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Abstract
In this study, the prediction capabilities of a hybrid neural network with regards to aerodynamic coefficients
of multiple swept delta wings are investigated. The quick evaluation of aerodynamic coefficients based on a
few geometrical and flow parameters instead of cost-consuming computational fluid dynamics simulations
or wind tunnel experiments could save time and costs during early aircraft design phases. The training
data is based on the results of wind tunnel measurements for a number of multiple swept delta wing
configurations with varying leading-edge sweeps. These datasets contain angle of attack slopes for the
basic configurations, as well as measurements with deflected control surfaces and an applied sideslip
angle. The results show, that different aerodynamic coefficients can be predicted accurately by machine
learning models. The neural network shows great abilities in forecasting the aerodynamic characteristics
and trends in coefficient slopes. Producing highly accurate predictions with respect to lift coefficients and
its derivative, the prediction accuracy can vary for the pitching moment coefficient, mispredicting absolute
values while still matching slope trends very well.

1. Introduction and Motivation

High-agility, high-performance aircraft configurations often show opposite aerodynamic challenges along their flight
envelope. Being designed for supersonic cruise, such configurations are also required to perform high-agility maneu-
vers at trans- and subsonic speeds. Low-speed performance demands high lift, which further leads to the need of high
angles of attack. To fulfill these requirements such aircraft configurations often consist of low-aspect-ratio wings with
medium to high leading-edge sweep angles to exploit flow structures such as separated flows, leading-edge vortex sys-
tems and vortex-to-vortex or vortex-to-shock interactions [1]. Numerous experimental and numerical studies have been
performed to gain an in-depth understanding of these flow features [2, 3, 4]. Polhamus reviews aerodynamic research
on slender wing benefits and summarizes vortex flow technologies useful for future aircraft [5]. Further, Breitsamter
presents investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices based
on wind tunnel experiments [6].
Just the possible combinations of angles of attack, angles of sideslip and control surface deflections at a distinct Mach
number call for an enormous amount of computational fluid dynamics simulations in the aircraft design phase.
Increasing computational power has led to the exploration of machine-learning techniques for fluid mechanics and
aerodynamics. Enormous amounts of existing data from experiments and numerical simulations can be used to under-
stand flow physics better and adopt or improve existing or develop computational models solely based on data [7]. In
their review, LeCunn et al. state, that deep learning beats other machine learning techniques in speech and visual object
recognition, object detection and other domains such as drug discovery and genomics. Additionally, deep learning
requires minimal engineering by hand, so it can easily take advantage of available data [8].
Zhang et al. developed a convolutional neural network (CNN) to predict the lift coefficient of differently shaped airfoils
based on variable flow conditions and an objective geometry [9]. The resulting CNN shows comparable learning capa-
bilities to a multi-layer perceptron (MLP), while exhibiting minimal constraints in geometric representation. The use
of a recurrent neural network for predicting lift coefficients at high angles of attack, with special emphasis on dynamic
stall identification of rotor blades at high speeds, is described by Suresh et al. [10]. Nørgaard et al. investigate the
possibility of reducing wind-tunnel test times by employing a hybrid neural network optimization method [11]. A new
non-iterative training algorithm for neural networks to interpolate and extrapolate data from only a few experiments
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and/or CFD computations is implemented by Meade et al. [12]. Using an artificial neural network, Huang et al. investi-
gated a multi-point inverse airfoil design method, where results show reasonable accuracy for lift and pitching moment
coefficient predictions [13]. Recently, Stradtner et al. published the work summary of the NATO/STO research task
group AVT-351 [14]. The group explores the application of reduced order modeling techniques for time-dependent
manoeuvrer prediction and data set population, where roughly a third of the proposed techniques are neural network
approaches. By applying a wide range of methods of reduced order modeling to different use cases, they can identify
the strengths and weaknesses of the approaches for specific applications. Hines Chaves et al. work on data-driven
reduced order modeling for aerodynamic flow predictions [15]. They show the capabilities of three different deep
learning techniques compared to state-of-the-art reduced order modeling techniques with an additional outline of fu-
ture techniques which will take spatial correlations of aerodynamic flow topologies into account.

This study investigates the prediction capabilities concerning integral aerodynamic coefficients of a hybrid neural net-
work consisting of a conventional feed-forward neural network and a convolutional neural network. The results of
wind-tunnel experiments of multiple swept delta wing configurations with sharp leading-edges serve as training data
for the neural network. To cut cost and time in the preliminary aircraft design phase, this prediction tool could help to
identify promising aircraft configurations regarding the aerodynamic coefficient slopes and derivatives.

