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Abstract 
The single expansion ramp nozzle often experiences poor thrust performance at overexpansion conditions. 

Fluidic injection presents a promising solution to mitigate this issue, although there lacks an effective 

method to determine injection parameters under varying nozzle operating conditions. This paper presents 

a novel residual autoencoder surrogate model to fast calculate the pressure and temperature profiles on 

nozzle surfaces. Considering the characteristics of the nozzle flowfield, the model is designed to predict 

the difference between the profiles with and without the injection. This approach boosts the model's 

predictive accuracy by 20% and enhances its transferability. Furthermore, the gradient-based optimization 

algorithm is applied to the model to discern optimal injection parameters under eleven distinct nozzle 

operating conditions whose nozzle pressure ratios range from 12 to 40. The results indicate a successful 

increase in average thrust coefficients by 0.76%, demonstrating the effectiveness of the proposed approach. 

1. Introduction

The single expansion ramp nozzle (SERN) is an important component for wide-speed-range aerospace vehicles [1]. It 

generates most of the engine thrust and is also critical to the vehicle’s pitching moment [2]. Typically, the nozzle 

contour is designed for high-altitude and high-speed cruise flight conditions, where the exceptionally low ambient 

pressure induces a large design nozzle pressure ratio (NPR). To make the gas fully expand under such conditions, the 

nozzles of high-speed vehicles are designed with a large geometric area ratio (AR). However, when the nozzle operates 

at a lower NPR during acceleration and deceleration, the large AR may lead to overexpansion and compromised 

performance. 

The fluidic injection is one of the most promising solutions to overexpansion thanks to its efficiency, robustness, and 

capability to integrate with the engine's secondary air system [3,4]. Numerous studies have been conducted since the 

early 2000s to examine how injection parameters, such as location, intensity, and injection angle, influence nozzle 

performance [3-6]. During the acceleration and deceleration process, the flight altitude and speed are changing 

constantly, causing the nozzle’s operating conditions to change as well. As a result, the optimal injection parameters 

vary under different flight conditions. To optimize overall performance, these parameters should be collectively 

considered and optimized.  

However, there is currently no practical method to design and optimize injection parameters under multiple nozzle 

conditions due to high computational demands. Although there are fast prediction tools for injection flowfields based 

on the method of characteristics (MOC) [7], they fail to accurately simulate the separation zone around the injection 

slot, a crucial factor affecting injection performance. Plus, the MOC is difficult to predict the wall temperature profile, 

which is important to guide the cooling design of the nozzle [8]. Therefore, the Reynold averaged Navier-Stokes 

(RANS) simulation is necessary to obtain injection performance for each nozzle operating condition, which will bring 

a serious computation burden to the multi-condition optimization. 
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In recent years, machine-learning-based flowfield prediction models have become useful tools to replace time-

consuming RANS simulations in the optimization process [9-13]. They act as a surrogate model to provide a fast 

evaluation of sample performance and gradients for the optimization algorithm. Meanwhile, they differ from other 

surrogate models in that they can provide samples’ flowfields during the optimization process, allowing designers to 

understand the optimization process and mechanism. The method has been proven to be effective for various 

optimization tasks but has not been applied to the optimization of a fluidic injection nozzle. 

The present paper applies the state-of-art machine learning technique to predict nozzle injection flowfields and 

optimize injection parameters. The supersonic nature of the nozzle flowfield is considered to improve the machine-

learning prediction model. Given that the injection predominantly influences the flowfield in the vicinity and 

downstream of the slot, the majority of the nozzle flowfield remains unaltered post-injection. Thus, a residual 

autoencoder is designed to predict the difference that the injection brings to the non-injection baseline flowfield. 

Considering that the mechanism of the injection is similar under different nozzle conditions and injection parameters, 

the model is expected to exhibit better accuracy and generalizability. 

At the same time as the nozzle flowfields are predicted with the model, the gradients of injection parameters to nozzle 

performance can also be cheaply obtained through the network with a back-propagation algorithm. Then, the gradients 

are used in the sequential least squares programming method to find the best combination of injection parameters. 

2. Theory analysis of fluidic injection 

Many researchers have studied the fluidic injection method to improve the thrust of a SERN, and have gained some 

understanding of its mechanism [5,6]. Figure 1 depicts an over-expanded SERN with a fluidic injection at the cowl 

surface. The pressure profiles on the ramp and cowl surfaces of the SERN with and without the fluidic injection are 

also shown in Fig.1. 

