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Abstract 
This paper describes the development of a Multidisciplinary Modelers (MDM) package. This is a python 

based software package used in trade studies and optimizations of aircraft components. It is capable of 

modelling wing-like aircraft components such s wings, movables and flaps. It also provides data for and 

links to analysis tools that determines the performance of such aircraft components. These analyses are 

for example finite element analyses, stress analysis and manufacturing cost analyses. The MDM enables 

full automation of the engineering process as is shown in the application cases included in this paper.  

1. Introduction

Tier 1 suppliers like GKN Fokker need to have the ability to rapidly respond to new customer requests for aircraft 

component trade studies and exploit product optimization opportunities [1]. New market opportunities such as 

electrical, hydrogen and Urban Air Mobility (UAM) platforms have recently increased the need for a rapid and agile 

product development process. To support this, GKN Fokker is working towards a high level of multidisciplinary design 

and analysis automation and the application of Multidisciplinary Design Optimization (MDO) and Design Space 

Exploration (DSE) techniques. In [2], the Knowledge Based Engineering (KBE) application MoveableGenerator was 

introduced: an application for defining and analyzing aircraft moveable structures. This paper presents advancements 

that have been made since that publication and introduces the larger framework that application is part of: the 

Multidisciplinary Modelers (MDM) package. 

To ensure that design trade studies and optimizations can be supported, all engineering tasks in such efforts must be 

automated. In the GKN Fokker environment, the MDM forms the heart of design automation tasks. It models the 

necessary engineering features and generates data required by analysis modules. These analysis modules determine the 

main characteristics of a design concept. Results of the analysis concepts can be shown in the MDM, strengthening its 

position within GKN Fokker’s automated design efforts. The goal in the automated studies is to achieve a level of 

confidence that is required for contract binding commercial proposals. This is enabled by using high fidelity models 

and analyses based on those normally used in the aircraft component certification phase. This paper shows how MDM 

supports the analyses; the analyses themselves will not be described in detail. 

2. The Multidisciplinary Modelers (MDM) package

To cope with the many utilization scenarios for the design and analysis framework, the Multidisciplinary Modelers 

(MDM) package was developed. Instead of setting up design and analysis studies in case-specific workflows, the model 

definition and analysis methods are integrated in a KBE application. This is an intelligent executable central product 

model with rules implemented to ensure the completeness and consistency of generated models. Automatic dependency 

tracking (see [3]) removes the need to specify the exact sequence of events that need to take place. 

The high-level architecture adopted in the MDM package is based on the Multi Model Generator (MMG) concept from 

[12]. The MMG is a KBE application that provides a designer a central parametric product-modeling environment and 

is capable of generating disciplinary aspect models. Where La Rocca [12] implemented an MMG for conceptual 

aircraft design, the concept has been applied to other product concepts as well [13]. 

The MDM package provides a library of building blocks, i.e. Python classes and functions, allowing the construction 

of multiple MMGs for different types of aircraft structural components. Each of these MMGs is a central product 
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model for a typical component developed at GKN Fokker. Each product model is composed of building blocks or 

‘primitives’ that provide a definition model for product features and links to various disciplinary models. The latter 

provide inputs for disciplinary tools and are in most cases able to automatically execute these tools and read back 

results to the central product model. The MDM classes are set up using the ParaPy KBE Software Development Kit 

[4], which has all the typical capabilities of KBE applications such as dependency tracking, runtime value caching and 

lazy evaluation. Refer [3] for more details.  

2.1 MDM product models 

At the time of writing the previous paper on MDM [2], the only available product model was the MoveableGenerator. 

Since then, the available product models have been extended to allow the creation of flaps (FlapGenerator) and wing 

boxes (WingboxGenerator). At the moment of writing, efforts are underway to set up a tip-to-tip wing box model 

including the center section (WingGenerator) and a fuselage model (FuselageGenerator).  

 

The class diagram of Figure 1 shows the available product model classes. Each is a specialization of the 

BaseWingGenerator class, which provides components needed in each product model: 

 

 Libraries: this class aggregates libraries needed throughout the product model, such as a material library and 

a standard parts library. These libraries are typically fixed for an aircraft project.  

