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Abstract
In this work an alternative 3-dimensional aeroelastic beam finite element for rapid time-domain flutter
analysis of non-uniform wings equipped with distributed trailing edge control surfaces is presented. The
approach proposed takes advantage of Euler-Bernoulli and De Saint Venant beam theories. The aerody-
namic loads, expressed in time domain, are directly incorporated in the beam element matrices that are
computed from the governing equations weak form, resulting in a simple numerical tool that can be easily
implemented in any beam-based finite element code. The method proposed is validated with commercial
code aeroelastic results of non-uniform lifting structures with and without control surfaces.

1. Introduction

In the last decade the air transportation business have faced an increasing demand by the passengers that have led
to the growth of the daily number of flights and the increase of pollutant emissions; thus, in order to realize a more
sustainable aviation, different technologies have been explored including new aircraft configurations and materials.
Anyway, when novel structural configurations, usually characterized by lightweight requirements, are explored there
is the subsequent need of verifying that the concept is free from aeroelastic instabilities in the desired flight envelope.
Nowadays, a widely used technique to study the aeroelastic behavior of wing structures is based on the Finite Ele-
ment Method FEM, applied to realize the structural model, while the unsteady aerodynamic loads are computed with
the Doublet Lattice Method DLM,2 and the structural and aerodynamic models are connected by means of splines.
Anyway, this kind of aeroelastic model presents relevant computational costs and it is best suited for the verification
phase of the project than for the preliminary aeroelastic assessment of the design. Moreover, aero-servo-elastic time
domain analyses of aeroelastic models in presence of non-linearities are more suitable in order to assess if there exists
any coupling between the flight control system and the aeroelastic behaviour of the structure that can led to undesired
dynamic phenomena.15 A number of works that takes advantage of equivalent beam structural representation and 2D
unsteady aerodynamics, for preliminary aeroelastic analysis, can be found in literature. For instance, in the work of
Palacios and Epureanu10 an UAV model aeroelastic analysis has been carried out with strip theory-based unsteady
aerodynamics and an equivalent beam structural model that takes into account geometric non-linearities. In the work
of Ajaj et al.1 a telescopic span morphing wing concept has been studied using Euler-Bernoulli beam theory and time
domain converted aerodynamics derived from the Theodorsen model. Moreover, Farsadi et al.4 have used thin walled
beam theory and 2D time-domain unsteady aerodynamics to explore the aeroelastic behavior of composite high aspect
ratio wings. In the work of Mozaffari et al.8 the influence of trailing edge control surfaces on the flutter characteristics
of wings has been explored using Euler-Bernoulli beam and aerodynamic strip theories. In this framework, Riso and
Cesnik11 have studied the accuracy that can be expected from beam + strip theory modelling approaches with respect
to the higher fidelity FEM+DLM models; in detail, they have studied an high aspect ratio wing structure, i.e. the Pazy
wing, obtaining errors of about the 11% for hard flutter phenomena. Similar conclusions have been obtained in the
work of Vindigni et al.16 where a Heavy Goland wing case study has been analyzed obtaining an accuracy of about the
8.4%.
In this work, a reduced order modelling approach of the aeroelastic system is proposed taking advantage of three-
dimensional Euler-Bernoulli beam theory, De Saint Venant torsion theory and 2D unsteady aerodynamics. The aerody-
namic loads, expressed in time domain by means of the Duhamel formulation and Sears approximation of the Wagner
function, are directly incorporated in the beam element matrices that are computed from the governing equations weak
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form. Since the two-noded aeroelastic beam finite element is defined in the 3D space each node has six structural
Degrees of Freedom DOF, an aerodynamic lag state DOF (introduced to model the aerodynamics in time domain), and
the control surface rotation DOF, for a total of eight degrees of freedom per node. Moreover, the proposed 3D beam
element allows to model variations of elastic axis position along the span connecting the adjacent wing stations with
rigid rod elements. The equivalent beam model equations are cast in a state space representation in order to carry out
the stability analysis of the wing for increasing speed values to identify its flutter boundary.