 

 

Figure 1: Flowfield and pressure profiles of a SERN with fluidic injection 

 

As shown in Fig. 1, the injection forms a barrier against the mainstream, and a separation zone appears upstream of 

the injection. The separation consists of two vortices due to the shear stress, the primary upstream vortex (PUV) 

rotating clockwise and the secondary upstream vortex (SUV) rotating counterclockwise. The upstream vortex is like a 

wedge inserted into the mainstream, causing an oblique shock wave in front of the separation point. The shock wave 

deflects the mainstream and increases its pressure, forming a high-pressure zone on the cowl surface. Meanwhile, the 

shock wave propagates towards the opposite ramp surface and also forms a pressure peak on it. Then, the injection 

plume is forced to deflect and adhere to the wall, and during this process, expansion waves emerge in the mainstream. 

They gradually reduce the pressure peak formed by the shock wave when they hit the ramp. On the cowl surface, a 

clockwise rotating primary downstream vortex (PDV) is formed behind the slot, where the pressure is lower than the 
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baseline. At the end of the separation, the mainstream reattaches and another oblique shock wave occurs to turn the 

mainstream direction and restore the pressure. 

The effect of fluidic injection on nozzle performance can be concluded into two aspects: 

 The reaction force generated by the injection itself; 

 The force generated by integrating the influence of injection on the wall pressure profile. 

The two aspects of the effect can be analyzed quantitatively. The thrust generated by the nozzle can be expressed as 

the integral of the momentum flux through the throat and on the expansion wall surfaces: 
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where Φ8 is the momentum flux through the nozzle throat. Suppose the new pressure profile after introducing fluidic 

injection is p’, and the new thrust is: 
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where Φinj is the momentum flux through the injection slot. Since the injection won’t influence upstream in a 

supersonic flowfield, we have Φ’8 = Φ8.  

The x-direction thrust coefficient is used as the indicator of nozzle performance. For non-injection condition, it is 

defined as: 
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where m8 is the mass flow rate through the throat, and p7
*, T7

* are the total pressure and temperature at the nozzle inlet. 

For a nozzle with fluidic injection, the thrust coefficient is usually defined as: 
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where Finj,id is the ideal thrust of the fluidic injection which is calculated similarly to equation (4). From equations (1) 

and (2), it can be derived that if the injection effect is greater than the ideal thrust of the injection, i.e., 
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Then, the fluidic injection will have a positive influence on the nozzle’s performance. 
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3. Database establishment 

In order to construct the machine-learning surrogate model for the flowfields of fluidic injection nozzles, a database 

has to be established to train the model in advance. The database contains flowfields with different nozzle conditions 

and injection parameters so that the trained model can be applied to optimization tasks with different nozzle conditions, 

thereby achieving the goal of interactive fast optimization. This section presents the sampling, calculation, and storage 

process of the database. 

3.1. Sampling of nozzle and injection condition parameters 

In the database, the geometry of the nozzle contour is fixed to a single ramp expansion nozzle designed for cruise Mach 

number Ma = 4.0 as shown in Fig. 2. The flight Mach number (Ma), flight height (H), nozzle pressure ratio (NPR), and 

total inlet temperature (T7
*) are selected as the four parameters of the nozzle operating condition. Another four 

parameters are selected to describe the injection condition. They are the injection location (r), the injection angle (α), 

the secondary pressure ratio (SPR), and the total inlet temperature of the injection (Ts
*). The injection location is defined 

as the proportional station on the cowl flap surface, and the injection angle is defined as the angle between the injection 

and the tangent of the cowl flap surface. The SPR is defined as the ratio between injection total pressure and mainstream 

inlet total pressure. The slit width is fixed to 2 cm. 

 

 
Figure 2: Nozzle geometry and the definition of the location and angle of the injection 

 

The variation range of the eight nozzle and injection conditions are listed in Table. 1. 

 

Table 1: Range of the nozzle and injection conditions 

 Nozzle operating conditions (300) Injection conditions (300×24) 

 Ma H NPR T7
* r α SPR Ts

* 

lower boundary 1.5 15 km 3 + 6 × (Ma – 1.5) 900K 0.10 30° 0.1 300 

upper boundary 3.5 20 km 10 + 10 × (Ma – 1.5) 2000K 0.95 150° 0.9 300 + 0.6 × (T7
*– 1.5) 

 

The Latin hypercube sampling (LHS) method [14] is used to generate 300 nozzle operating conditions. For each nozzle 

operating condition, 24 injection conditions are obtained with random uniform sampling. In total, there are 7200 groups 

of parameters in the database. 