 Specifications: this class aggregates specifications for parts like spars, ribs and stringers, independently of the 

part instances. These specifications describe certain dimensions and default material allocation for a type of 

part. This could for example be the shape and dimensions of an L-stiffener, which are then used to create the 

actual stiffeners in the product. 

 InputHandler: some inputs to the MDM application could be from a geometry data file such as STEP, BREP, 

IGS or CPACS. In these cases, the InputHandler converts the geometry in the file to ParaPy geometry objects 

that are then used in the rest of the application. This ensures the MDM can obtain geometry input from various 

different sources without affecting the entire application.  

 OutputHandler: aggregates methods to generate outputs of the model (e.g. STEP, IGES or STL geometry 

files).  

 BaseGeneratorLoads: aggregates loads to be applied on the structure, e.g. point loads or constraints and 

pressure distributions.  
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Figure 1: Class diagram of the MDM product models WingboxGenerator, MoveableGenerator and 

FlapGenerator 
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The WingboxGenerator, MoveableGenerator and Flap product model classes are specializations of the 

BaseWingGenerator class and add the following product classes: 

 

 Wingbox: component class representing a (half) wingbox model, it is a specialization of the BaseWing class, 

which includes spars, ribs, stringer stations and skins, and the WingWithReferenceGeometry class, which adds 

a reference geometry node (input geometry).  

 Moveable: component class representing a simply hinged moveable (e.g. aileron, elevator, rudder, 

ruddervator). It is a specialization of the BaseWing class.  

 HingesInterfaces: component class representing the hinges and actuators connecting a moveable to a fixed 

wing.   

 MoveableGeneratorLoads: Adds moveable specific constraints to the BaseGeneratorLoads class  

 Flap: component class representing a flap. It is a specialization of the BaseWing class. 

 DeploymentMechanism: component class representing the deployment mechanism for a flap, linking the flap 

to the fixed wing.  

 FlapGeneratorLoads: Adds flap specific constraints to the BaseGeneratorLoads class.  

 

Section 3 describes how analysis nodes are added to generator classes.  

2.2 Primitives, the MDM building blocks 

An MDM product model is built on functional parametric building blocks, called primitives. As was introduced in [2], 

primitive classes can represent a physical part or component such as a SkinPanel or a more abstract concept such as a 

MaterialZone. The primitive classes are used in all of the product models component classes (Wingbox, Moveable, 

Flap). This section will showcase some of the primitives used to create a wingbox model.  

 

Figure 2 shows the product tree in the ParaPy app for a typical wingbox case along with the corresponding class 

diagram. The reference geometry can be provided by different types of classes, which are all specializations of the 

BaseReferenceGeometry class which ensures the reference geometry available for the primitives has a planform and 

an oml_shapes definition, see Figure 3. This setup allows reference geometry to be defined in the MDM input in 

completely different ways while returning the same standard geometry objects, enabling other primitives to be 

independent of the way input geometry was provided.  
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Figure 2: Left: ParaPy product tree of the example_wingbox_3 Wingbox instance; right: Wingbox class diagram 
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Figure 3: Class diagram showing the different available options to obtain wing reference geometry 

The overall layout of the wingbox is set in the station_layout (WingboxStationsLayout in Figure 2). Relative to the 2D 

planform definition, ‘chordwise’ and ‘spanwise’ stations are defined to accommodate potential primitives such as 

spars, ribs and stringers. Figure 4 shows a planform with different stations. The primary_spanwise_stations, 

root_station and tip_station are all SpanwiseStations. In this class the position of ribs and joints within the stations 

reference frame can be configured and the corresponding primitives (BasicRib, Joint) are created. Note that the exact 

position of a rib web does not have to match the stations reference plane, as for various reasons (e.g. alignment with 

respect to a joint) offsets and rotations may be applied. The side1_stringer_stations and primary_spar_stations are 

