomena, i.e. flutter, are particularly a major concern for aircraft designers because of the 

dramatic consequences on the aircraft structure they can engender. For two decades now, several laboratories have 

endeavored to simulate and predict aeroelastic instabilities for such high flexible airplanes considering full nonlinear 

approaches [2-6]. Indeed, this kind of full aeroelastic modeling, being able to simulate the response of the structure to 

a gust for example, is required for pre-design phases of such wings and is more suitable than high fidelity numerical 

simulation tools due to their prohibitive computational costs. 

Kirsch et al [6] led to the development of a computational code (GEBTAero) for the simulation of an anisotropic 

composite flexible wing allowing to determine the flutter critical airspeed for different configurations using aeroelastic 

tailoring. The model is based on a geometrically exact beam theory coupled with a two-dimensional unsteady finite 

state aerodynamic model. To date, as this model does not consider non-linear unsteady aerodynamics, such as dynamic 

stall that occurs for an airfoil during pitching and plunging oscillations, limit cycle oscillations (LCOs) that are 

observed in the neighbourhood of the flutter in wind tunnel experiments [2] cannot be predicted. Thus, to improve this 

predictive tool concerning aeroelastic modelling, this work focuses on one predominant issue to solve related to the 
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aerodynamic dynamics of airfoils at high angles of attack. Using a typical 2D aeroelastic model of two degrees of 

freedom oscillating airfoil, combined to a dynamic stall model to compute aerodynamic forces and moments, the main 

objective of this work is to implement different semi-empirical stall models to investigate their hypothesis, complexity 

and performances to predict highly nonlinear aerodynamics. The resulting nonlinear aeroelastic formulation can be 

solved in the frequency domain to predict the flutter critical airspeed and in the temporal domain to exhibit the airfoil 

movement and limit cycle oscillations that could be observed.  

It is now well known that stall flutter was identified as a flutter type that airfoils could experience in rotorcraft systems 

in particular. Semi-empirical dynamic stall models such as Snel [7], Øye [8], ONERA [9] or the Beddoes-Leishman 

(B-L) [10] models, were developed to identify the correct aerodynamic loads and predict such behaviours. These 

models are still commonly used in the literature for aeronautical applications, as well as for aeroelasticity of wind 

turbine blades [11-13].  

Regarding 2D aeroelastic modeling, in [14] and [15], numerical and experimental approaches are used to assess a semi-

empirical model to predict flutter instability for a flat plate and a NACA 0012 airfoil respectively. In [14], LCOs 

amplitudes are given but not predicted. In [15], flutter occurrence and stable LCO have successfully been reproduced 

and predicted by the B-L model. These works offer the possibilities of using these results as test cases. 

 

This paper is organised as follows: in section 2, aeroelastic equation of airfoil motion results are recalled. Three 

different models that have been selected for the comparison and shortly presented in section 3. Large pitch motions of 

a flat plate are studied with these models in section 4. Finally, preliminary results on flutter and LCO occurrence are 

presented and discussed in section 5 considering the test case studied in [13]. 

2. Aeroelastic equations of motion  

The typical aeroelastic section is composed of an airfoil linked to a pitching spring and a plunge spring to simulate the 

two cinematic degrees of freedom. The motion is assumed positive downwards, with h representing the vertical 

plunging displacement, and the structural angle is defined by the value 𝛼 while the aerodynamic angle of attack will 

be defined as 𝜃 = 𝛼 +
ℎ̇

𝑈
 . This is the specific angle used when computing the aerodynamic loads for the airfoil. Figure 1 

resumes the main parameters and values used to formulate the aeroelastic equations of motion. 