2. Test Cases: Multiple Swept Delta Wings

Within this section, the generic high-agility aircraft configurations are introduced. Essential geometrical properties
and the available experimental datasets are briefly described. The last part of the section provides a summary of data
acquisition.

2.1 Generic Planforms

In this study, generic wing-fuselage configurations in the form of triple (NA1 W1) and double (NA1 W2) delta wing
configurations with varying leading-edge sweep angles are considered. The wind tunnel models consist of a fuselage
and interchangeable flat plate wings with sharp leading-edges. Additionally, each configuration type is equipped with
deflectable control surfaces, e.g. levcons for triple delta wings and slats for double and triple delta wings.
These geometries were and are subject to a common research program in cooperation with Airbus Defence and Space
and the German Aerospace Center and are further embedded in the NATO AVT-316 task group [16]. Various experi-
mental and numerical studies have been performed for a range of configurations [17, 18, 19, 20, 21, 22]. In Table 1,
the most important geometrical parameters of the two configuration types are listed Additionally, an overview of the
two different types are depcited in Figures 1 and 2.

Figure 1: NA1 W1

Table 1: Geometrical properties for the generic
triple and double delta wing configurations.

NA1 W1 NA1 W2
cr [m] 0.65 − 0.83 0.58 − 0.8
s [m] 0.32 − 0.53 0.29 − 0.468

S re f [m2] 0.29 − 0.43 0.25 − 0.35
Λ [−] 1.4 − 2.74 1.34 − 2.62

ltot [m] 1.16 1.16
lµ [m] 0.44 − 0.565 0.395 − 0.54

l1/cr [−] − 0.125
l2/cr [−] 0.25/0.35 0.375/0.475
l3/cr [−] 0.35 0.35
φ1 [◦] 45 − 60 −
φ2 [◦] 70 − 75 70 − 75
φ3 [◦] 45 − 60 45 − 60

Figure 2: NA1 W2
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2.2 Experimental Datasets

For this study a set of 21 different configurations at a Mach number of M∞ = 0.15 is considered. In Table 2, the
available combinations of angle of attack α, angle of sideslip β as well as the control surface deflections ηlevcon and
εslats are listed. For each considered configuration, there exist at least four distinct datasets in the angle of attack range
of α = 0◦ − 40◦.

Table 2: Available datasets per configuration with respect to angle of attack α, angle of sideslip β and control surface
deflections ηlevcon and εslats. All datasets refer to a Mach number of M∞ = 0.15.

NA1 W1 NA1 W2
α [◦] 0 − 40 0 − 40
β [◦] 0/5 0/5
ηlevcon [◦] − 0/15/30
εslats [◦] 0/22.5 0/22.5

2.3 Data Acquisition

The datasets used in this study are the results of experiments by Pfnür et al., which were conducted in the course of a
common research program of Airbus Defence and Space (Airbus DS), the German Aerospace Center (DLR) and the
Technical University of Munich (TUM) [17, 18]. Moreover, the geometries are embedded in the NATO AVT-316 task
group, where two distinct configuration types are investigated in detail [16, 19, 21, 22].
The experiments have been carried out in the Göttingen-type low-speed wind tunnel (W/T) A at the Chair of Aerody-
namics and Fluid Mechanics of TUM, featuring a test section size of 1.8 m × 2.4 m × 4.8 m (height × width × length).
Aerodynamic forces and moments were acquired by an internal six-component strain-gauge balance with a sampling
frequency of fmeas = 800 Hz over the period of tmeas = 10 s. Pfnür et al. additionally provided repeatability measure-
ments of the applied test setup, where their results showed ∆CD = ±0.0035, ∆CL = ±0.0051, ∆Cm = ±0.0017 and
∆Cl = ±0.0005 [17, 18].
In Figure 3, the setup of the wind tunnel models, for which the results will be discussed in section 4, are depicted.

(a) F2 xx7052 STLong (b) F3 527052 STLong (c) F3 607560 STShort

Figure 3: Experimental setup of the wind tunnel models.

3. Prediction Model

In the following section, a detailed introduction of the proposed hybrid neural network (HNN) is given. In the second
part, the applied process of hyperparameter optimization is described. Necessary preprocessing steps are briefly out-
lined in the third part of the section, followed by the network training process. The definition of error and performance
quantification of the trained HNN concludes this section.