ChordwiseStations. In a ChordwiseStation the position of spars, stringers and joints within the stations reference frame 

can be configured and the corresponding primitives (BasicSpar, Joint, LStringer, HatStringer, etc.) are created.  
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Figure 4: In MDM position chordwise and spanwise stations to accommodate part primitives such as spars and ribs 
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Figure 5: Class diagram of the main part primitives BasicRib, BasicSpar, SkinPanel and *Stringer classes, each of 

which is a MaterialZone 
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The spar, rib, stringer and skin panel primitives consist of features most aeronautical engineers will expect and these 

are therefore not elaborated on here. However, to enable flexible subdivision, assignment of material properties and 

linking to analysis models, the abstract primitive MaterialZone was introduced. Depending on the aircraft or research 

project, there may be different needs in the level of detail of the material assignment or thickness distribution. The 

MaterialZone allows both defining very coarse models and very detailed models. Figure 5 shows the class diagram of 

the main part primitives on the left, which can all be seen to be specializations of the MaterialZoneTrunk and 

MaterialZone classes. The trunk is the highest level material zone, it is where the material library can be selected. 

Figure 6 illustrates the use of material zones. At the trunk level the complete primitive geometry is the material zone, 

in the example a spar_pattern has been applied to it, which means that based on reference planes from the spars, the 

trunk material zone is divided in three. When a MaterialZone is composed of MaterialZones, the parent material zone 

becomes a ‘branch’.  

All ‘leaf’ material zones are collected at the trunk level. In the example of Figure 6, since the outer material zones are 

not subdivided further, these are the leaves. A rib_pattern is applied to the center material zone, which becomes a 

branch zone. Finally a stringer_pattern is applied resulting in leaf material zones. Note that besides the patterns 

mentioned, other patterns are available such as from external geometry, span and chord fractions, absolute offsets, etc. 

Adding a new pattern is relatively straightforward.  

 

When an aircraft project required the modelling of holes in skin panels, the HoleMixin was implemented (see Figure 

5). As it applies on any primitive which is a MaterialZone, simply adding it as a mixin allowed holes to be available 

for ribs and spars as well. In many cases, analysis methods can be mapped to material zones instead of a very specific 

primitive, making it easy to add analysis capabilities (e.g. see Figure 7 and Figure 14).  
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Figure 6: Material zones of the example_wingbox_3 case. Left: representation of the material zones in the nested 

tree; Right: material zones in the ParaPy product tree 

3. Analysis  

The main objective of the MDM is to rapidly generate consistent multidisciplinary models. A disciplinary model will 

cover the creation of inputs for a specific disciplinary tool, the capability to trigger the execution of the tool and read 

back relevant results. 
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3.1 Integration in the product model  

The integration of analysis models is designed to anticipate for future changes in disciplinary tools and their API 

changes. As was explained in [2], each primitive in MDM has a primitive-specific class mixed in of the 

PartWithAnalysis type, where for each discipline a class type can be specified. This class effectively assigns 

disciplinary models for a specific primitive. The generic PartWithAnalysis class creates an instance of the Analysis 

class where each of the discipline specific class types is instantiated. No disciplinary models are instantiated if no class 

type has been specified in the PartWithAnalysis specialization.  

 

This mechanism is shown in Figure 7 for the BasicRib primitive. As the BasicRib inherits from a material zone trunk, 

it can be composed of sub-material zones. Due to the analysis model mapping shown, a BasicRib instance will have 

an instance of the RibOpenSourceCost, RibStress and RibC2F being instantiated in its analysis node. The sub-material 

zones will each have an instance of the MaterialZoneStress and RibC2F instantiated in the analysis node. As no open 

source cost model class is specified, no model will be created for the individual material zones.  
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Figure 7: Class diagram of the BasicRib primitive and the integration of analysis models 

 

This mechanism allows disciplinary analysis models to be associated to primitives without making the primitive 

definition model dependent on any of these disciplinary models. By not providing settings to the individual disciplinary 

models, they can be suppressed when generating an instance, hence allowing the use of the primitive without 

necessarily creating all the potential disciplinary models.  

 

The root of the product model has an analysis node where for each of the active disciplines a disciplinary model is 

instantiated that aggregates the disciplinary models of the primitives; is able to construct the product-level disciplinary 

model, execute the disciplinary tool if applicable and retrieve results. The aggregation is facilitated through a collector 

part that contains the logic to extract specific primitives from the product model. The root level disciplinary model 

provides discipline specific application settings, which can be accessed by the primitive-level disciplinary models. 