  

 

Figure 1: Two-dimensional aeroelastic model and main model parameters 

 

The equations of motion can be expressed as follow: 

 

𝑚ℎ̈ + 𝑥𝐶𝐺𝑏𝑚�̈� + 𝑐ℎℎ̇ + 𝑘ℎℎ = −𝐿 (1) 
 

𝐽�̈� + 𝑥𝐶𝐺𝑏𝑚ℎ̈ + 𝑐𝛼�̇� + 𝑘𝛼𝛼 + 𝑘𝑁𝐿𝛼
3 = 𝑀 (2) 

 

where 𝑚, 𝐽, 𝑏, 𝑥𝐶𝐺 , 𝑐ℎ, 𝑐𝛼, 𝑘ℎ, 𝑘𝛼 and 𝑘𝑁𝐿 are the wing mass, the moment of inertia about the elastic centre (EC), the 

half-chord, the relative distance between EC and the centre of gravity (CG), the plunge and pitch viscous damping, the 

plunge and pitch stiffnesses, and the non-linear stiffness in pitch, respectively. The dot specifies the real time 

derivative. According to Theodorsen’s theory [16] for low angles-of-attack, the unsteady lift and moment are written 

in the following form: 

 

𝐿 = 𝜋𝑠𝑏2𝜌[ℎ̈ + 𝑈�̇� − 𝑎𝑏�̈�] + 𝑠𝜌𝑏𝑈2𝐶𝐿𝛼𝐶(𝑘)[𝛼3 4⁄ − 𝛼0] (3) 

EC

CG

AC
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𝑀 = −𝜋𝑠𝑏3𝜌 [
1

2
ℎ̈ + 𝑈�̇� + 𝑏 (

1

8
−
𝑎

2
) �̈�] + 𝑏 (

1

2
+ 𝑎) 𝐿 (4) 

with the angle-of-attack at collocation point (without linearisation) 

𝛼3 4⁄ = 𝛼 + atan (
𝑤3 4⁄

𝑈
) = 𝛼 + atan (

ℎ̇

𝑈
+ +𝑏 (

1

2
− 𝑎)

�̇�

𝑈
cos 𝛼) (5)  

where 𝑠, 𝑎, 𝜌, 𝑈 and 𝐶𝐿𝛼 are the span, the relative distance between EC and the airfoil centre, the air density, the fluid 

velocity and the lift coefficient derivative at zero lift, respectively. The complex Theodorsen’s function 𝐶(𝑘) depends 

on the reduced frequency 𝑘 = 𝜔𝑏 𝑈⁄  which must be computed iteratively. Note that the first part of Eq. (3) and Eq. (4) 

corresponds to the non-circulatory terms, and the second part to the circulatory terms. In the following, the circulatory 

term in Eq. (3) will be replaced by the dynamic lift coefficient 𝐶𝐿
𝑑𝑦𝑛

 and a set of ordinary differential equation (ODE) 

eliminating the iterative problem for solving the function 𝐶(𝑘). 

3. Semi-empirical dynamic stall models 

Dynamic stall is a nonlinear unsteady phenomenon that occurs when airfoils experience rapid angle of attack 

oscillations. Numerous papers can be found to explain main physical features encountered during this phenomenon 

exhibiting traveling vortices along airfoil surfaces and hysteresis cycle in lift generation. Dynamic stall models allow 

the computation of the resulting nonlinear aerodynamic loads during vortex shedding and displacement. These models 

are usually based on experimental data for the static lift curve of a specific airfoil and on state equations. These 

equations are used to achieve a delay between airfoil motion and lift onset, and consequently the hysteresis loop. Then, 

depending on the complexity of the model, various corrections can be made to take stall dynamics in account, and 

ODEs are formulated to model the time delay of the observed physics. Three different models have been selected form 

the literature for the comparison: Snel [7], Øye [8], and a modified B-L models [12,13]. This later is named “Risø 

model” in this paper. These models have been first developed for helicopter rotor blades or wind turbines applications. 

Nevertheless, by comparing fluid reduced time and reduced frequency calculated from 3 different typical datasets, 

Table 1 shows that these models remain relevant for HALE drone applications. Here 𝑇𝑢 = 2𝑏/𝑈 is the time for the 

flow to travel a chord length. 

