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Abstract 
In this paper, we propose a Mixed-Integer Linear Programming (MILP) based method for generating an 
optimal image acquisition schedule. We especially consider a Terrestrial Mapping problem, which is 
defined as finding an acquisition schedule for obtaining images of a certain predefined area. We consider 
an Electro-Optical (EO) satellite with a push-broom type imager, occupying a Sun-Synchronous Orbit 
(SSO). By exploiting the properties of SSO, the terrestrial mapping problem is converted into a MILP 
problem, which could be efficiently solved using commercial solvers. As a result, we propose multiple 
variations of the terrestrial mapping problem which could be optimized in the MILP framework. 

1. Introduction

Optimally allocating satellite imaging capability is essential in operating satellite systems concerning its immense 
operation cost. When it comes to terrestrial mapping, it is of utmost importance to meticulously schedule the imaging 
time and area since the field of regard of the satellite is limited per orbit. If one can exploit the imaging chances to the 
extent possible, it can directly reduce the operation hour and cost of the satellite system. However, since the possible 
combination of the satellite image schedules is infinite, one should carefully manipulate the problem into a solvable 
format.  

This paper concentrates on the minimum acquisition time problem of satellite imagery when mapping the predefined 
terrestrial landmass. Here, a terrestrial mapping problem is defined as an optimal scheduling problem where the goal 
is to acquire a set of images of the given area of landmass as soon as possible. It can be thought of as a practical 
variation of a set covering problem, which considers the ways to cover the whole set (entire mapped area) with finite 
subsets (strips of satellite images). The landmass of interest could be a city, a country, or any random polygon with a 
width greater than the swath width of the imager. The satellite system of interest is an Electro-Optic (EO) push-broom 
imager on a circular Sun-Synchronous Orbit (SSO), acquiring strips of images with fixed roll angles per each pass. 
(Fig. 1) Here, the roll angle of the satellite controls the lateral positioning of the acquired strip of the image with respect 
to the ground track of the satellite orbit. 
   A number of prior researches on optimal satellite operation scheduling exist [1, 2], but the targets were mostly limited 
to point targets. To the authors’ knowledge, the terrestrial mapping problem is rarely covered in the literature, which 
highlights the novelty of this work.  

The minimum-time terrestrial mapping problem is naturally complex due to the curse of dimensionality. For instance, 
imagine a brute-force method for finding a minimum-time full-coverage schedule. Let us assume that we discretize 
possible roll angles to 30 candidates, and try to find the minimum time solution for the first 10 orbits. Already the 
number of possible combinations of roll angles reach 3010, which is impossible to be appraised with a limited amount 
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of computational resources. Henceforth, the crux of solving the terrestrial mapping problem is to formulate it into a 
solvable format, which requires some creative thinking. 

We suggest a scheduling framework based on the Mixed Integer Linear Programming (MILP) technique. Thanks to 
the property of MILP, the generated optimization problem can be solved using widely used commercial solvers within 
a reasonable computational effort. Furthermore, formulating the problem in the MILP framework enables the user to 
easily manipulate the problem into a minimum-time full coverage schedule, a minimum-time partial coverage schedule, 
or even a minimum-time coverage schedule with a priority on high-value targets. The problem is further generalized 
considering the swath width of the imager and the overlap of the acquired strip images due to the Earth’s curvature. 
The generated schedules propose optimal imaging time slots and optimal roll angles of the satellite. 

 
 

 
Figure 1: Illustration of a Push-Broom Imager 
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Figure 2: Illustration of a Terrestrial Mapping in Progress, with Switzerland being the target area. 

 
 

2. MILP Formulation of the Terrestrial Mapping Problem 
 

In this section, we present the method to formulate the terrestrial mapping problem in MILP format. To facilitate 
the formulation, we introduce the assumptions below.  
 

- The satellite orbits in a perfect SSO. i.e. The inclination of the satellite is kept constant, and the local time of 
the revisit is also maintained. Furthermore, the eccentricity is kept zero (the orbit is circular) hence the altitude 
of the satellite is always constant, too. 

- The Earth oblateness is ignored. The Earth surface is assumed to be a perfect sphere. 
- The swath width of the image is kept constant regardless of the roll angle. (This is a strong assumption. A 

discussion regarding this assumption is given in the remarks.) 
 