How this works is depicted in Figure 8. 
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Figure 8: Class diagram of the root product model and the integration of analysis models 
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The architecture implemented allows flexible linking of disciplinary models to primitives and makes it possible to add 

any number of disciplinary models without affecting the primitives or other disciplinary models. The approach can 

initially be complex to grasp for starters, although multiple people at the time of writing have been able to use and 

extend the disciplinary models. 

3.2 Available analyses    

The following disciplinary models are available in MDM: 

 

 Mass properties model: generates input for the in-house Python based mass estimation tool. Results can 

be obtained both at individual primitive level (e.g. only calculate the mass of a single stringer) and at 

complete product level. The latter effectively adds up the masses of primitives.   

 Project based cost model: generates input for the proprietary Excel based cost estimation tool. The tool 

can be executed to obtain results both at the complete product level and individual primitive level.  

 Open source cost model: inputs are created for the Python based CATMAC [10] tool and results can 

directly be obtained.  

 Finite Element Method (FEM) segmentation model: a fully segmented representation of the product 

surface geometry to be used for finite element meshes.  

 C2F model: interface to the in-house FEM pre- and postprocessor using PATRAN. Uses geometry from 

the FEM segmentation model.  

 FEM model: Model providing a ParaPy and Salome based finite element mesh and an interface to 

ABAQUS, see section 3.3. 

 Stress model: Model of stress analysis specific views of the product model, including a failure mode 

model and representation of results, see section 3.4. 

3.3 Finite element model 

The C2F model provides a Finite Element (FE) model of Critical Design Review level quality and is used in various 

aircraft programs. However, the application has relatively high runtimes and is limited to PATRAN/NASTRAN. In 

order to obtain more rapid mesh generation and an interface to the ABAQUS FE solver, the MDM FEM model has 

been developed. ParaPy provides libraries to interface with the Salome meshing package as well as interfaces to 

simulation solvers such as ABAQUS. These have been used to create a generic mesh model and an interface capable 

of generating ready-to-run ABAQUS input (.inp) files. Figure 9 shows an instance of the mesh for one of the standard 

MDM example cases and Figure 10 shows the imported model in ABAQUS. A comparison between cases evaluated 

in the C2F tool and in ABAQUS from the same MDM model showed only small difference. These differences are 

being studied as the model is under continued development.  

 

 

 
Figure 9: ParaPy developer GUI showing the MDM example_wingbox_3 case product tree and the mesh model 
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Figure 10: Screenshots of the example_wingbox_3 case exported to ABAQUS. Right side shows loads on the model, 

left side the total displacement magnitude. 

3.4 The stress model 

The stress model allows the evaluation of structural constraint, i.e. the calculation of reserve factors (RFs) for failure 

modes applying to a specific case. In practise, the failure modes that need to be evaluated can differ per case, or 

different methods/tools are to be used for their calculation. Some Original Equipment Manufacturers (OEMs) actually 

require their in-house tools to be used over GKN Fokker tools. The stress model implementation therefore provides 

stress analysis specific representations of the model, allows selecting specific failure modes, interfaces to various stress 

analysis tools and retrieval of results, i.e. the minimum RFs and corresponding loadcase and failure mode.  

 

Stress specific model representation: split material zone model 

Material zones are not necessarily split at each rib, spar and stringer, such as is the case in the left side of Figure 11 

where the trailing edge and leading edge are a single material zone. Some stress analysis models used require all 

material zones to at least be split at each spar, rib and stringer position. To handle these cases without bothering the 

user with the definition of irrelevant material zones, the split material zone model automatically adds virtual material 

zones, as depicted on the right side of Figure 11.  

 
  

Figure 11: Screenshots of the example_wingbox_3 case skin side 1. Left side: Main material zone model; Right: split 

material zone model. 