2. Equivalent beam model

The structural model considered in this work is a cantilever wing, with span lw, thin symmetric airfoil, and a trailing
edge control surface. The spanwise direction is defined by the x axis that coincides with the elastic axis direction at
the wing root in the undeformed configuration, while the wing cross section lies in the y − z plane, where y is oriented
in the flow direction and z is oriented upwards. The control surface is hinged to the wing frame and connected to the
actuators that provide a local stiffness kact, it is also considered aerodynamically unbalanced; moreover, the control
surface is subjected to torsion around its elastic axis that is considered close enough to the hinge line such that they
could be assumed coincident. In order to write the wing equivalent beam governing equations, Euler-Bernoulli beam
assumptions and De Saint Venant torsion theory are invoked resulting in a system with five degrees of freedom, namely
the axial displacement u(x, t) (positive in extension), the vertical displacement due to out-of-plane bending w(x, t) (pos-
itive upwards), the in-plane bending displacement v(x, t) (positive backwards), the torsional rotation ϕ(x, t) around the
elastic axis (positive nose-up), and control surface rotation δ(x, t) around its hinge (positive flap down). A simplified
scheme with relevant parameters of the wing is shown in Figure 1. In detail, the wing semi-chord is denoted as b, a
is the non-dimensional distance of the elastic axis from the mid-chord (positive aft), the center of gravity one is xϕ
(positive aft), c is the non-dimensional distance of the control surface hinge line from the mid-chord and its center of
gravity lies at a distance bxδ from the hinge.

Figure 1: Wing schematic

The presence of the trailing edge control surface affects the inertial characteristics of the wing; in detail, the
inertial parameters can be expressed as functions of the spanwise location with the following relations, where lF and
lF2 identify the control surface initial and final stations,

m =

mw i f x < [lF lF2]
mw + m f i f x ∈ [lF lF2]

S ϕw =

mwb(xϕ − a) i f x < [lF lF2]
mwb(xϕ − a) + m f b(xδ + c) i f x ∈ [lF lF2]

J =

mwb2[(xϕ − a)2 + r2
ϕ] i f x < [lF lF2]

mwb2[(xϕ − a)2 + r2
ϕ] + m f b2[(xδ + c)2 + r2

δ] i f x ∈ [lF lF2]

(1)

with mw and m f mass per unit length of the wing and the control surface, J and S ϕw inertia moment and static mass
moment of the wing, respectively, while rϕ and rδ are the dimensionless gyration radii of the wing and the control
surface about their respective center of gravity.
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The governing equations of the wing are the ones of a beam with EA axial stiffness, EIi bending stiffnesses, with
i =

[
y z

]
, and GK torsional stiffness. Moreover, the governing equation of the aileron is the one of a torsion-rod with

a combined torsional stiffness given by the sum of its elastic stiffness G f K f and the hinge stiffness Kδ. In order to take
into account the local stiffness of the actuators the term Kδ is defined as follows

Kδ = kδ + kactδF (2)

where kδ is the hinge stiffness per unit length and kact is the actuator stiffness, while δF is an expression of the Dirac
delta function δF = δd (x − lF − la1)+ δd (x − lF − la2) that identifies the position of the actuators connections along the
aileron span.

Therefore, the equivalent beam governing equations read as3

mü − EAu′′ − αuEAu̇′′ = 0
mv̈ − S ϕvϕ̈ + EIzv′′′′ + αvEIzv̇′′′′ = 0

mẅ − S ϕwϕ̈ − S δδ̈ + EIyw′′′′ + αwEIyẇ′′′′ = L

Jϕ̈ − S ϕwẅ + [Jδ + S δb(c − a)] δ̈ −GKϕ′′ − αϕGKϕ̇′′ =M

Jδδ̈ − S δẅ + [Jδ + S δb(c − a)] ϕ̈ −G f K f δ
′′ − αδG f K f δ̇

′′ + Kδδ =Mδ

(3)

where, in accordance to the work of Mozaffari et al.,8 an amount of structural damping has been included by means
of stiffness proportional terms with the coefficients α j, being j =