 

Table 1: Typical values of fluid reduced time and reduced frequency (*data at mid-span) 

   Helicopter Rotor [17] Wind Turbine [18] HALE Drone [19]  

Wind speed U m/s 100* 34* 55 

Chord length c m 0.5* 2* 2 

Fluid reduced time 𝑇𝑢 s 0.025 0.029 0.018 

Structural frequency 𝜔/2𝜋 Hz 5 0.2 1 

Reduced frequency k - 0.08 0.04 0.11 

  

The three models are briefly presented in the following subsections. More details can be found in the corresponding 

references.  

2.1 Snel Model 

The Snel model is a second-order dynamic stall model that uses no airfoil specific adjustment settings in its formulation 

but can nevertheless predict dynamic stall as models that do require such input. As exposed in [7] or [20], the model 

is based on the difference between the dynamic and steady lift coefficient than can be written as:  

 

𝐶𝐿
𝑑𝑦𝑛

= 𝐶𝐿
𝑠𝑡 + Δ𝐶𝐿,1 + Δ𝐶𝐿,2 (6) 
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The first correction term describes the forcing frequency response and the second one is added to estimate the higher 

frequency dynamics of a self-excited nature such as vortex shedding. In this study, only the first order correction term 

will be considered. To compute the forcing frequency response, it’s required to use the following ODE: 

 

Δ𝐶𝐿,1̇ +
𝑐10
𝑇𝑢
Δ𝐶𝐿,1 = Δ𝐶𝐿

𝑎𝑡𝑡̇ (7) 

 

where Δ𝐶𝐿
𝑎𝑡𝑡 is the difference between the potential flow lift and the steady lift. It can be seen as a switch between the 

attached flow and the stalled flow regimes as it will be close to zero before stall and then start affecting the system of 

equations after stall.  𝑐10 can be seen as the spring stiffness for the ODE system and is obtained given the expression 

of the airfoil plunge movement: 

 

𝑐10 =

{
 
 

 
 1 + 0.5Δ𝐶𝐿

𝑎𝑡𝑡

8 + 640𝑇𝑢�̇�
        𝑖𝑓    �̇�𝐶𝐿

𝑎𝑡𝑡 > 0

1 + 0.5Δ𝐶𝐿
𝑎𝑡𝑡

8 − 480𝑇𝑢�̇�
        𝑖𝑓    �̇�𝐶𝐿

𝑎𝑡𝑡 ≤ 0

(8) 

 

In this model, only the dynamic lift coefficient is considered. Static drag and moment coefficients are not modified. 

2.2 Øye Model 

The Øye model [8] is a quite simple dynamic stall model that uses a single first order ODE to simulate the time delay 

of the lift response to the variations in the angle of attack. It introduces a variable f, called the interpolation factor, to 

model the relative importance of two physics which represent a fully attached regime and a fully separated one. It is 

then necessary to have two corresponding curves. The main hypothesis of the model is that the fully separated lift 

coefficient 𝐶𝐿
𝑓𝑠

 is an Hermite polynomial verifying empirical conditions (𝐶𝐿
𝑓𝑠
|
𝛼0
= 0, 𝐶𝐿

𝑓𝑠
|
𝛼𝑓𝑠

= 𝐶𝐿
𝑠𝑡|𝛼𝑓𝑠, 𝐶𝐿

𝑓𝑠
′|
𝛼0
=

𝐶𝐿
𝑠𝑡′|𝛼0/2, 𝐶𝐿

𝑓𝑠
′|
𝛼𝑓𝑠

= 𝐶𝐿
𝑠𝑡|𝛼𝑓𝑠/12) and the static lift experimental (or numerical) curve 𝐶𝐿

𝑠𝑡 is weighted between the 

attached flow and the fully separated flow via the relative position of the separation point in static 𝑓𝑠𝑡   (see Figure 2): 

 

𝐶𝐿
𝑠𝑡  =  𝑓𝑠𝑡𝐶𝐿

𝑎𝑡𝑡  (𝛼) + (1 −  𝑓𝑠𝑡)𝐶𝐿
𝑓𝑠
 (𝛼) (9) 