3.1 Hybrid Neural Network

Hybrid neural networks are combinations of conventional neural network architectures, described e.g. by Yuan et al.,
and can be used to combine the benefits of convolutional neural networks (CNN) with additional inputs by a multi-layer
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perceptron (MLP) [23, 24].
In Figure 4, the architecture of the HNN is depicted. The well-known image recognition capability of a CNN architec-
ture is used to identify the current aircraft configuration [25]. After the propagation through a number of convolutional
layers, the compromised geometry information is combined with experimental setup parameters and further passed
through a conventional MLP with a number of hidden layers to the final prediction of an integral aerodynamic coeffi-
cient.
The input image of the configuration planform is propagated through a series of convolutional layers. A convolu-
tional layer consists of a two-dimensional convolution followed by a max-pooling operation. The output after the
max-pooling operation is passed through an activation function, where a leaky rectified linear unit (LeakyReLU) func-
tion serves system-wide as the used activation function [26, 27]. The activated layer output is further normalized by
so-called layer normalization, which helps to reduce training time by normalizing the activities of the neurons within
the network [28]. After the passing of all convolutional layers, the final output size cout ×wout × hout is transformed into
a vector size (cout ·wout · hout) × 1, where cout refers to the number of output channels and wout & hout refer to the output
image dimensions.
In the following sequence, the flattened image vector is concatenated with a set of input features. These input features
include the wind tunnel flow parameters Mach number M∞ and Reynolds number Re, the aspect-ratio AR as additional
geometrical input, the angle of attack α and angle of sideslip β as well as the control surface deflections ηlevcon, εslats

and δ f laps. It shall be noted that the current configurations only feature deflections for levcon and slat devices (see
section 2, Table 2 and Figure 5a). The input feature for trailing edge flap devices is added for maximum flexibility of
the prediction model with respect to future aircraft configurations, which may include flaps as control surfaces.
The fully connected layer is further passed through a number of hidden layers, where again, each neuron is activated
with the LeakyReLU function. In the final layer, all neutrons are concentrated into the final output layer, where the
integral aerodynamic coefficient is predicted.

Planform
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Ma

Convolutionlayers

Fully connected
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Input 
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�
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Hidden layers
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Figure 4: Schematic architecture of the proposed hybrid neural network (HNN).

3.2 Hyperparameter Optimization

The fine-tuning of the HNN is performed by a hyperparameter optimization with the Optuna framework [29]. Optuna
is a define-by-run optimization framework, particularly developed for hyperparameter optimization of neural networks.
Additionally, key elements of the software are the efficient implementation and the versatile architecture, which enables
an easy setup of the optimization runs. Optuna implements a Tree-structured Parzen Estimator (TPE) algorithm with
an additional pruning mechanism. Pruning itself can be seen as an early-stopping method, where the algorithm detects
automatically if the current trial shows promising results compared to a set of earlier trials or if the current trial should
be canceled and another trial with a new set of hyperparameters should be started [29].
The optimization run covered a total number of 250 trials, where 192 trials were pruned early. In Table 3, the most
important hyperparameters of the HNN are listed.
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Table 3: Overview of HNN hyperparameters.

Hyperparameter
Initial learning rate 0.001

Batch size 16
Convolutional layers 3

Number of conv channels 10
Dimension of hidden layers 135

Hidden layers 14

3.3 Data Preprocessing

To enable future flexibility with respect to different configurations or datasets, a preprocessing step is necessary before
starting the training algorithm. In particular, all experimental data needs to be combined in one uniform spreadsheet.
In Table 4, the header of this spreadsheet is depicted. This simplicity enables the user to easily add other configurations
at various flow conditions to further expand the capabilities of the prediction tool. Additionally, for each configuration,
an image of the wing planform is needed to be saved within the spreadsheet. This image should be in the Portable
Network Graphics-format. Due to memory and performance concerns, the image resolution or pixel size will be scaled
to 256 × 384 pixels before passing it to the HNN. In Figure 5a, a sample of a wing planform is shown. Additionally,
the levcon and slat control surfaces, corresponding to ηlevcon and εslats in Table 4, are marked. In Figures 5b and 5c, the
deflected control surfaces on the physical model are shown.

Table 4: Preprocessed training data spreadsheet.

config M∞ Re AR α β ηlevcon εslats δ f laps CL Cm
...