[
u v w ϕ δ

]
. Moreover, S ϕv is the static mass

moment for the in-plane bending motion while the control surface inertial characteristics are denoted as S δ = m f bxδ
and Jδ = m f b2(x2

δ + r2
δ), representing its static mass moment and inertia moment about the hinge, respectively. Time

derivatives are denoted with dots superscript, primes indicate spatial derivatives along the beam axis x, and L, M,
andMδ are the unsteady aerodynamic loads computed in accordance with the Theodorsen theory13 for a thin airfoil
wing-flap system that undergoes small amplitude oscillations in incompressible flow.
The aerodynamic loads, computed as shown in eq. 4, depend on the airfoil geometric parameters, air density ρ, flight
speed v, lift curve slope CLα (2π for thin plate), Theodorsen constants Ti , and reduced frequency κ.

L = ρb2
(
vπϕ̇ − πẅ − πbaϕ̈ − vT4δ̇ − T1bδ̈

)
+CLαρvbLc(κ)

M = −ρb2
{
π

(
1
2
− a

)
vbϕ̇ + πb2

(
1
8
+ a2

)
ϕ̈ + (T4 + T10) v2δ

+

[
T1 − T8 − (c − a)T4 +

T11

2

]
vbδ̇ − [T7 + (c − a)T1] b2δ̈ + aπbẅ}

+CLαρvb2
(

1
2
+ a

)
Lc(κ)

Mδ = −ρb2
{[
−2T9 − T1 + T4

(
a −

1
2

)]
vbϕ̇ + 2T13b2ϕ̈ +

v2 (T5 − T4T10) δ
π

−
vbT4T11δ̇

2π
−

T3b2δ̈

π
+ T1bẅ} − ρvb2T12Lc(κ)

(4)

The reduced frequency dependent part of the aerodynamic loads Lc(κ), i.e the circulatory lift, is expressed in the time
domain by means of an indicial function approach introducing the convolution integral and the Wagner lift deficiency
function W as an exponential function of the reduced time domain τ = v

b t

W(τ) = 1 −
2∑

i=1

cie−biτ (5)

where, according to the Sear’s approximation12 c1 = 0.165, c2 = 0.0335, b1 = 0.0455, and b2 = 0.3. Thus, the time
domain circulatory lift read as

Lc(t) =W(0)
[
vϕ − ẇ + b

(
1
2
− a

)
ϕ̇ +

T10vδ
π
+

bT11δ̇

2π

]
+ b1b2 (c1 + c2)Ω

+ (c1b1 + c2b2) Ω̇
(6)

where a new variable appears, i.e. the aerodynamic lag state Ω. Thus, the wing governing equations are augmented in
order to take into account the dynamics of Ω introducing the following second order differential equation.14

3

DOI: 10.13009/EUCASS2023-307



AEROELASTIC BEAM MODELLING OF LIFTING STRUCTURES

Ω̈ +
v
b

(b1 + b2) Ω̇ +
v2

b2 b1b2Ω =
v
b
ϕ +

vT10

πb
δ −

ẇ
b
+

(
1
2
− a

)
ϕ̇ +

T11

2π
δ̇ (7)

3. Aeroelastic beam finite element formulation

Considering the derived equivalent beam governing equations, eq (3)(4)(7), they can be cast in a compact matrix form
introducing the mass Ms, Maer, damping Cs, Caer, and stiffness Ks,Kaer matrices, where the subscripts s and aer
denotes the structural and aerodynamics contributions, respectively. Moreover, the generalized displacement vector
q(t) =

[
u v w ϕ δ Ω

]T is defined and the homogeneous governing equations compact form reads as

[Ms +Maer] q̈(t) +
[
CsD2 + Caer

]
q̇(t) +

[
KsD2 +Kδ +Kaer

]
q(t) = 0 (8)

being D the differential operator that takes into account the derivatives along the beam axis and Kδ the control surface
linear stiffness matrix, defined as