3.2. CFD methods 

The CFD simulations are conducted to calculate the non-injection flowfields under the 300 nozzle operating conditions 

and flowfields with 24 injection conditions for each nozzle operating condition.  

The two-dimensional, steady, and compressible Reynolds-averaged Navier–Stokes (RANS) equations are solved with 

the finite volume method. The total variation diminishing interpolation framework is used for spatial discretization, 

and the implicit scheme is used for time integration. The two-equation realizable k-ε model is used to model the 
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turbulence in the RANS equations. This model is commonly used for supersonic flow, especially secondary injection 

into a supersonic crossflow [15].  

The simulations are conducted on the structured mesh. The inlet boundaries of the nozzle are specified with the given 

nozzle operating condition, and the boundaries for the external flow are determined by the characteristics of the 

Riemann invariants. The no-slip adiabatic condition is imposed on all the wall surfaces. The secondary flow passages 

are not included in the computation region, and the injection is introduced by applying the total pressure – total 

temperature boundary condition at the exit plane of the injection slot. The injection angle is set by imposing the velocity 

direction of the boundary condition. This method can reduce the mesh complexity and is used in a similar study [16].  

 The simulation methodology is validated based on the experimental data for a fluidic thrust vectoring two-dimensional 

nozzle contributed by Waithe and Deere [17]. In their study, the secondary injection is introduced in the divergent 

section on the upper nozzle surface, inducing oblique shock waves and flow separation. The simulation was conducted 

using three meshes with 16 thousand, 30 thousand, and 55 thousand cells. The wall pressure distributions on the upper 

surface for different meshes are depicted in Fig. 3 together with the experimental result obtained in Ref. [17]. It is 

demonstrated that the pressure distributions are similar despite the use of different meshes, indicating that the coarse 

mesh is sufficient for simulation. 

 

 
Figure 3: Upper surface wall pressure profiles with different mesh sizes 

3.3. Postprocess  

As mentioned in Section 2, the thrust coefficient of the nozzle can be obtained with the pressure profile (p) and the 

momentum flux through the nozzle throat (Φ8). Meanwhile, the temperature profile (T) is important to guide the design 

of the cooling system. Therefore, the pressure, temperature profiles, and momentum flux through the nozzle throat are 

stored in the database and used in the following prediction model. 

Since the injection locations are different among the samples, the meshes are different as well. To ensure the 

consistency of the data, the CFD simulated pressure and temperate fields are interpolated to a series of probe points on 

the ramp and cowl surfaces that is equidistant in the x-direction. Then these surface points are linked at the throat to 

form an array of 2 × 234, where the first dimension stands for the two flow variables, i.e., the pressure and the 

temperature, and the second dimension stands for the probe positions.  

In addition, both the injection parameters and the profiles are converted to nondimensional for better training of the 

model. For the parameters, this is done with the upper and lower boundary of each parameter; while for the profiles, 

the total conditions at the nozzle inlet are used. The non-dimensional values can be written as: 
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4. Residual autoencoder model  

This section presents the machine-learning-based prediction model for pressure and temperature profiles on the nozzle 

surface. The purpose is to generate the profiles under a given set of injection parameters and the non-injection profiles. 

The most straightforward approach involves directly predicting the injected profiles from the inputs, as depicted in Fig. 

4 (a). However, due to the supersonic characteristics of the flowfield, a substantial part of the injection flowfield is the 

same as the non-injection flowfield. To account for this, we introduce a residual prediction model. This model is 

intended to predict the differences between the injection and non-injection profiles, as illustrated in Fig. 4 (b). 

 

 

(a) Framework of the direct prediction model 

 

(b) Framework of the residual prediction model 

Figure 4: Frameworks of the models 

4.1. Model architecture  

In the present paper, the residual prediction model is implemented with an autoencoder framework. Figure 5 describes 

the architecture of the residual autoencoder and the method to obtain the thrust coefficient. The model consists of two 

components: the encoder and the decoder. The encoder accepts the non-injection pressure and temperature profiles 

( ,p T ) as inputs, extracting a low-dimensional representation (z). The decoder then combines z with the injection 

parameters ( *, ,SPR, sr T ), generating the differences in the profiles ( ,p T  ). Then the differences are added to the 

non-injection profiles and get the pressure and temperature profiles under the given injection condition.  

