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Abstract
A novel computational framework is developed to optimize both robust open-loop and closed-loop guid-
ance modes under uncertainties. Multi-phase launch vehicle optimization problems, including achieving
insertion into a Geostationary-Transfer Orbit (GTO) and executing a Return to Launch Site (RTLS) maneu-
ver under constraints is studied. The framework effectively considers uncertainties in thrust, aerodynamic
coefficients, atmospheric density, and specific impulse by employing Stochastic-Collocation based En-
semble Pseudospectral Optimal Control Software (SC-EPOCS), Recovery Ensemble Control (REC), and
Conjugate Unscented Transformation (CUT). This approach generates safe and optimal trajectories and
trajectory reshaping strategies, thereby mitigating risks and minimizing state dispersions at the end of the
open-loop guidance phase.

1. Introduction

Trajectory optimization plays a pivotal role in the design of launch vehicles as it directly impacts the economic feasi-
bility and safety assurance of missions. Epistemic and aleatoric uncertainty quantification and propagation represent
a critical technology to increase the robustness against design constraints, minimize the risk of mission failure under
uncertainties and systematic way of assigning optimal design margins.
In recent years, the field of space mission design has witnessed a surge of interest in advanced optimization techniques
such as convex optimization, indirect optimal control, and pseudospectral methods. However, traditional methods are
often limited in their ability to handle the uncertainties and disturbances that are inherent in space missions, leading
to suboptimal or even failed missions. In astronautics, uncertainties arise due to several factors such as atmospheric
conditions, aerodynamics, propulsion, navigation and system failures. Failure to account for these uncertainties can
lead to mission failure or increased costs due to the need for contingency plans. Additional propellant is reserved
exclusively for correction maneuvers aimed at compensating for trajectory deviations arising from uncertainties and
disturbances. This approach often leads to strategies that are excessively over-conservative, in order to ensure robust-
ness to deviations in trajectory. Robust trajectory optimization techniques help ensure mission success by enabling
spacecraft to adapt to unforeseen circumstances, including those that are difficult to predict. By utilizing sophisticated
trajectory optimization techniques, trajectories can achieve mission objectives under a wide range of conditions and
improve mission success rates, reduce costs, and enable missions that would otherwise be too risky or expensive.
Therefore, there exists a pressing need for a systematic methodology for designing a nominal and robust trajectory,
and an associated closed-loop control law that incorporates the information on uncertainties. Optimally reshaping the
reference guidance to steer the initial distribution towards a goal is referred to as covariance steering,12 approach in
stochastic optimal control. Recently a covariance-control based optimization framework for robust trajectory optimiza-
tion including navigational errors was introduced with the use of multiple-shooting approach.3 To make the resulting
optimization problem computationally tractable, sequential convex programming was deployed to study stochastic tra-
jectories for solar sail4 and low-thrust5 missions under Gaussian uncertainties. A similar approach together with convex
optimization was applied to covariance steering of launch vehicles6 under Gaussian uncertainties by generating optimal
robust guidance law based on linear feedback for non-throttleable upper stages.
In pursuit of optimal maneuvers under stochastic disturbances and uncertainties, research has delved into launching
into parking orbits, Lambert rendezvous orbits, and Halo-transfer orbits.7 To tackle with stochastic optimal control
problems, Sums-of-Squares8 and tube-based approaches9 have been developed to design robust optimal feedback con-
trollers, which transforms the problem into a deterministic optimal control problem, through the utilization of sampling-
based approaches such as the Unscented Transformation. The constraints can be incorporated as chance constraints,

Copyright© 2023 by Akan Selim. Posted on line by the EUCASS association with permission.