D = diag
(
∂

∂x
,
∂2

∂x2 ,
∂2

∂x2 ,
∂

∂x
,
∂

∂x
, 0

)
Kδ = diag (0, 0, 0, 0,Kδ, 0) (9)

In order to derive the finite element formulation the generalized displacements interpolation is introduced; thus,
considering an i− j beam finite element with length L, the kinematic assumptions made for the beam bending behavior,
i.e. Euler-Bernoulli beam assumptions, suggest a third order Hermite interpolation function for v(x) and w(x)

w(x) = C1 +C2x +C3x2 +C4x3

v(x) = C1 +C2x +C3x2 +C4x3 (10)

and keeping in mind that the cross-section rotations due to bending, θ(x) and ψ(x), are related to the translation dis-
placements, θ(x) = ∂w

∂x and ψ(x) = − ∂v
∂x , it follows that

θ(x) = C2 + 2C3x + 3C4x2

ψ(x) = −
(
C2 + 2C3x + 3C4x2

) (11)

while for the axial and torsion displacements, as well as for the lag state, a linear interpolation function is introduced

u(x) = A1 + A2x ϕ(x) = A1 + A2x, δ(x) = A1 + A2x, Ω(x) = A1 + A2x (12)

Thus, the i− j beam nodal displacements vector ∆ =
[
ui vi wi θi ϕi δi Ωi u j v j w j θ j ϕ j δ j Ω j

]T

is introduced and the displacements field interpolation reads as

q(x, t) = N(x)∆(t) (13)

being N(x) the shape functions matrix defined as

N(x) =



Nu1 0 0 0 0 0 0 0 Nu2 0 0 0 0 0 0 0
0 Nv1 Nψ1 0 0 0 0 0 0 Nv2 Nψ2 0 0 0 0 0
0 0 0 Nw1 Nθ1 0 0 0 0 0 0 Nw2 Nθ2 0 0 0
0 0 0 0 0 Nϕ1 0 0 0 0 0 0 0 Nϕ2 0 0
0 0 0 0 0 0 Nδ1 0 0 0 0 0 0 0 Nδ2 0
0 0 0 0 0 0 0 NΩ1 0 0 0 0 0 0 0 NΩ2


(14)

where

Nv1 = Nw1 = 1 − 3
x2

L2 + 2
x3

L3

Nv2 = Nw2 = 3
x2

L2 − 2
x3

L3

Nθ1 = −Nψ1 = x − 2
x2

L
+

x3

L2

Nθ2 = −Nψ2 = −
x2

L
+

x3

L2

Nu1 = Nϕ1 = Nδ1 = NΩ1 = 1 −
x
L

Nu2 = Nϕ2 = Nδ2 = NΩ2 =
x
L

(15)
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In order to compute the aeroelastic beam elemental matrices, the governing equations 8 are written in weak form∫
L q̃ [Ms +Maer] q̈(t)dx +

∫
L q̃

[
CsD2 + Caer

]
q̇(t)dx +

∫
L q̃

[
KsD2 +Kδ +Kaer

]
q(t)dx = 0 (16)

being q̃ =
[
ũ ṽ w̃ ϕ̃ δ̃ Ω̃

]T
the virtual displacements vector. Therefore, eq. 13 is feed into eq. 16 and the

elemental mass, damping, and stiffness matrices are computed performing the following integrals

Mel =

∫
L

NT [Ms +Maer] Ndx (17)

Cel =

∫
L

NT
[
(DN)T CsD + Caer

]
Ndx (18)

Kel =

∫
L

[
(DN)T KsD + NT Kδ + NT Kaer

]
Ndx (19)

Once the aeroelastic beam matrices are computed the discretized structure equations of motion can be obtained
in a classic FEM fashion; in fact, assembling the matrices and introducing the boundary conditions, the structural
equations of motion read as[