...
...

...
...
...

...
...

...
...

...

(a) Control surfaces (b) Deflected levcon ηlevcon = 30◦ (c) Deflected slat εslats = 22.5◦

Figure 5: Control surface definitions.

3.4 Training of the Neural Network

Prior to the training, four configuration and their respective datasets are excluded from the total training process. These
four configurations will serve as testing datasets, where the results will be shown in section 4. Further, the remaining
dataset is split into a training and a validation set, where 80% of the data will be used for training and 20% will be
used as validation and monitoring data. Additionally, the so-called dropout technique is employed during the training
process of the network [30]. Dropout prevents units in a neural network from co-adapting too much, which as a result,
prevents overfitting. The key idea is to randomly drop neurons and their connections from the neural network during
training time, wherein the current case, the dropout rate is set to p = 0.25.
By monitoring the losses during the training process, an early stopping method in combination with a so-called learning
rate scheduler can be applied. The algorithm detects plateaus of the validation loss during training. If the validation
loss does not reach a new minimum value within a predefined number of patience epochs, the learning rate is adjusted
by lrnew = 0.1 · lrold. A minimal learning rate of lrmin = 10−6 is defined. In case the new learning rate does not result
in a further reduction in the validation loss and the minimal learning rate is reached, the early stopping method will
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terminate the training process before reaching the maximum number of training epochs.
The mean squared error (MSE) per epoch is defined as the sum of the mean squared error per batch divided by the
total number of batches (Equation 1). In Figure 6, the convergence of the training and validation losses for a different
number of early stopping patience epochs are shown.
Figure 6a with patience = 0 epochs is already terminated after 8 epochs, where no convergence and proper training of
the neural network is shown. A set patience of 10 epochs converges steadily towards a MSE of 10−4 and is terminated
at ≈ 180 epochs before entering a training state of overfitting, where the neural network is adapting to the training data
without improving on the randomly selected validation set. This behavior of overfitting can be seen in Figures 6c -
6f, where the training and validation losses are separating from each other and the validation loss stagnates at a level
whereas the training loss further decreases with increasing epochs. As a result of this convergence study, the optimal
number of patience epochs has been defined as 10 for the lift coefficient prediction. Following the same analysis and
study, the training processes for the pitching moment coefficient predictions have shown an optimal number of 30
patience epochs.

MS E =
∑n.o.b.

i=0 MS Ebatch

n.o.b.
, n.o.b. =̂ number o f batches (1)
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(f) Patience = 50 Epochs

Figure 6: Convergence trends of training and validation losses with different learning rate scheduler patience epochs.

4. Results

In the following subsections, the results of the prediction of different aerodynamic coefficients for the previously
introduced delta wing configurations will be discussed. In Figure 7, the training and validation losses for lift coefficient
CL in Figure 7a and the pitching moment coefficient Cm in Figure 7b are shown.
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(a) CL - Training
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Figure 7: Mean squared error over number of training epochs.

4.1 Double Delta Wing - F2 xx7052 STLong

In the following, the results of aerodynamic coefficient predictions for an exemplary double delta wing configuration
are presented. The F2 xx7052 STLong configuration and its geometric properties are shown in Figure 8. The config-
uration embodies a long strake section, l2/cr = 0.35 as described in Table 1, with a strake sweep angle of φ2 = 70◦

and main wing sweep angle of φ1 = 52.5◦. The resulting coefficient slopes will always be presented for an angle of
sideslip β = 0◦ on the left-hand side and for β = 5◦ on the right-hand side, respectively. Experimental validation
results, as described in section 2.3, are depicted as dotted lines with indication markers at the experimental data points.
Additionally, the corresponding derivatives of the aerodynamic coefficients are plotted below the initial aerodynamic
coefficient plot. It shall be noted that the primary focus lies on the prediction capability of the introduced hybrid neural
network. A detailed discussion on the aerodynamic behavior and characteristics can be found in the publications of
Pfnür et al. [17, 18].

cr [m] 0.67
s [m] 0.403

S re f [m2] 0.311
Λ [−] 2.09
lµ [m] 0.46
φ2 [◦] 70
φ3 [◦] 52.5

Figure 8: Double delta wing F2 xx7052 STLong configuration.