DOI: 10.13009/EUCASS2023-396

Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS



HYBRID ROBUST TRAJECTORY OPTIMIZATION FOR LAUNCH VEHICLES

assuming the uncertainties to be Gaussian processes. The success of academic research on tube-MPC and other tube-
based approaches like funnel libraries, SOS, and convex optimization has led to the development of tube stochastic
Differential Dynamic Programming10 and applied to a stochastic low-thrust trajectory optimization. In contrary to
these approaches where navigational models are not included into the optimization framework,11 studied rendezvous in
NRHO environment via Linear Covariance Analysis including navigational models under Gaussian assumption and12

developed an observability aware trajectory design architecture to optimally study the gravitational field of an asteroid.
In lieu of designing a robust controller for the solution of stochastic optimal control problems, a robust guidance tech-
nique was investigated in13 for the safe generation of a reference orbit for asteroid approach and landing problem,14.15

The methodology is based on convex programming and the chance-constrained formulation. Another approach that
relies solely on open-loop control laws is belief optimal control.16 This formulation results in a transformation of
cost and constraint functions into probability distributions, wherein uncertainty propagation is established by modeling
both aleatoric and epistemic uncertainties via non-intrusive Polynomial Chaos Expansion. The resulting problem is
then solved using multiple-shooting and nonlinear programming.
In the current literature of robust trajectory optimization, these goals are pursued at the expense of employing nested
optimization loops with heuristic algorithms or reformulating trajectory optimization as a robust optimal control prob-
lem where states and uncertain variables are rewritten in terms of polynomial expansions via non-intrusive Polyno-
mial Chaos Expansion methods.17 In alternative approaches, their outputs can be used to form a meta-model18 for
Uncertainty Quantification in uncertainty-based Multidisciplinary Optimization studies.19–21 However, the former
approach22, 23 suffers from significant drawbacks, including excessive computational time and no guarantee of local
optima. The latter approach relies on nonlinear programming with high-dimensional state spaces24–27 making conver-
gence challenging, if not impossible, for low-dimensional uncertainties. In response to that, recent methods have been
proposed based on convex optimization28 which requires either a re-formulation of the original constraints as convex
constraints or successively linearizing both the dynamics and the constraints. However, this can lead to a compromised
optimality of solutions for extended flight durations.
Moreover, most of the aforementioned methodologies that are applied to launch vehicles generate open-loop trajec-
tories with a fixed flight duration for each phase of the flight vehicle including orbital insertion. This conservative
approach does not align with the fact that most launch vehicles employ closed-loop guidance algorithms, such as It-
erative Guidance Method (IGM),29 Powered Explicit Guidance (PEG),29, 30 real-time implementable convex solvers31

like Sequential Pseudospectral Convex Programming (SPCP),32 xPIPG,33 Sequential Conic Optimization (SeCO)34

and DESCENDO.35

In order to incorporate the closed-loop guidance phase within trajectory design for exo-atmospheric flight and mitigate
the adverse effects of dispersed states at the end of the open-loop guidance phase, a novel computational framework
has been devised. This framework enables the optimization of both guidance modes, culminating in a hybrid guidance
architecture.
Two benchmark multi-phase launch vehicle optimization problems36, 37 are rewritten as a robust uncertainty-aware
trajectory optimization problem with the proposed approach, consisting of open and closed-loop phases in a single
nonlinear programming algorithm to maximize the expected payload mass. The approach involves generating a ro-
bust open-loop reference trajectory for the endo-atmospheric phase, while independently optimizing the closed-loop
guidance phase for each ensemble trajectory. As a generalization of the aforementioned studies in which a robust
and an optimal reference trajectory is optimized with a linear feedback term, we utilize the recently developed recov-
ery ensemble control concept for obtaining fractionally robust trajectories and accompanied feedback controls. These
feedback control terms can be used to derive these feedback linear matrix gains as the resulting terms are functions of
dispersed states, and also, the mean of these trajectories. A recently developed closed-loop robust guidance and control
architecture based on Recovery Ensemble Control (REC)38 is included for that purpose. REC enables the steering of
ensembles towards designated endpoints, rather than just an area.
To address uncertainties pertaining to thrust, specific impulse, atmospheric density and aerodynamic coefficients, re-
cently developed Stochastic-Collocation based Ensemble Pseudospectral Optimal Control Software (SC-EPOCS)39 is
employed. This software is an extension of a previously developed optimal control software which was validated for
many benchmark deterministic aerospace missions38 and was used to demonstrate the optimality and feasibility of
robust trajectories for high-dimensional uncertainty spaces in a 6-DOF40 state constrained close-proximity docking
maneuver and re-entry.41