By these assumptions, we can simplify the terrestrial mapping problem into a MILP format, which enables us not 
only to solve the terrestrial mapping problem in an acceptable amount of computing resources but also allows us to 
modify the problem into multiple applications. We first propose the basic full coverage formulation (section 2.1) to 
give the blueprint of our approach. Then we suggest possible variations of the terrestrial mapping problem, including 
the fastest partial coverage method, prioritizing certain targets, and introducing some orbital or temporal constraints. 
Finally, we provide the method to incorporate the effect of the Earth curvature, which is crucial in solving the terrestrial 
mapping problem in high latitudes.  
 
Remark 1. We assumed that the swath width of the image is constant in order to simplify the problem. However, the 
swath width of the image is highly dependent of the roll angle for actual EO satellites. Though reluctant, we introduce 
this assumption in order to smoothly convert the problem into MILP. By choosing the minimum swath width given 
with respect to nadir pointing (roll angle equal to zero), we can safely guarantee that the satellite will certainly acquire 
the designated imaging area. The authors are aware that lifting this assumption would lead to a better solution of the 
terrestrial mapping problem, and striving to provide an answer. 
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2.1 Basic Full Coverage Formulation 

In order to convert the terrestrial mapping problem into a MILP form, we first slice the target area into multiple 
strips parallel to the direction of orbital inclination, with equal swath width. We label each strips from S1 to SN. For the 
simplicity, we label the strips from the left to the right. Similarly, we label each revisits from R1 to RM, starting from 
the earliest revisit. Next, we define the binary variable (i.e. the variable takes only the values of 0 or 1) Xij to encode 
the correspondence between Si and Rj. If the image of the strip Si is taken during the revisit Rj, we set Xij to be 1, and 
otherwise 0. In this way, we can express any image acquisition scheduling using Xij. Furthermore, let us define a set of 
sets P1 to PM which encodes the visibility of the strips in the revisit Rj. For instance, if the strip S2, S3, and S4 are visible 
from the revisit Rj and the others are unobservable due to the roll angle limitation, we set Pj = {2, 3, 4}. Furthermore, 
we define the value Ai to denote the size of the intersection between the strip Si and the target area. (i.e. Ai denotes the 
km2

 of the target area covered by taking strip Si) The definitions are depicted in Fig. 3. 
Using these definitions, we can define an optimizable MILP formulation which results in a minimum-time 

(minimum-revisit) image acquisition schedule. First, we consider the constraints given below.  
- The number of strips taken from a single revisit cannot exceed one.  

 
∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1 ≤ 1 ∀𝑗𝑗       (1) 

 
- Each strips must be assigned to exactly one revisit. (Full coverage) 

 
∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1 = 1 ∀𝑖𝑖        (2) 

 
- Visibility of the strip1s must be considered. 

 
𝑋𝑋𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ∉ 𝑃𝑃𝑖𝑖   ∀𝑗𝑗      (3) 

 
Next, we consider the minimum-time (or minimum revisit) objective. Colloquially stating, we try to minimize the 

index j where at least one X*j is non-zero. By exploiting the binary property of Xij, we can convert such objective into 
a minimization of certain maximum function: 

 
minimize    max(𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖𝑖𝑖)      (4) 

 
Note that the value jXij is equal to j only in the case when Xij is one. Otherwise, due to the binary property of Xij, 

the value becomes zero. Hence, the function max(jXij) is equal to the maximum index j where at least one Xij is nonzero. 
Yet, it is also observable that the objective function is nonlinear. We convert the above nonlinear objective into a set 
of a linear objective function and a constraint, by introducing an additional fictitious variable s. Here, s does not have 
to be an integer variable.  

 
minimize    𝑠𝑠      (5) 

  
subject to    𝑠𝑠 ≥ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖𝑖𝑖  ∀𝑖𝑖, 𝑗𝑗     (6) 

 
Here, we can observe that the value s is equal to max(jXij) at the optimum. If s is greater than max(jXij), one can 

reduce s to max(jXij) without any constraint violation. If s is less than max(jXij), it violates the constraints, so the current 
value of s cannot be admitted. Hence by contradiction, one can show that s actually reaches the value of max(jXij) at 
the optimal point. 