 

Rewriting this equation allows to compute the separation point function: 

 

𝑓𝑠𝑡  =   
𝐶𝐿
𝑠𝑡 − 𝐶𝐿

𝑓𝑠

𝐶𝐿
𝑎𝑡𝑡 − 𝐶𝐿

𝑓𝑠
   with    𝐶𝐿

𝑎𝑡𝑡 = 𝐶𝐿𝛼(𝛼 − 𝛼0) (10) 

 

where 𝐶𝐿
𝑎𝑡𝑡 is the fully attached lift coefficient. Note that 𝑓𝑠𝑡 = 1 for a fully attached flow and 𝑓𝑠𝑡 = 0 for a fully 

detached flow. The state equation of the model assumes a lag between the static and the dynamic separation point 

positions: 

𝑓�̇�𝑦𝑛 +
1

𝑇𝑓
𝑓𝑑𝑦𝑛 =

1

𝑇𝑓
𝑓𝑠𝑡 (11) 

 

where 𝑇𝑓 = 𝜏𝑓𝑇𝑢 is a characteristic time determined numerically or experimentally. The dynamic lift is then obtained: 

 

𝐶𝐿
𝑑𝑦𝑛

 =  𝑓𝑑𝑦𝑛𝐶𝐿
𝑎𝑡𝑡  (𝛼) + (1 −  𝑓𝑑𝑦𝑛)𝐶𝐿

𝑓𝑠
 (𝛼) (12) 

 

As Snel model, only the dynamic lift coefficient is considered. Static drag and moment coefficients are not modified. 

 

 

Figure 2: Separation point definition on a flat plate [13] 
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2.3 Risø Model 

The Risø model [12-13] is a modified Beddoes-Leishmann dynamic stall model. The main difference is that the 

possible leading-edge separation point has been neglected. It is not a dominant phenomenon for relative airfoil 

thicknesses of less than 15%, as in the case of wind turbine application for which the model was originally developed. 

The approach is similar to that of Øye, but numerous effects have been added. 

The first part of the Risø model correspond to the unsteady attached flow (circulatory term in Eq. (3)). In order to 

replace Theodorsen’s theory, the angle of attack at collocation point is replace with an effective angle of attack: 

 
𝛼𝐸  =  𝛼3 4⁄  (1 −  A1 −  A2) + 𝑥1 + 𝑥2 (13) 

 

where 𝑥𝑖 are state variable of the fluid and 𝐴𝑖 are constants obtained numerically or experimentally. These two state 

variables that represent the downwash time lag, are obtained using the following state equations: 

 

 𝑥�̇� + 𝑈
𝑏𝑖
𝑏
𝑥𝑖 = 𝑈

𝑏𝑖𝐴𝑖
𝑏
𝛼       ∀𝑖 ∈ {1, 2} (14)  

 

where 𝑏𝑖 are new constants. This effective angle of attack allows to compute the unsteady attached lift coefficient: 

 

𝐶𝐿
𝑎𝑡𝑡 = 𝐶𝐿𝛼(𝛼𝐸  − 𝛼0) + 𝜋

𝑏�̇�

𝑈
(15) 

 

The second part correspond to the trailing edge (TE) separation. The basic assumption is that the static curve can be 

represented by the expression: 

𝐶𝐿
𝑠𝑡 = 𝐶𝐿𝛼 ( 

1 + √𝑓𝑠𝑡
2

 )

2

(𝛼 − 𝛼0) (16) 

 

The inversion of the previous equation directly gives the expression of 𝑓𝑠𝑡 (see [13]). The logic is reversed with respect 

to the Øye model, since equation (9) is used to calculate the totally separate lift coefficient. 