Sampling from uncertainty space is done in accordance with a quadrature rule generated using the Conjugate Unscented
Transformation (CUT),42 and the robust trajectory optimization problem is reformulated in a vectorized format. This
reformulation significantly reduces computational time requirements and ensures robust convergence by appropriately
scaling control variables and the objective function based on the number of ensembles. Notably, this approach requires
fewer cubature nodes while preserving the nonlinearity of the dynamics in propagating uncertainties. To solve the
resulting ensemble trajectories, a mesh generated using the Legendre-Gauss-Radau (LGR) collocation method in the
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time domain is implemented, alongside the open-source interior-point solver IPOPT.
The proposed architecture offers several notable advantages. Firstly, it enables fast optimization of the guidance ar-
chitecture while ensuring robustness and optimality. This contributes to increased flight safety by minimizing risks
associated with various uncertainties and reduce the state dispersions at the end of the open-loop guidance phase.
Consequently, by incorporating the closed-loop phase, the expected value of the deliverable payload is increased and
mission constraints are satisfied.
The paper is structured in the following manner: Section 2 the ensemble optimal control problem and sparse-grid
based transcription of the robust trajectory optimization is described. Then, Section 3 introduces the two benchmark
problems with three case studies. Finally, Section 4 provides a comprehensive comparison of the performance of
different guidance architectures.

2. Robust Guidance Optimization

2.1 Ensemble Optimal Control

Ensemble Optimal Control REFEns1 attempts to optimize a single control signal for an ensemble with same dynamics
and constraints but different system parameters with uncertainties and initial conditions. The cost functional can be
written as,

J (u) :=
∫
Θ

∫ 1

0
a(t, xθu, θ)dυ(t)dµ(θ) +

β

2
|u|2L2 (1)

where, υ, µ are Borel probability measures.
To make the resulting problem numerically solvable, resulting optimal control problem can be approximated via uti-
lizing a finite set of sub-ensembles to replace µ via (µN) generated by quadrature rules. Then the functional of the
functional is written as,

JN (u) :=
∫
Θ

∫ 1

0
a(t, xθu, θ)dυ(t)dµN(θ) +

β

2
|u|2L2 (2)

To satisfy required high-order statistical moments, quadrature points must be chosen such that the Moment Constraint
Equations (MCE) holds. To transform the high-dimensional integration problem into a finite sum, an approximation is
made as follows:

E
[
f (x)
]
=

∫ ∫
. . .

∫
f (x)p(x)dx1dx2 . . . dxn ≈

N∑
i=1

wi f (xi) (3)

With respect to the quadrature rules, the mean x̂t and moments Mt of the state variables x(i)
t can be written as,

x̂t ≈

N∑
i=1

α(i)x(i)
t Mt ≈

N∑
i=1

α(i)x(i)
t (x(i)

t )
T {

x(i)
0 , α

(i)
}
, i = 1, . . . ,N (4)

Note that the quadrature weights α(i) are constants in time.
A Bolza type optimal control problem (OCP) is then written in terms of ensembles as:

J =

nens∑
θ=1

αθϕθ
(
eθ(1), . . . , eθ(P)

)
+

nens∑
θ=1

αθ

P∑
p=1

∫ t f
(p)

t0(p)
g(p)
θ (y(p)

θ , u
(p), t(p))dt,∀θ ∈ {1, . . . , nens} (5)

where each ensemble is denoted with θ, nens denotes the total number of ensembles and αθ is the weight factor for each
sampled trajectory, which is obtained by calculating the quadrature/cubature weights.
In this case, the optimization variables for the multi-phase optimization problem is:

z =


z(1)

...
z(P)

 (6)
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where the variables for each phase, z(p) are defined as follows,

z(p) =



χ
(p)
1
...