In conclusion, combining Eq. (1 – 3, 5, 6) defines a MILP that minimizes the number of revisits required for a 
full coverage of the target area. By solving the defined MILP using commercial solvers, one can find an optimal image 
acquisition schedule.  
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Figure 3. Definition of Strip S, Revisit R, and its Area A (shaded) 

 

2.2 Optimal Partial Coverage Formulation 

The full coverage formulation provided in Sec. 2.1 could be extended to cover a partial coverage case. Here, the 
partial coverage problem refers to a problem with a goal to cover more than certain percent (e.g. 50%) of the total 
target area with minimum time. For some applications, a time required for a full coverage could be substantially longer 
compared to, for instance, a 90% coverage. In order to balance the percentage of the covered area versus the total time 
spent, one may find it useful to utilize the partial coverage form. Interestingly, a subtle change of the full coverage 
formulation yields a partial coverage form, which shows the extensibility of the suggested MILP approach.  

First, the constraint Eq. (2) is modified to allow uncovered strips.  
- Each strip must be assigned to exactly one revisit, or not assigned at all. (Partial coverage) 
 

𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 1 for 𝑖𝑖 ∈ 𝑃𝑃𝑖𝑖   ∀𝑗𝑗      (7) 
 
Then, an area constraint is added to ensure more than A* km2 of the total area Atotal.  
- The sum of the area covered by the strips must exceed the predefined goal. 
 

∑ 𝐴𝐴𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖  ≥ 𝐴𝐴∗       (8) 
 
Here, note that the summation of AiXij with respect to j gives either Ai when the strip Si is assigned to certain revisit 

(at most one Xij  is nonzero), or zero when the strip Si is not assigned to any revisit (all Xij are zero). Hence, the double 
summation with respect to i, j gives the total area covered only by the assigned strips.  

In summary, Eq. (1, 5-8) gives a MILP for minimum-time partial coverage form. Note that setting A*=Atotal results 
in an alternative full-coverage problem.  
 

2.3 Prioritizing Certain Target 

While the partial coverage form could be useful, some users might want to force the acquisition of certain targets 
of high importance. For example, the schedule requirement could be: “find a minimum-time acquisition scheduling 
which covers more than 70% of the Swiss territory while including Geneva, Lausanne, and Bern”. This could be 

S1

S2

S3 S4

S5
S6

Si, Ai

SNSN-1

R1 R3
Rj

RM-1 R2
RM
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achieved by introducing additional constraints. Let us define a set Q which contains the index of high-priority strips. 
For instance, if strip 2, 3, and 6 contain Geneva, Lausanne, and Bern, set Q = {2, 3, 6}. Then, applying the constraint 
below enables us to force the acquisition of the strips embedded in Q. 

 
∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1 = 1 ∀𝑖𝑖 ∈ 𝑄𝑄       (9) 

 

2.4 Adding Revisit Constraints 

We may further extend the problem to incorporate certain revisit constraints. It could be useful, for instance, when 
acquisition of two adjacent strips in neighbouring revisits is required. Let us consider the case of taking the strip Si1 
and Si2 with a revisit gap of j*. i.e. If the strip Si1 is taken at the revisit Rj1, we wish the strip Si2 to be acquired at the 
revisit Rj2 where j2 = j1 + j*. Since j1 is undetermined a priori, the revisit constraint must be expressed indirectly using 
a multiplication of two binary variables. 

 
∑ 𝑋𝑋𝑖𝑖1 ,𝑖𝑖𝑋𝑋𝑖𝑖2,𝑖𝑖+𝑖𝑖∗
𝑀𝑀
𝑖𝑖=1 = 1 ∀𝑗𝑗 ≤ 𝑀𝑀 − 𝑗𝑗∗      (10) 

 
Unfortunately, the multiplication of variables is nonlinear, hence the constraint Eq. (9) cannot be handled in the 

MILP framework. Yet, a standard trick (sometimes referred as the big-M method) could be utilized to convert the 
given constraint into a set of linear constraints. The big-M method could be applied when a variable (either a floating 
point number or an integer) with a bound on its value is multiplied with a binary variable.  

The full coverage formulation provided in Sec. 2.1 could be extended to cover a partial coverage case. Here, the 
partial coverage problem refers to a problem with a goal to cover more than certain percent (e.g. 50%) of the total 
target area with minimum time. For some applications, a time required for a full coverage could be substantially longer 
compared to, for instance, a 90% coverage. In order to balance the percentage of the covered area versus the total time 
spent, one may find it useful to utilize the partial coverage form. Interestingly, a subtle change of the full coverage 
formulation yields a partial coverage form, which shows the extensibility of the suggested MILP approach. We 
introduce a new variable pj to hold the value of Xi1, j Xi2, j+j*. Moreover, we use a large constant value Ω, which must be 
greater than the maximum bound of Xi2, j+j*. 