 

𝐶𝐿
𝑓𝑠(𝛼) =  

𝐶𝐿
𝑠𝑡 − 𝐶𝐿𝛼 (𝛼 − 𝛼0)𝑓𝑠𝑡(𝛼)

 1 − 𝑓𝑠𝑡
(17) 

 

The dynamic of the separation is given with two other state variables equation. The first one representing the dynamic 

of the TE separation and assume a delay between pressure and airfoil lift: 

 

𝑥3̇  +  
1 

𝑇𝑝
 𝑥3  =   

1 

𝑇𝑝
𝐶𝐿
𝑎𝑡𝑡 (18) 

 

where 𝑇𝑝 = 𝜏𝑝𝑇𝑢 is the characteristic lag time between pressure and lift. The state 𝑥3 can be assimilated to a lag lift 

and can be noted 𝑥3 = 𝐶𝐿
𝑝′

. It can be deduced a new angle of attack for that lift coefficient: 

 

 𝛼𝑓 =
𝐶𝐿
𝑝′

𝐶𝐿𝛼
 +  𝛼0 (19) 

 

The last state equation is similar to Eq. (8) and gives the dynamic of the separation point: 

 

𝑥4̇  +
1

𝑇𝑓
𝑥4  =

1

𝑇𝑓
  𝑓𝑙𝑎𝑔        where  𝑓𝑙𝑎𝑔 = 𝑓𝑠𝑡(𝛼𝑓) (20) 

 

This new state 𝑥4 is denoted 𝑓𝑑𝑦𝑛. Finally, the dynamic lift coefficient can then be computed: 

 

𝐶𝑙
𝑑𝑦𝑛

= 𝐶𝐿𝛼 (𝛼𝐸 − 𝛼0)𝑓𝑑𝑦𝑛 + 𝐶𝐿
𝑓𝑠(𝛼𝐸)(1 − 𝑓𝑑𝑦𝑛) + 𝜋

𝑏�̇�

𝑈
(21) 

 

Risø model proposes also to estimate the dynamic drag and moment coefficients as: 
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𝐶𝐷
𝑑𝑦𝑛

= 𝐶𝐷
𝑠𝑡(𝛼𝐸) + (𝛼 − 𝛼𝐸)𝐶𝐿

𝑑𝑦𝑛
+
1

4
(𝐶𝐷

𝑠𝑡(𝛼𝐸) − 𝐶𝐷0) ((1 − √𝑓𝑑𝑦𝑛)
2

− (1 − √𝑓𝑠𝑡(𝛼𝐸))
2

) (22) 

𝐶𝑀
𝑑𝑦𝑛

= 𝐶𝑀
𝑠𝑡(𝛼𝐸) + 𝐶𝑙

𝑑𝑦𝑛
(𝑎𝑠𝑡(𝑓𝑑𝑦𝑛) − 𝑎

𝑠𝑡(𝑓𝑠𝑡(𝛼𝐸))) − π 
𝑏�̇�

2𝑈
(23) 

 
with 𝑎𝑠𝑡 the position of an equivalent pressure center defined by the static lift and moment curves as 𝑎𝑠𝑡(f) =

(𝐶𝑀
𝑠𝑡 − 𝐶𝑀0

𝑠𝑡 )/𝐶𝐿
𝑠𝑡 . 

 

4. Results  

4.1 Comparison of dynamic stall models in case of a pitch oscillation 

All dynamic stall models are implemented in Matlab using ode45 function. In this first step, it is proposed to compare 

the models for a prescribed motion case before conducting aeroelastic simulations. Hofmann et al. [21] performed 

several pitch motions on wind turbine airfoils. For example, the experimental case of a NACA 4415 at 𝑘 = 0.023, 

𝛼𝑚𝑒𝑎𝑛 = 14° and 𝛼𝑎𝑚𝑝 = 10.5° is presented in Figure 3. The three models presented here are plotted. For comparison, 

Holierhoek simulations for the B-L and ONERA models are also shown [20]. Two phases can be distinguished during 

the angle of attack growth. In the first, up to around 12 degrees, all the models are close to the experimental curve, the 

best being the ONERA model.  At 14 degrees, the experimental curve reaches the maximum lift corresponding to the 

instant of leading-edge vortex convection [17]. This extra lift is only well captured by the B-L model and, to a lesser 

extent, by the Snel and ONERA models. In the second phase up to the nominal angle, all models except ONERA's 

follow the same slope. The slope of the ONERA model is steeper and resembles the experimental curve, even if it 

remains the model most distant from the experimental values. As the angle of attack decreases, the behaviour of the 

models is very similar except at the smallest angles, where the gap increases. Overall, the models are close to the 

experimental curve in this phase. 