χ
(p)
nens

U(p)
:,1
...

U(p)
:,n(p)

u

U
(p)
1
...

U
(p)
nens

T
(p)
1
...

T
(p)
nens



(7)

χ
(p)
θ(p)
=


Y (p)
θ :,1
...

Y (p)
θ(p) :,n(p)

y

 ,∀θ(p) ∈
{
1, . . . , nens

(p)
}

(8)

U
(p)
θ(p)
=


U(p)

rec,θ(p) :,1
...

U(p)
rec,θ(p) :,n(p)

u

 ,∀θ(p) ∈
{
1, . . . , nens

(p)
}

(9)

T
(p)
θ(p)
=

t0(p)
θ(p)

t f
(p)
θ(p)

 ,∀θ(p) ∈
{
1, . . . , nens

(p)
}

(10)

χ
(p)
θ(p)

is the state vector, U(p)
θ(p)

is the closed-loop (and recovery control when used together with the open-loop control)

control input vector and T(p)
θ(p)

is the vector for the time variables for the sample θ(p) and phase p. On the other hand,
U(p)

:,n(p)
u

is the nominal control for all the ensembles and used as open-loop control input. Time vector is defined as

T(p) ∈ R
2nens

(p) x1 for closed-loop guidance phase and T(p) ∈ R
2x1 for open-loop guidance phase. Lastly, the endpoint

vector is defined as:

eθ(P) =

[
Y (p)
θ 1,:, t0

(p)
θ(p)
,Y (p)
θ (N+1)(p),:

(p)
, t f

(p)
θ(p)

]
, ∀p ∈ {1, . . . , P} (11)

as a result, resulting optimization variable of each phase is:

z(P) ∈ R
[
(N(p)+1)×n(p)

y ×nens
(p)+N(p)n(p)

u ×(nens
(p)+1)+2nens

(p)
]
x1 (12)

Dynamic and path constraints are calculated as,

Aθ(p) =


a(p)
(
Yθ1,:(p),U1,:

(p),U(p)
rec,θ(p) 1,:

,T
(p)
θ(p)

)
...

a(p)(YθN(p),:
(p),UN(p),:

(p),U(p)
rec,θ(p) N,:

,T
(p)
θ(p)

)

 ∈ RN(p) x n(p)
y

Cθ(p) =


c(p)
(
Yθ1,:(p),U1,:

(p),U(p)
rec,θ(p) 1,:

,T
(p)
θ(p)

)
...

c(p)(YθN(p),:
(p),UN(p),:

(p),U(p)
rec,θ(p) N,:

,T
(p)
θ(p)

)

 ∈ RN(p) x n(p)
y (13)

and A(p) and C(p) are formed simply by concatenation of these matrices in third dimension.
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As a result, the ensemble optimal control problem is rewritten in terms of the following constraints:

(
△θ i

)(p)
=

dyθi (t)
dt
−

t f
(p) − t0(p)

2
A(p)
θ = D(p)Yθi −

t f
(p) − t0(p)

2
A(p)
θ = 0, ∀i ∈

{
1, . . . ,N(p)

k

}
(14)

c(p)
min ≤ C(θ,p)

i,: ≤ c(p)
max, ∀p ∈ {1, . . . , P} ∀i ∈ {1, . . . ,N p} (15)

bmin ≤ b(e(1)
θ , . . . , e

(p)
θ ) ≤ bmax (16)(

△θ i

)(p)
are the dynamic deficit constraints, N(p) =

∑K(p)
k=1 N(p)

k is the total number of quadrature nodes for the correspond-
ing phase, w(p) ∈ RN(p) is the vector consisting of quadrature weights and D(p) is the pseudospectral differentiation
matrix.