M11 M12
M12

T M22

] [
∆̈1

∆̈2

]
+

[
C11 C12
C12

T C22

] [
∆̇1

∆̇2

]
+

[
K11 K12
K12

T K22

] [
∆1
∆2

]
= 0 (20)

where ∆1 and ∆2 are the unknown and known displacements vectors, respectively. Last, the system of eq. 20 can be
solved for the unknown displacements and defining the state vector X =

[
∆T

1 ∆̇T
1

]T
it can also be written in state space

form. Finally, computing the dynamic matrix

A =
[

0 I
−M−1

11 K11 −M−1
11 C11

]
(21)

the stability analysis of the wing equivalent beam model can be carried out by studying the eigenvalues of A for
increasing speed values.

4. Validation

In order to carry out the validation of the proposed approach different case studies have been considered. First, the val-
idation has been carried out with respect to literature results of uniform wing structures. The literature study case con-
sidered is the Goland wing.5, 6 In detail, the Goland wing is a flat thin uniform rectangular wing with span lw = 6.096m
and chord 2b = 1.829m; it is subjected to cantilever boundary conditions that applies at the root section elastic axis
(33% of the chord) and presents an out of plane bending stiffness of EIy = 9.7722 · 106Nm2 and a torsional stiffness
of GK = 0.98761 · 106Nm2, respectively. The wing gravity center line falls at the 43% of the chord where the mass
m = 35.72kg/m and inertia µ = 7.452kgm applies. Moreover, for validation of configurations involving the presence of
a control surface, the wing-aileron configuration of the Goland wing, studied in the work of Mozaffari et al.,8 has been
considered; in detail, this flapped version of the Goland wing presents an aileron-like control surface extending from
the 60% of the span to the wing tip. Relevant properties of the Goland wing and its flapped configuration are reported
in Table 1.

Parameter Value Parameter Value Parameter Value Parameter Value

Wing lw [m] 6.096 b [m] 0.914 a -0.34 xϕ -0.14
rϕ 0.5 mw [kg/m] 35.71 EIy[Nm2] 9.7722 · 106 GK[Nm2] 0.9876 · 106

Flap lF[m] 0.6 lw lF2[m] lw c 0.6 xδ 0.1
rδ 0.1 m f [kg/m] 8.929 G f K f [Nm2] 1.42614 · 103 kact [Nm/rad] 6.48051 · 103

Table 1: Goland wing parameters

Equivalent beam models of the Goland wing and its flapped configuration have been developed with the aeroe-
lastic beam approach and the flutter analysis has been carried studying the eigenvalues of the dynamic matrix A,
computed as in eq. 21. The number of finite elements has been chosen by means of a convergence analysis resulting
in a discretization of ten aeroelastic beam elements for both the clean and flapped wing configurations. Figure 2 shows
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the results obtained, in terms of eigenvalues real and imaginary parts, as function of the air speed at sea level density
ρ = 1.225kg/m3. From Figure 2 it can be noted that the instability arises because of the coupling between the first
bending and torsion modes identifing a flutter speed and frequency of vG

f = 137.4m/s and ωG
f = 11.2Hz, for the clean

wing configuration in accordance with Goland results,6 and a flutter boundary of vGa
f = 109.5m/s and frequency of

ωGa
f = 10.3Hz for the wing-aileron configuration, in accordance with literature results.8

Eigenvalues real part Eigenvalues frequencies

Figure 2: Goland wing flutter analysis results

Once the validation has been carried out for a uniform structure, the proposed approach is extended with the aim
of modelling a geometrically non-uniform lifting structure. In detail, the case study considered is a cantilever plate
with span lw = 4m and chord equal to 1m for the first half of the span and equal to 0.5m for the second half of the span.
The thickness of the plate is constant along the span and equal to 0.01m while the material considered is aluminium
with elastic modulus E = 70GPa, Poisson’s ratio ν = 0.3, and density ρs = 2700kg/m3. The aeroelastic model of this
structure have been obtained following different approaches; first, it has been realized a model using the commercial
software Nastran using both two-dimensional shell elements and beam elements for the structure, then coupled with
a DLM lifting surface by means of spline interfaces in accordance with the good practices of the Nastran Aeroelastic
Analysis User’s Guide.9 The schematics of both shell and beam models are shown in Figure 3. It is worth to be
said that, in order to guarantee congruence, the beam model has been obtained considering two beams with different
rectangular cross sections and connected by a rigid body element RBE2 in correspondence of the elastic axis location
of the two wing half-span portions, which are discretized with ten CBEAM elements.