 

  
 

Figure 3: Dynamic stall models on the NACA 4415 airfoil for 𝑘 = 0.023 (𝛼𝑚𝑒𝑎𝑛 = 14° and 𝛼𝑎𝑚𝑝 = 10.5°)  

4.2 Dynamic stall of a flat plate in sinusoidal pitch motion  

The aeroelastic study of the final section involves a flat plate. In this section, sinusoidal pitch motion is investigated 

on a flat plate at a reduced frequency (𝑘 = 0.1) close to the aeroelastic case (𝑘 ≈ 0.08).  

Figure 4 illustrates the pitch oscillations of ±4° around the aerodynamic centre for mean angles of 5°, 10°, and 15°. 

Figure 4a and 4b display the lift coefficients for the Oye and Riso models, respectively. For these simulations, the 

static curve (𝐶𝐿
𝑠𝑡) is obtained from Amandolese et al [14]. In these figures, the 𝐶𝐿

𝑓𝑠
 and 𝑓𝑠𝑡 functions are plotted, and 

they differ slightly between the two models. For small angles of attack oscillations (black curve), it is noteworthy that 
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the Oye model does not exhibit any unsteady effect. This is not the case for the Riso model, due to the state equations 

(14). For oscillations around 10 and 15 degrees (blue and green curves), the behaviour of the two models is quite 

similar. This is attributed to the use of the same 𝜏𝑓 in equations (11) and (20) (see Table 2). However, it should be 

noted that the hysteresis loops are more significant for the Oye model. The dynamic drag and quarter chord moment 

are not considered for the Oye model. Figure 4c shows the Riso model drag, with static curve coming from Fage et al. 

[22]. The effect of dynamic stall is very weak. Finally, Figure 4d shows the quarter-chord moment coefficient. Due to 

the lack of data on the moment coefficient for the flat plate at high angle of attack, the static curves are obtained from 

[23] until 20 degrees, and data from the NACA0009 airfoil at higher angle of attack are used [24]. The effect of 

dynamic stall is more significant in this case, reaching approximately a 50% deviation from the static value at 10° (blue 

curve). 

Table 2: Non-dimensional parameters of the models 

𝜏𝑓 𝜏𝑝 𝐴1 𝑏1 𝐴2 𝑏2 

6 1.5 0.165 0.0455 0.335 0.3 

  

            
(a)         (b) 

            
(c)         (d) 

Figure 4: Dynamic stall simulations for various sinusoidal pitch oscillations (𝛼𝑚𝑒𝑎𝑛 ∈ {5°, 10°, 15°} and 𝛼𝑎𝑚𝑝 = 4°): 

(a) lift coefficient for Øye model; (b), (c), & (d), lift, drag and quarter chord moment for Risø model  

Figure 5 depicts the pitch motion of the wing at zero mean angle and amplitudes of ±10°, ±20° and ±30°, which are 

much more representative of aeroelastic limit cycles. Like the previous case, the dynamic lift between the Oye and 

Riso models remains relatively close during the angle of attack growth. However, the models diverge further during 

the descent phase. In the extreme case (green curve), the lift coefficient can reach 1.5, whereas the static value at 25° 

is approximately 1. The drag is still minimally affected by the Riso model. Conversely, the effect on the moment is 

very significant. In the extreme case (green curve), the coefficient reaches ±0.8, whereas it is zero in the static case. 
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These calculations show that dynamic moment cannot be neglected in aeroelastic simulations, whereas the effect on 

drag can be. 