In Figure 9, the HNN lift coefficient predictions show very good agreement when compared to experimental data. The
predicted slope for no control surface deflection ε = 0◦, η = 0◦ at β = 0◦ shows some minor deviation in the angle of
attack range between α = 4◦−20◦, which is also represented in the slope of CLα. Additionally, the experimental outlier
at α = 28◦ also affects the prediction accuracy of CLα in that region. The HNN predicted slopes for an employed slat
deflection ε = 22.5◦, η = 0◦ represent experimental data very accurately with only small variances for low to mod-
erate angle of attack regions. Whereas the left-hand slopes show excellent agreement in the highly non-linear region
of α = 30◦ − 40◦, the right-hand slopes at β = 5◦ show some deviations up to the magnitude of ≈ 10%. Moreover,
it can be seen that although trends in the slopes of CLα can be predicted, absolute values can not be reproduced perfectly.

In Figure 10, the corresponding pitching moment coefficients are shown. Only the prediction at β = 0◦ with slat
deflection shows good agreement with experimental results, especially below α = 20◦. On the one hand, the prediction
for the undeflected slat ε = 0◦ at β = 0◦ shows problems to reproduce the nose-down pitching moment for low angles
of attack and both predicted slopes for β = 5◦ underestimate the pitching moment coefficient as a whole. On the other
hand, if one compares the Cmα slopes in Figure 10, it can be seen that the characteristic trends are reproduced very
well, where also absolute values match fairly well with experimental datasets. This comparison shows that although the
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Figure 9: Lift coefficient and corresponding derivative predictions of the F2 xx7052 STLong configuration.

absolute values for Cm are not represented very well with HNN predictions, the underlying neural network is capable
of learning and reproducing aerodynamic characteristics.
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Figure 10: Pitching moment coefficient and corresponding derivative predictions of the F2 xx7052 STLong configura-
tion.

4.2 Triple Delta Wing - F3 527052 STLong

In section 4.2, the results for the triple delta wing F3 527052 STLong configuration are presented. The wing planform
and geometric properties are shown in Figure 11. The configuration embodies a levcon sweep angle of φ1 = 52.5◦,
again a long strake section, l2/cr = 0.35, with a strake sweep angle of φ2 = 70◦ and main wing sweep angle of
φ1 = 52.5◦. Figures 12 and 13 show four HNN predicted slopes and four experimental datasets per angle of sideslip
each. Single slopes correspond to certain control surface deflections, which are marked in the legends below the plots.

cr [m] 0.724
s [m] 0.444

S re f [m2] 0.366
Λ [−] 2.15
lµ [m] 0.49
φ1 [◦] 52.5
φ2 [◦] 70
φ3 [◦] 52.5

Figure 11: Triple delta wing F3 527052 STLong configuration.
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The HNN predicted lift coefficient slopes in Figure 12 altogether show a very good representation of experimen-
tal slopes, with deviations below 15%. This reproducibility is also depicted in the derivative CLα, where it can be seen
not only aerodynamic characteristics but also absolute values are fairly well matched over the whole angle-of-attack
range.
In contrast to the lack of accuracy of the pitching moment coefficient predictions for the double delta wing (Figure 10),
the good agreement of prediction data with experimental data for the moderately swept triple delta wing F3 527052
STLong continues, when comparing slopes in Figure 13.

Trends and absolute values of HNN predicted Cm and Cmα are matched fairly well for both angles of sideslip and
all kinds of control surface deflections. The predicted derivative Cmα shows some bigger deviations at high angles of
attack, especially for the slope of ε = 0◦, η = 30◦ in Figure 13a, but overall the hybrid neural network shows great
prediction capability for this type of configuration.
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Figure 12: Lift coefficient and corresponding derivative predictions of the F3 527052 STLong configuration.
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Figure 13: Pitching moment coefficient and corresponding derivative predictions of the F3 527052 STLong configura-
tion.