2.2 Recovery Ensemble Control

Recovery ensemble control aims to generate safe, optimal and adaptive trajectory reshaping strategies. Contrary to de-
sensitized optimal control and integrated guidance and control optimization frameworks, the proposed strategy controls
the ensemble of uncertainty space to satisfy the hard constraints by minimizing the so-called recovery control without
imposing any structure, for example linear feedback control, and optimizes a nominal control for all the ensembles.
These recovery controls are a function of dispersed states and the uncertain variables, therefore they can be used for
generating a database of feedback control policies for different combinations of uncertainties. Rather than minimiz-
ing the deviation from a predetermined robust and safe reference trajectory, REC minimizes the deviation from their
respective true optimal trajectory with a tradeoff variable called as recovery weight (ωrec). In this research, Time-
dependent Recovery Ensemble Control (T-REC) is utilized for the boost-back and re-entry phases of reusable launch
vehicles.
Objective function for the optimal control problems using this concept can be formulated as follows:

J = E
[
−m
(
t f

)
+
ωrec

2

∫ t f

t0

∣∣∣urecovery

∣∣∣2 dt
]

(17)

which can be approximated via cubature-rule based approaches as follows:

J =
∑
θ

αθ

[
−mθ
(
t f

)
+
ωrec

2

∫ t f

t0

∣∣∣urecovery,θ

∣∣∣2 dt
]

(18)

where θ denotes the ensembles, which refers to different possible system parameters, αθ is the cubature weight and
ωrec is a weighting parameter that represents the importance of the recovery control terms in the objective function. In
the case of ωrec = 0, optimal results correspond to finding deterministic optimal controls for each of the ensembles.
In the second extreme case, as ωrec → ∞, the optimal solution becomes the robust open-loop control input, which is
an ensemble optimal control solution in which the same control input is applied to all ensembles. However, resulting
problem may become infeasible due to the final boundary constraints. By tuning the aforementioned recovery weight,
resulting optimized open-loop control input is said to be partially-robust, resulting in different magnitudes of corrective
controls. In this case, total control for each ensemble is defined as follows:

uα = unominal + urecovery,α (19)

In the previous research on REC,43 it was shown that costate dynamics of the system depends on both the nominal
control and the recovery control for the corresponding ensemble and are independent from each other. On the other
hand, the nominal control depends on all of the ensemble costates, and recovery control terms can be derived from the
costates and the nominal control. This means that the nominal control can be used to derive recovery control terms that
compensate for uncertainties in the system parameters.

3. Test Cases

Benchmark problems are taken from the references.36, 37 A systematic comparison has been conducted between differ-
ent hybrid guidance architectures with robust optimization and REC. Numerous comparisons studied in this research
are summarized in Fig. 1. We systematically compare the results for two scenarios under Isp, thrust, atmospheric
density and axial aerodynamic uncertainties.
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Figure 1: Systematic Comparison and Robust Optimization of Different Hybrid Guidance Architectures

In both of the problems, the optimal control problem is transformed into a Mayer problem as follows:

J = −m(4)(t f ,4) (20)

Governing equations for the motion of the launch vehicle are given as follows:

˙⃗r = v⃗ (21)

˙⃗v = −
µ∣∣∣⃗r∣∣∣3 r⃗ +

T⃗
m
+

D⃗
m

(22)

ṁ = −

∣∣∣∣T⃗ ∣∣∣∣
g0Isp

(23)

(24)

where,

D⃗ = −
1
2
ρ0e−

h
H S CD

∣∣∣⃗vrel

∣∣∣ v⃗rel (25)

v⃗rel = v⃗ − [0 0 ΩE]T × r⃗ (26)

and G = g0

(
Re

Re+r

)2
, subjected to the following path constraints:

1
2
ρ
∣∣∣⃗vrel

∣∣∣2 ≤ qmax (27)

in which the 80 kPa maximum dynamic pressure is used for the second problem. In the given equations, Re denotes the
radius of Earth, ρ is the atmospheric density, S is the cross-sectional area, CD is the drag coefficient of the stage, m is
the mass, g0 is the acceleration due to gravity in sea level and D is the drag force acting on the vehicle. r⃗ and v⃗ are the
position and velocity vectors in ECI frame.
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3.1 Ascent Trajectory Optimization