 

 

            
(a)         (b) 

            
(c)         (d) 

 

Figure 5: Dynamic stall simulations for various sinusoidal pitch oscillations (𝛼𝑚𝑒𝑎𝑛 = 0° and 𝛼𝑎𝑚𝑝 ∈

{10°, 20°, 30°}): (a) lift coefficient for Øye model; (b), (c), & (d), lift, drag and quarter chord moment for Risø model 

4.3 Aeroelastic computations 

Aeroelastic models using space-state formulation have been implemented in the Matcont toolbox in Matlab. The 

experimental case studied is that of the flat plate proposed by Amandolese et al. [14]. The data for equations (1-4) are 

fully defined in [14]. In the paper, the authors identified a cubic softening nonlinearity on the torsional stiffness, which 

is accounted for in all the models studied here. Figures 6a and 6b present the amplitude of the experimental limit cycles 

in pitch and plunge respectively, as a function of the dimensionless speed with respect to the flutter speed. The blue 

curves correspond to the increasing speed phase, while the red curves correspond to the decreasing speed phase from 

the stable limit cycles. A significant hysteresis is observed between the instability onset speed and the return to the 

initial equilibrium state. This phenomenon is characteristic of a subcritical bifurcation. 

First, two aerodynamic models without dynamic stall are plotted. The first one is the pseudo-static model (equations 

(3-5) with C(k)=1), and the second one corresponds to the attached unsteady Riso model (Eq (14) only) referred to as 

Theodorsen in the figure. Note that the geometric nonlinearities of equation (5) are preserved. Both models exhibit 

subcritical bifurcations, but the amplitude of the limit cycles is not representative of the experiments at all. This 

indicates that the nonlinear torsional stiffness alone cannot explain the amplitude of the limit cycles in this experiment. 

The Oye and Riso models, assuming zero drag and quarter-chord moment, as well as the complete Riso model, are 

plotted. All three models exhibit subcritical bifurcations, but the amplitudes are lower than the experimental results. 

The bifurcation diagram of the Oye model shows a relatively similar shape, while the Riso model exhibits higher 

amplitudes that are closer to the real case. In particular, it is noteworthy that the prediction is improved by taking the 
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drag and the quarter-chord moment in account. These results are preliminary, and in the future, the discrepancy between 

the models and the experiments will be further investigated. In particular, the B-L model, which exhibits higher 

dynamic coefficients (Figure 3), could be investigated. 

 

 
(a)         (b) 

 

Figure 6: Bifurcation diagram of the Amandolese et al. [14] case for various models:  

(a) pitch motion; (b) plunge motion. 

5. Conclusion and perspectives 

Aeroelastic motion equations for an airfoil were combined with semi-empirical dynamic stall models chosen from the 

literature that have been selected and implemented to investigate differences in their hypothesis, complexity, and 

performances to predict highly nonlinear aerodynamics. Results were assessed by comparison with experimental data 

and test cases from the literature, in terms of aerodynamic coefficient prediction for an imposed pitch oscillation with 

different amplitude and reduced frequency and then, in terms of flutter critical airspeed and LCO prediction for 

different flow velocities.  

The test case of the dynamic response of a two-degree of freedom flat plate section undergoing flutter was discussed 

especially in this paper. Dynamic effects on the drag coefficient can be seen as negligeable for any range of motion, 

while the dynamic effect on moment coefficient and lift coefficient are seen to be heavily impacted for high amplitudes 

of pitch motion. When studying the different dynamic models and their impact on the stability analysis performed with 

Matcont toolbox in Matlab, we can observe that the flutter onset critical speed is slightly different according to the 

different dynamic stall models whereas the appearance of the LCOs is similar. 

Future work will be dedicated to implement other and evolving dynamic stall models, and to perform a parametric 

study to investigate additional reduced frequency and angle of attack ranges. It will bring new results to highlight the 

capability and the differences between these dynamic stall models to predict flutter onset speed and stable LCOs.  
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