The one-dimensional convolution layers are utilized to construct both the encoder and the decoder. The encoder 

comprises three blocks of layers, each containing a 1D convolution layer with a kernel size (k) of 3 and a stride (s) of 

2, as well as an average pooling layer with the same kernel size and stride. The channel amounts after each block are 

32, 64, and 128, respectively. A densely connected layer then links the flattened output of the encoder to an 8-

dimensional latent vector, z. The decoder similarly consists of three blocks, each including a linear interpolation layer 

for up-sampling the 1D feature map and a convolution layer with a stride of 1. The channel amounts of each feature 

map are 512, 256, 128, and 128.  The network concludes with another convolution layer with a stride of 1 to compress 

the last feature map to two channels. A LeakyReLU [18] function, with a slope of 0.2, is employed as the activation 

function. The network contains a total of 611 498 trainable parameters. 
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Figure 5: The architecture of the residual autoencoder and method to obtain thrust coefficient 

 

There are several extra calculations to calculate the thrust coefficient (Cf) from the predicted profiles with equation (2). 

In the equation, the momentum flux through the throat (Φ8), and the geometry values (n, Γ) can be directly obtained 

from the non-injection flowfield, while the x-directional momentum flux through the injection slot (Φinj) needs to be 

calculated from other variables with the isentropic relationship as follows: 
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where Mas is the Mach number at the exit plane of the injection slot, and As is the exit plane area. They can be written 

as: 
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In equations (8) to (9), the ps
* and Ts

* are the total inlet condition of the injection. ps is the static pressure at the exit 

plane, which is obtained by interpolation of the predicted pressure profile. w is the width of the slot, and α is the 

injection angle. 

4.2. Training process 

The aforementioned residual autoencoder is trained on the database established in Section 3. The database is divided 

into a training part and a testing part. The former contains the samples corresponding to 270 nozzle operating conditions, 

while the latter contains the other samples.  
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The loss function is selected to be the mean square error (MSE) between the model-predicted and CFD-simulated 

pressure and temperature profiles. The training hyperparameters are selected as follows. A fixed batch size of 16 is 

applied, and the Adam algorithm [19] is selected as the optimizer. The warmup strategy is employed to increase the 

learning rate from 5 × 10−5 in the first 20 epochs so that instability at the beginning of the training process can be 

avoided. Then the learning rate is reduced by an exponential function with a base of 0.95. 

The training process is run three times to cross-validate the model. In each run, 10% of the samples are randomly 

selected from the training database as validation, and each run starts with random initialization of weights and biases 

in the model. During training, the losses on training and validation sets are monitored to avoid overfitting, and all three 

runs converge after 300 epochs. 

4.3. Model performances 

The model is tested on the samples corresponding to the 30 nozzle operating conditions in the testing database. For 

each testing nozzle operating condition, the non-injection flowfield is calculated with CFD and input into the residual 

prediction model. Then the pressure and temperature profiles under the 24 injection conditions are generated with the 

model and compared with the CFD-simulated results. The thrust coefficients can also be predicted with the model and 

are also compared. 

To illustrate the advantage of the proposed residual model, a baseline model is set up to have the same backbone, but 

to directly predict the injection profiles rather than the difference. The best prediction performances of the two models 

on the testing database are shown in Table 2. 

 

Table 2: Prediction errors of the direct and residual prediction model 

 
MSE of dimensionless 

pressure profiles 

MSE of dimensionless 

temperature profiles 

Absolute errors of 

thrust coefficients 

direct prediction model 0.00240 0.00687 0.005% 

residual prediction model 0.00192 0.00637 0.003% 

 

It can be seen in Table 2 that the residual model reduces 20.0% and 7.2% of prediction errors for pressure and 

temperature profiles, respectively. It also raises the prediction accuracy of thrust coefficients by 0.002%. Figure 6 

shows the predicted pressure and temperature profiles on the ramp and cowl surfaces of 12 randomly selected test 

samples. The colored dashed lines are profiles predicted with the model, and they match well with the CFD results that 

are shown in grey solid lines.  

 

 

Figure 6: The residual-model-predicted and CFD-simulated pressure and temperature profiles 

 

To further illustrate the advantage of the residual prediction model, it is tested in a double-slot case. In this case, two 

injection slots are located at r = 0.2 and r = 0.7. The upstream injection has an SPR = 0.5, Ts
* = 600K, and α = 90°, 
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while the downstream injection has an SPR = 0.7, Ts
* = 400K, and α = 90°. The CFD-simulated flowfield is depicted 

in Fig. 7. 