Shell structural model Beam structural model DLM lifting surface

Figure 3: FEM and DLM Nastran models

Similarly, an equivalent beam model has been realized with the proposed aeroelastic beam approach using ten finite
elements for both the inboard and outboard portions of the plate, as shown in Figure 4. The results of the aeroelastic

6
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Figure 4: Non-uniform plate aeroelastic beam model

analysis carried out are shown in Figure 5 where the eigenvalues real and imaginary parts obtained for each model
studied are reported. In detail, the computed airstream speed for which the instability arises is vshell−DLM

f = 48.2m/s
for the shell model,vbeam−DLM

f = 49.2m/s for the beam model, and va−beam
f = 45.1m/s for the aeroelastic beam model,

while the associated frequency is equal to zero in all the cases pointing out that the instability that first appears is of a
stationary nature. It is worth to be noted that the aeroelastic beam model produces an accuracy for the flutter boundary
of roughly the 6.3% with respect to the higher fidelity FEM+DLM model while reducing the problem degrees of
freedom from 1180, for the shell model, to 140. It is worth to be said that the differences recorded on the eigenvalues
real and imaginary parts evolution with the airstream speed, shown in Figure 5, are due to the different structural
theory used for the Nastran shell and beam models, and similar findings have been obtained in literature.7 Moreover,
the differences highlighted for the aeroelastic beam model with respect to the Nastran beam one are mainly due to the
different aerodynamic theory used; in fact, since the aeroelastic beam approach is derived from strip theory assumptions
the downwash produced by trailing edge vortices is not taken into account, resulting in lower damping values and higher
imaginary part associated with the torsion mode of the plate.

First bending eigenvalue real part First torsion eigenvalue real part

First bending eigenvalue imaginary part First torsion eigenvalue imaginary part

Figure 5: Flutter results for the non-uniform plate

Last, the proposed approach is validated considering the geometrically non-uniform plate equipped with a trailing
edge control surface. The control surface is also modeled as a thin flat plate with same thickness of the main structure

7
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Figure 6: Flapped plate Nastran model

to which is connected by means of CBUSH elements, located at 60% and 90% of the span with stiffness 1000Nm/rad,
that introduce the actuators stiffness in the Nastran model. The Nastran model schematic is shown in Figure 6.

The stability analysis results for the flapped plate are reported in Figure 7 where it can be noted that the presence
of the control surface has a significant impact on the aeroelastic behavior of the structure; in fact, in this case the
instability arises for the first fundamental torsion mode identifying a flutter speed of vshell−DLM

f = 36.3m/s for the shell
model and of va−beam

f = 33.1m/s for the aeroelastic beam model, while the respective frequencies are ωshell−DLM
f =

1.6Hz and ωa−beam
f = 2.25Hz.

First bending eigenvalue real part First torsion eigenvalue real part

First bending eigenvalue imaginary part First torsion eigenvalue imaginary part

Figure 7: Flutter results for the non-uniform plate with control surface

5. Conclusions

In this work, an alternative aeroelastic beam method for time domain aeroelastic analysis of lifting structures has been
presented. The governing equations of an equivalent beam model of a wing equipped with a trailing edge control
surface have been used to compute the finite element matrices by means of a weak formulation approach. Then, the
computed elemental matrices have been implemented in a beam finite element code to realize the numerical model of
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geometrically non-uniform plate lifting structures. Validation analyses have been carried out for structural configura-
tions with and without trailing edge control surfaces; a comparison of the results obtained using the aeroelastic beam
approach with literature and commercial code results has been provided.
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