In the first case, an optimal control problem for a multi-phase launch vehicle ascent mission for Delta III rocket is
studied to maximize the payload mass inserted into a GTO orbit with orbital elements:

a, e, i,Ω, ω =
[
24361.14 km, 0.7308, 28.5◦, 269.8◦, 130.5◦

]
(28)

The mass, thrust and aerodynamic data are taken from the reference.36

In this study, a reference trajectory under nominal conditions is optimized and then based on the real trajectories that
will be dispersed due to uncertainties, an expectation of the maximum payload that can be inserted into the orbit via
closed-loop guidance algorithms is calculated. Then, an integrated optimization of both ascent and orbital insertion
guidance is assessed with the use of SC-EPOCS to generate robust open-loop ascent trajectory and also the accompa-
nying optimal guidance for orbital insertion for each dispersed state trajectory.

3.2 RTLS Trajectory Optimization

The reference article37 solved two different scenarios, one is the RTLS and other is the Down-range Landing (DRL). In
this subsection, the RTLS case is studied with a dynamic pressure constraint. The objective function is set to maximize
the payload mass inserted into a target orbit, defined as:

a, e, i,Ω, ω =
[
6593.145 km, 0.0076, 28.5◦, 269.8◦, 130.5◦

]
(29)

Major uncertainties including atmospheric density and aerodynamic uncertainties for reusable launch vehicles were
studied in44 and incorporated into the robust trajectory optimization framework together with thrust and specific im-
pulse uncertainties.
Similar to the first scenario, deterministic optimal reference trajectory is optimized and then by obtaining the dispersed
states under uncertainties, boostback, landing and orbital insertion trajectories are optimized assuming true parameters.
Then the results are compared with the SC-EPOCS to evaluate the advantage of the robust open-loop ascent trajectory.
Then, a more realistic scenario is studied by also including the uncertainties in boostback till the landing maneuver. In
this case the original problem is cast as a four-phase optimal control problem where the last phase is initiated at most
200 seconds before the landing maneuver. To assess the impact of including closed-loop corrections to the boostback
maneuver, we generate optimal and robust control laws via recovery ensemble control for different recovery weights
to study the tradeoff between robustness and propellant margins and compare it with the open-loop robust boostback
maneuver.
Note that the robust optimization results for the hybrid guidance architectures for the RTLS scenario only optimizes the
worst-case landing guidance, since only the feasibility of the worst-case scenario impacts the optimization objective
function, which is the final mass of the second stage.

4. Numerical Results

All of the simulations are performed with Matlab 2021b with AMD Ryzen 5 3500X processor, 16 GB of RAM and
Nvidia GeForce RTX 2060 graphics card. IPOPT is used to solve the resulting the nonlinear programming problem
with MA-45 linear solver. Absolute and relative convergence tolerance criterion was set to 10−10. A Legendre-Gauss-
Radau (LGR) mesh with 80 nodes for each phase was selected for the transcription of the optimization problems.
The uncertainties were modeled as uniform distributions for uncertain parameters and sampled with respect to the
cubature rule generated by 4th order Conjugate Unscented Transformation.42 ±20% uncertainty was assigned for the
drag coefficient for both stages (cD), ±5% uncertainty was assigned for atmospheric density (ρ), and ±1% uncertainty
was assigned for uncertainties in thrust and specific impulse of both stages. Finally, various recovery weights ωrec,
ranging between 10−3 and 10, were applied to evaluate their impact on the payload mass. In the following figures, the
darker hues represent lower recovery weights.