 

 

Figure 7: The flowfield of the double slot test case 

 

The direct and residual prediction models are used to predict the pressure profiles of the double-injection case by 

calling the model twice during the prediction: for the first call, the non-injection profiles and the upstream injection 

conditions are input into the model; for the second call, the profiles output from the first call is input into the model 

again with the downstream injection conditions, generating the double-injection result.  

Figure 8 illustrates the profiles predicted with the model. The results from the direct model are on the left, while the 

results of the residual model are on the right. The red and blue lines are the model-predicted results after the first and 

the second call, respectively, and the black line is the CFD-simulated ground truth. 

 

 

 (a)  pressure profiles predicted by the direct model  (b)  pressure profiles predicted by the residual model 

Figure 8: Pressure profiles of the double-injection case on both surfaces 

 

During training, all of the profiles input to the model are without injection, but in this case, the input profile (the red 

line) of the second call is different from those in the training process, since it is already influenced by one injection. In 

Fig.8 (a), the direct model failed to predict the double-injection profiles. It ignores the upstream injection and has an 

overall offset. However, in Fig.8 (b), the residual model manages to generate a reasonable result with correct pressure 

distribution.  

It proves that the residual model can learn the influence region of an injection, and can neglect reluctant information 

in the input profiles. This guarantee that the residual model has a better transfer ability than the direct prediction model. 
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5. Model-based multi-condition optimization 

As mentioned above, the fluidic injection offers a practical way to enhance SERN’s performance under overexpansion. 

During acceleration and deceleration of the vehicle, the nozzle always works in a wide range of flow conditions, thus, 

it is important to optimize the injection parameters to seek a better overall nozzle performance under such conditions.   

In the above study, a profile prediction model is constructed which can act as a surrogate model to give fast prediction 

of the nozzle pressure and temperature profiles with fluidic injection. With the help of the proposed model, it is possible 

to accomplish the multi-condition optimization within minutes when combining it with the gradient optimization 

algorithm.  

5.1. Optimization methods 

One of the advantages to use a surrogate model based on the neural network is that it can easily compute the gradients 

of the optimization objectives with respect to the design parameters [20]. It is realized via the back-propagation 

algorithm, which is the same way the model is trained. 

The neural network consists of many differentiable functions that are connected to form a mapping function from input 

x (i.e., the injection condition parameters) to output f (i.e., the profiles and the thrust coefficients). The mapping 

function can be represented as f = f(x; w) where w are the trainable weights and biases in the neural network. Since the 

network is formed with functions, it can be rewritten as: 

 

   0

1 2 kf f f f x  (10) 

 

where fi is either a linear function or a non-linear activation function, which are combined to formulate the whole 

network. wi are the trainable parameters corresponding to the function fi. During the training process, the gradients of 

the loss function (error measure) L with respect to the parameters are computed using the chain rule: 

 

 
1k i i

i

L L
f f f

w f


 


 
 (11) 

 

The process is known as back-propagation. Then, these trainable parameters can be optimized to minimize the loss 

function. Once trained, the same back-propagation method can be used to compute the gradient of the optimization 

objective with respect to the design parameters as well. This process can be summarized as: 

 

 
2 1k

J J
f f f

x f

 


 
 (12) 

 

where J = J(f) is the objective function, which is the averaged thrust coefficient in this case.  

With the back-propagation algorithm, the gradients can be obtained fast and accurately. Therefore, in the present paper, 

the sequential least squares programming (SLSQP) method in the open-sourced SciPy library [21] is selected to utilize 

the back-propagated gradients to search the design space for the optimal injection parameters under multiple nozzle 

operating conditions.  

5.2. Optimization setups 

In order to have a better overall performance, eleven nozzle operating conditions are sampled through the flight 

envelope for joint optimization. Of the eleven conditions, the flight height and Mach number are evenly distributed 

from 15km to 20km, and from 2.5 to 3.5, respectively. The nozzle pressure ratio (NPR) and total inlet temperature are 

distributed from 12 to 40, and 1 200K to 1 448K, respectively.  

For each nozzle operating condition, a CFD simulation is conducted to obtain the non-injection pressure and 

temperature profiles. These profiles serve as the input to the residual prediction model to calculate the injected profiles 
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and thrust coefficients when given the injection conditions under each nozzle operating condition. Then, the thrust 

coefficients under eleven nozzle operating conditions are averaged and recognized as the optimization objective.  

The injection location, angle, inlet total temperature, and inlet pressure ratio are selected as the design parameters. 