 
∑ 𝑝𝑝𝑖𝑖𝑴𝑴
𝒋𝒋=𝟏𝟏 = 1 ∀𝑗𝑗 ≤ 𝑀𝑀 − 𝑗𝑗∗      (11) 

 
𝑝𝑝𝑖𝑖 ≤ Ω𝑋𝑋𝑖𝑖1,𝑖𝑖 ∀𝑗𝑗 ≤ 𝑀𝑀 − 𝑗𝑗∗      (12) 

 
𝑝𝑝𝑖𝑖 ≥ −Ω𝑋𝑋𝑖𝑖1,𝑖𝑖 ∀𝑗𝑗 ≤ 𝑀𝑀 − 𝑗𝑗∗      (13) 

 
𝑝𝑝𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖2 ,𝑖𝑖+𝑖𝑖∗ −  Ω�1−𝑋𝑋𝑖𝑖1 ,𝑖𝑖 � ∀𝑗𝑗 ≤ 𝑀𝑀− 𝑗𝑗∗     (14) 

 
𝑝𝑝𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖2 ,𝑖𝑖+𝑖𝑖∗ +  Ω�1−𝑋𝑋𝑖𝑖1 ,𝑖𝑖 � ∀𝑗𝑗 ≤ 𝑀𝑀− 𝑗𝑗∗     (15) 

 
At optimum, the value pj is always equal to the value of Xi1, j Xi2, j+j*, hence Eq. (11) can be a proxy of Eq. (10) 

while maintaining the linearity. Note that if Xi1, j is zero, Eq. (12, 13) becomes pj = 0, while Eq. (14, 15) gives an 
inactive boundary constraint on pj. (Since the value Ω is significantly large) For the case when Xi1, j is one, Eq. (12, 13) 
becomes inactive, and Eq. (14, 15) becomes pj = Xi2, j+j*.  

In summary, adding Eq. (11-15) to the MILP problem activates the revisit constraints.  
 

2.5 Adding Temporal Constraints 

Similar to section 2.4, we can also add timing constraints. Specifically, we can impose the MILP problem to 
consider either (1) the maximum time gap between two strips, or (2) the minimum time gap between two strips. Let us 
define the time Tj to denote the time of the revisit Rj. Furthermore, let us denote the maximum or the minimum time 
gap required as Tmax and Tmin respectively.  
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With naïveté, the maximum time constraint could be defined as below which contains a nonlinear absolute value 
function.  

 
�∑ 𝑋𝑋𝑖𝑖1,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 � ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚      (16) 

 
However, the absolute value function less than a constant could be divided into two linear inequalities.  
 

∑ 𝑋𝑋𝑖𝑖1,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚       (17) 
 

∑ 𝑋𝑋𝑖𝑖1,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 ≥ −𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚      (18) 
 

Here, Eq. (17, 18) replaces Eq. (16) with linear inequalities. Please be aware that the big-M method is not required 
since Similarly, the minimum time constraint could be naively defined with an absolute value function.  

 
�∑ 𝑋𝑋𝑖𝑖1,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 � ≥ 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚      (19) 

 
Note that the sign of the inequality is in reverse. Due to this fact, one cannot simply divide the absolute value 

function into two linear inequalities. We introduce a new binary variable Δ to convert Eq. (19) into two linear 
inequalities, distinct from Eq. (20, 21).  

 
∑ 𝑋𝑋𝑖𝑖1,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 ≥ 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚  − ΔΩ    (20) 
 

−�∑ 𝑋𝑋𝑖𝑖1 ,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴
𝒋𝒋=𝟏𝟏 − ∑ 𝑋𝑋𝑖𝑖2,𝑖𝑖𝑇𝑇𝒋𝒋𝑴𝑴

𝒋𝒋=𝟏𝟏 � ≥ 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 − (1− Δ)Ω     (21) 
 
Note that when Δ is zero, Eq. (20) is active while Eq. (21) becomes inactive. When Δ is one, Eq. (21) becomes 

active and Eq. (20) becomes inactive.  
 

2.6 Handling Earth Curvature  

For the preceding sections, we implicitly assumed that the Earth’s surface is totally flat, which resulted in 
completely parallel positioning of the strips without any overlaps between them. However, overlaps between the strips 
are inevitable when the curvature is present. When depicted using the Mercator projection, the strips will start to bulge 
horizontally toward north.  