4.1 Multi-phase Ascent Problem

Results shown in the Fig. 2 and 3 suggests that, contrary to the studies employed22, 23 where an open-loop guidance was
designed to reduce the state dispersion at the end of orbital insertion and a tradeoff between optimality and dispersion
was observed, in our study, robust optimization of open-loop phase has a very negligible performance improvement
rather than reduction, about 1.25761 g. This is mainly a result of including closed-loop guidance in the optimization
framework which can update the target insertion point for the exo-atmospheric flight.
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Figure 2: Optimized Multi-phase Ascent Launch Vehicle Trajectory and Control Inputs

Figure 3: Comparison of Final Mass of the Launch Vehicle for Robust and Deterministic Open-loop Guidance
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Figure 4: Optimized Deterministic Multi-phase RTLS Trajectory and Control Inputs under Uncertainties

4.2 Three-Phase RTLS Comparison

Results shown in the Fig. 4, 5 and 6 demonstrates the importance and advantage of integrated robust optimization of
both open and closed-loop guidance. In Fig. 4, a deterministic open-loop guidance was used for the ascent phase.
Although the mean of the final mass higher than robust open-loop guidance with 316.56022 kg, as a result of uncer-
tainties, the launch vehicle couldn’t achieve landing for almost half the cases as shown in Fig. 6, where in Fig. 5,
the worst-case can achieve landing by utilizing all the propellant. This is similar to what would be expected for the
deterministic optimal control problem, in which there is no unused propellant mass left for the first stage.

4.3 Four-Phase RTLS Comparison

Results shown in the following figures conclude the advantage of robust boostback and re-entry guidance and also the
robust open-loop ascent guidance when compared to the previously studied deterministic open-loop ascent guidance.
In Fig. 7, a robust open-loop ascent guidance and deterministic open-loop guidance for boostback and re-entry was
used for landing. Similar to the previous study, the results shown in Fig. 10 demonstrates that the worst-case still can
achieve landing by utilizing all the propellant. Also in the results shown in Fig. 9, sacrifice in the final mass of the
second phase is about 11.34438 kg for different recovery weights while the advantage of including recovery ensemble
control for the final mass of the first stage is 166.35875 kg. As can be expected, as the recovery weight increase, the
results converged towards the robust optimization results, indicated in Fig. 8. It is important to note that, due to the
robust open-loop ascent guidance, the dispersions were quite low compared to open-loop ascent guidance studied in
the previous case and therefore, even when the vehicle generates a open-loop guidance for boostback and re-entry, in
almost each case the landing can be successfully performed with the available propellant.

5. Conclusion

In this research, a new computational framework is developed to systematically optimize both robust open-loop and
closed-loop guidance modes to study their advantages, yielding a hybrid guidance architecture that mitigates the impact
of uncertainties in aerodynamic density, axial aerodynamic forces, thrust and specific impulse of the engines and also
generate realistic design margins. Two benchmark multi-phase launch vehicle optimization problems were studied,
one is the Delta-III ascent mission and second is the RTLS mission for reusable launch vehicles. In-house developed
SC-EPOCS is used to solve the resulting multi-phase ensemble control problems together with recovery ensemble
control and CUT. Results suggested that while there was no apparent advantage of robust optimized hybrid guidance
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Figure 5: Optimized Robust Multi-phase RTLS Trajectory and Control Inputs under Uncertainties

Figure 6: Comparison of Final Masses of First and Second Stage of the Launch Vehicle for Robust and Deterministic
Open-loop Ascent Guidance
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Figure 7: Optimized Deterministic Multi-phase RTLS Trajectory and Control Inputs with Robust Open-loop Ascent
Guidance under Uncertainties

Figure 8: Optimized Robust Multi-phase RTLS Trajectory and Control Inputs under Uncertainties
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Figure 9: Optimized Partially-Robust Multi-phase RTLS Trajectory and Control Inputs under Uncertainties (Darker
tones indicate lower recovery weights)

Figure 10: Comparison of Final Masses of First and Second Stage of the Launch Vehicle for Robust and Deterministic
Open-loop Ascent, Boostback and Re-entry Guidance
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for the ascent mission, it is concluded that complex missions such as RTLS has great benefits in terms of systematically
assigning design margins for the required propellant and also safe reference trajectories and reshaping strategies.
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