4.3 Triple Delta Wing - F3 607560 STShort

In section 4.3, the results for the triple delta wing F3 607560 STShort configuration are presented. The wing planform
with its main geometric properties are shown in Figure 14. The configuration embodies a levcon sweep angle of
φ1 = 60◦, and a short version of the strake section with l2/cr = 0.25 with a sweep angle of φ2 = 75◦ and main wing
sweep angle of φ1 = 60◦.

cr [m] 0.8
s [m] 0.323

S re f [m2] 0.297
Λ [−] 1.4
lµ [m] 0.54
φ1 [◦] 52.5
φ2 [◦] 70
φ3 [◦] 52.5

Figure 14: Triple delta wing F3 607560 STShort configuration.
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As for the triple delta wing in section 4.2, Figures 15 and 16 show four HNN predicted slopes and four experi-
mental datasets at different control surface deflections per angle of sideslip each.
Results for the lift coefficient CL predictions and its derivative CLα show a more or less perfect match up to high angles
of attack in comparison to experimental data. Pitching moment coefficient slopes in Figure 16 are also well predicted
for low and moderate angles of attack. At higher angles of attack, the deviations from the HNN with respect to the
experimental data increase to approximately 15 − 25%, which is still in good agreement. Further, the aerodynamic
trends and characteristics are still preserved.

Looking at the HNN predicted slopes of Cmα, the results at β = 0◦ in Figure 16a show well-matched trends and
only bigger variances at high angles of attack. Especially the predicted slopes at β = 5◦ in Figure 16b show larger
deviations at higher angles of attack α > 30◦ in comparison to experimental results.
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Figure 15: Lift coefficient and corresponding derivative predictions of the F3 607560 STShort configuration.

5. Error Quantification

The presented coefficient slopes in section 4 show that the introduced HNN is capable of predicting aerodynamic
coefficients for unknown multiple swept delta wing configurations. In the angle-of-attack range of α = 0◦ − 40◦, the
maximum deviation of the HNN predicted lift coefficient is below 15% for all possible control surface deflection and
angle of sideslip combinations. If data is considered only for the range of α = 20◦ − 40◦, the predicted lift coefficients
are all within a 10% range compared to experimental data, which is considered as a very good agreement.
Overall error quantification for the predictions of pitching moment coefficients is more difficult since, at very small
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Figure 16: Pitching moment coefficient and corresponding derivative predictions of the F3 607560 STShort configura-
tion.

numbers, deviations can quickly show high percentage-wise errors. If, for example, an experimental value of Cm,exp =

0.05 is compared to a predicted coefficient of Cm,pred = 0.025, the error is at 50% although the absolute error may
be very small. Additionally, since especially the range of moderate to high angles of attack is of great interest for
these types of configurations, only data for α = 20◦ − 40◦ is considered in the pitching moment coefficient error
quantification.
On the one hand, as shown in Figure 10, the HNN predictions show great discrepancies for the pitching moment
coefficient of the double delta wing configuration in comparison to wind tunnel data, which is especially obvious for
the angle of sideslip of β = 5◦ in Figure 10b. On the other hand, the pitching moment coefficient can be predicted
very well for both triple delta wing configurations presented in sections 4.2 and 4.3. For the F3 527052 STLong
configuration in section 4.2, the maximum deviation of all considered pitching moment coefficients are below 60%
in comparison to experimental data and are still considered well predicted when objectively analyzing the coefficient
slopes. The predicted pitching moments for the F3 607560 STShort configuration presented in Figure 16 show a
maximum deviation of 25%, which is considered a very good agreement with respect to experimental data.

6. Conclusion

The prediction capabilities of a hybrid neural network with respect to the prediction of aerodynamic coefficients and
their characteristic slopes over a wide range of angles of attack for multiple swept delta wing configurations have been
investigated. Experimental wind tunnel results of generic double and triple delta wing configurations served as underly-
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ing training, validation and test datasets. These generic wing planforms embody a wide range of different leading-edge
sweeps and cover a wide range of different low aspect-ratio delta wing configurations.
The final test dataset has been excluded from the training data to fully analyze the prediction performance of the trained
neural network on totally new unseen datasets. The results show that especially the lift coefficient CL can be predicted
with high accuracy in the whole angle-of-attack range for both triple and double delta wings. The aerodynamic char-
acteristics associated with the derivative CLα can also be reproduced fairly well. But it has to be noted that although
characteristics and trends are predicted well, absolute values of derivatives can differ significantly from experimental
values.
Whereas the neural networks show a problem at the prediction of the pitching moment coefficient Cm for a double delta
wing configuration, it reproduces Cm and its characteristic Cmα with very high accuracy for both presented triple delta
wings.
With the addition of experimental datasets of other delta wing configurations, exceeding the currently used generic
platform, also at different Mach numbers M∞, the prediction capabilities and flexibility of the presented neural net-
work are further improved. Fast and accurate predictions of coefficient slopes and aerodynamic characteristics could
be beneficial tools in the preliminary aircraft design phase.
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