Since it is difficult to change the injection’s geometry configuration during flight, the injection location, angle, and 

inlet total temperature are fixed under the eleven operating conditions. In contrast, the injection’s secondary pressure 

ratio is easier to be varied thanks to the secondary air system, so the SPRs for each . This gives a total of 14 design 

parameters. The framework of the optimization process is depicted in Fig. 9. 

 

 

Figure 9: Framework of model-based multi-condition optimization 

 

The design space of the injection parameters is the same as in Table 1. Due to the poor global searching capability of 

the gradient-based method, a multi-start method is adopted. 50 initial points are selected using the Latin hypercube 

sampling and optimizations are carried out from each point. The best results with the highest thrust coefficient will be 

chosen as the final result. In the optimization, if the initial injection intensity is small, the result will easily enter the 

local optimum where the injections tend to be eliminated. Therefore, the initial values of the SPRs are limited to greater 

than 0.5.  

It is worth mentioning that further increasing the number of operating conditions will only lead to one more CFD 

simulation for each condition, and the time consumption for invoking the prediction model and the optimization 

algorithm is small. 

5.3. Optimization results 

Figure 10 depicts the optimization results for the best case among the multiple starts. The blue solid line indicates the 

thrust coefficients without injection of the eleven nozzle operating conditions, which is the baseline for the optimization. 

The orange solid line indicates the model-predicted thrust coefficients with the optimal injection parameters, and they 

are also verified with CFD which is shown as the black dashed line. The two lines are very close to each other, proving 

the effectiveness of the proposed residual prediction model. In this case, the averaged thrust coefficient is increased by 

0.76%. Since the non-injection thrust coefficient is close to 1, achieving such optimization results within the range of 

NPRs in this optimization case is outstanding. The results also align with the conclusions given in other papers that 

study the injection parameters’ influence [5,6]. 
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Figure 10: Optimization results for the thrust coefficients of eleven nozzle operating condition 

 

Figure 11 shows the changes in the design variables during optimization. From Fig.11 (a), (c), and (d), it is indicated 

that the injection location, total inlet temperature, and the SPRs for all eleven operating conditions are optimized to the 

boundary. Since the excessive SPR may cause the nozzle thrust coefficient to decrease [5], it is probably because the 

upper boundary is too low to obtain the best injection performance.  

 

 

 (a)  Injection location  (b) Injection angle (c) Injection SPRs (d) Injection total temperature 

Figure 11: The design variables during optimization 

 

In all, with the help of the residual autoencoder, the fluidic injection parameters under multiple nozzle operating 

conditions are optimized for the first time. The model is proven to be effective and efficient in optimization, and the 

proposed methodology can be easily applied to other optimization settings according to the engineering need. 

6. Conclusion 

Fluidic injection emerges as a promising solution to enhance the wide-speed-range performance of the single expansion 

ramp nozzle (SERN) system. This paper introduces a multi-condition interactive optimization method for injection 

parameters, leveraging cutting-edge neural network techniques. The key contributions of this study can be summarized 

as follows: 

1) An innovative residual autoencoder that accounts for the nozzle flowfield characteristics is proposed. Given 

that fluidic injection only impacts the flowfield in proximity and downstream of the injection slot, our model 

is designed to predict the differences in pressure and temperature profiles with and without the injection. 

Compared to the direct prediction model, the proposed residual model reduces prediction errors for pressure 

and temperature profiles by 20.0% and 7.2%, respectively. The best prediction error for nozzle thrust 

coefficients is an impressively low 0.003%. Additionally, the model exhibits superior transferability to the 

double-slot test case. 
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2) The residual autoencoder is further employed in the multi-condition optimization for injection parameters. 

Trained on a database of 7500 nozzle flowfields under various nozzle operating conditions and injection 

conditions, the model is coupled with a gradient-based optimization method to identify optimal injection 

parameters under eleven different nozzle operating conditions within the flight envelope. The model can 

provide precise pressure and temperature profiles, along with the thrust coefficient, during the optimization 

process. Concurrently, the gradient of the objective with respect to design parameters is derived from the model 

using the back-propagation algorithm. The optimization process successfully increased average thrust 

coefficients by 0.76% across eleven nozzle operating conditions, with NPRs ranging from 12 to 40. The 

reliability of the model-predicted pressure and temperature profiles is confirmed via CFD. 

Overall, this paper presents a practical methodology for optimizing nozzle thrust across multiple operating conditions. 

It illuminates potential applications of machine learning techniques in the design of aerospace propulsion systems, 

paving the way for future advancements in this field.  
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