Yet, the overlap between strips can be handled using the inclusion-exclusion principle. For the complete coverage, 
let us redefine the strips with respect to the southernmost tangent line perpendicular to the inclination angle. The 
redefined strips shall not overlap at the southernmost end, and when defined correctly, it will start to overlap each other 
toward north. Let us introduce a new constant Bik to denote the overlapped area between the two strips Si and Sk. Then, 
the left-hand side of the constraint Eq. (8) could be modified using the inclusion-exclusion principle. In order to find 
the total area assigned to any revisit, we first include the sum of area Ai , and then exclude the area of intersection Bik. 

 
∑ 𝐴𝐴𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 −  ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 (∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖)𝑖𝑖  ≥ 𝐴𝐴∗     (22) 

` 
We introduce a fictitious variable qijk to convert the nonlinear multiplication XijXkj into linear constraints. We 

again use the big-M method used in section 2.4. 
 

∑ 𝐴𝐴𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 −  ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 (∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖  ≥ 𝐴𝐴∗     (23) 
 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ≤ Ω𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘     (24) 
 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ≥ −Ω𝑋𝑋𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗,𝑘𝑘     (25) 
 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖𝑖𝑖 −  Ω�1−𝑋𝑋𝑖𝑖𝑖𝑖 �∀𝑖𝑖, 𝑗𝑗,𝑘𝑘     (26) 
 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑖𝑖 +  Ω�1−𝑋𝑋𝑖𝑖𝑖𝑖 � ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘     (27) 
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In summary, exchanging the constraint Eq. (8) with a set of constraints Eq. (23-27) enables the user to consider 
the effect of the Earth’s curvature. 

 
Remark 2. For extreme cases, not only the adjacent strips, but also the one next to it can intersect each other. (i.e. 

more than three strips can intersect each other) For instance, it may occur near the north pole. However, most of the 
targets of high interest are positioned under the latitude of approximately 70 degree. The overlap between more than 
three strips will never occur in the given latitude range. Note that the ratio of the radius of the Earth at the latitude of 
70 degree is around 14,800 km, and it is approximately 18,200km at the latitude of 65 degree. Considering the latitude 
variation of 5 degree is enough, since most of the EO satellites has maximum time limits (typically less than few 
hundred seconds) on the continuous image acquisition. The expected maximum horizontal distortion of the strips is 
approximately +24% when scanning the area in between. In order to have the overlap between three strips, the 
maximum horizontal distortion should be at least greater than 100% by geometry. As a result, considering the overlap 
between two strips is enough for meaningful mission objectives.  

 

 
Figure 4. The Effect of the Earth’s Curvature on the Overlap Between Strips (Exaggerated for Visibility) 
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3. Simulated Examples 
 

In this section, we demonstrate the effectiveness of the suggested MILP approach via simulated examples. For 
the sake of simplicity, the basic full-coverage form (Sec. 2.1) is used. We show that the suggested MILP is solvable 
using a reasonable amount of computational resources, within reasonable computation time.  

Here, we implement the full-coverage formulation and solve it using Gurobi® optimizer, on a Windows® 
computer equipped with Intel® i7-12700 processor. (12 cores, 20 threads) We tested the implementation on various 
numbers of strips(N) and revisits(M) using random problem instances. The computation time is measured by averaging 
the computation time required over 10 problem instances. We summarize the results on Table. 1.  
 

Table 1. Computation time for various number of strips and revisits (unit: second) 
 

 N = 10 N = 50 N = 100 

M = 50 0.0083   

M = 100 0.014 0.024  

M = 500 0.071 0.10 0.15 
M = 1000 0.16 0.21 0.30 
M = 5000 1.20 1.54 2.04 

 
It is observable that the required computation time is reasonably short. Furthermore, it is worth noting that the 

proposed method even scales to 100 strips over 1000 revisits, which shows the excellence of the proposed MILP 
approach.  
 

4. Conclusions 
 

In this paper, we proposed a MILP based approach on the terrestrial mapping problem for EO satellites orbiting 
on SSO. The key idea of the suggested approach is to divide the target area into parallel strips a priori and then to find 
the optimal assignment using MILP. We proposed the basic full-coverage formulation for the terrestrial mapping 
problem. Moreover, we extended the suggested formulation to include a partial coverage problem, priority constraints, 
revisit constraints, and time constraints. We also provided a method to consider the effect of the Earth’s curvature. We 
demonstrated the performance using simulated examples, based on commercial MILP solver Gurobi®. The method 
has been tested on various numbers of strips and revisits, and we showed that the method is tractable on a regular PC 
with reasonable computation time.  
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