 

Stress specific model representation: buckling panel model 

Some stress methods such as the analytical calculation of buckling, require an idealized or simplified representation of 

the actual geometry. The buckling panel model identifies which material zones from a panel enclosed by stiffening 

elements (ribs, spars, stringers) and determines the equivalent flat rectangular panel dimensions. These dimensions can 

used in specialized buckling analysis software. Figure 12 shows the geometrical representation of the buckling panel 

model. 
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Figure 12: Screenshot of the example_wingbox_3 cases buckling panel model.  

For each skin panel (in purple) the equivalent rectangular panel is shown in orange. 

 

Interfaces to stress analysis tools 

The Python based ‘Stress Generator’ (SG) is a GKN Fokker proprietary tool to calculate reserve factors (RF’s) for a 

range of typical failure modes. This tool requires a number of XML and CSV files describing the model, load and other 

settings. The MDM stress model has a stress_gen_model node (class: SGRoot) of which the class diagram is shown in 

figure 13. SGRoot provides various settings as for example which version of SG to use, run directory definition, etc. 

As the tool needs load output from the CAD2FEM model, a dedicated fem_results node (class: StressGenC2F) ensures 

all CSV paths leading to the required C2F output data are available. For each primitive type category an SGPartGroup 

is created, where all the input files (XML and CSV) with part data and run settings are created. These are saved to the 

SG run directory. A method is available to directly execute the tool, which will subsequently produce various output 

files. The ResultsExtractor class (see Figure 13) has methods to extract specific data from the SG output files.  
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Figure 13: Class diagram of the Stress Generator interface model in MDM 

Another stress analysis tool that has been integrated is for the ESDU 03001 method (elastic buckling of composite 

stiffened panels and struts in compression). Using the buckling panel model (Figure 12) as input, the 

ESDU03001Model class defines ‘stringer regions’, i.e. sets of stringer sections with the adjoining skin panel sections 

from which the inputs required for the ESDU method are extracted. For each of the stringer regions, the ESDU 

executable can be automatically executed and the resulting panel buckling allowable values are extracted. Other stress 

tools can of course be added to the overall stress model as needed.  

 

Failure modes model 

The failure modes models class diagram is shown in Figure 14. For each primitive type a FailureModesGroup, visible 

at the top-center of the figure, is created where the failure modes that are to be analysed are selected. The selected 

failure modes are the active_failure_modes and for each of these an object is created where the calculation method can 

be selected. The method has to correspond to an extracted output from one of the stress analysis tool interfaces, such 

as the SG of the previous section. For example, if ‘notched_strength’ is set to active in CompositeStrength, the 
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CompositeNotchedStrength class is instantiated and allows the selection of a calculation method. Each calculation 

method corresponds to a specific tool and/or tool calculation settings. For example, for a SG method, the SG interface 

from the previous section will use these settings to properly set up the inputs for the tool. The output from the selected 

analysis method is collected in the failure mode object per material zone (min_rf_per_mz in Figure 15). 

Each individual material zone can retrieve its min_rf from the model, and at each level up in the failure modes product 

tree the minimum of the underlying RFs is selected as the min_rf, up to and including the FailureModesRoot. A 

dedicated visualization class allows the representation of the failure mode analysis results, including load case and 

failure mode. In the example of figure 15, material zones in red are violating the RF margin of 1.0, green zones have 

1.0 < RF < 2.0 and blue zone RF > 2.0.  It also shows that for some zones material strength is the critical failure mode, 

while for other zones it is buckling.  
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Figure 14: Failure modes model 

 
Figure 15: Screenshot of the example_wingbox_3 cases stress analysis results visualization. 

The structure of the failure modes model allows obtaining RFs using various method without needing to set up the 

individual tools as these are integrated according to standard ways of working. A new calculation method/tool can 

easily be integrated by adding a new calculation method to the failure mode object. This is advantageous, as changes 

in method do not affect MDM use cases that use the min_rf results. If, for example, notched strength needs to be 
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calculated, but instead of the SG method an OEM tool is required to be used, only this method needs to be added. Any 

sizing workflow would keep on using the min_rf value that was already available, only now it would be calculated by 

a different method.  

To support rapid sizing of an architecture in MDM, a basic pattern search has been implemented that will change 

material assignments for a material zone until a minimum viable RF has been found. This method can be executed 

with or without FEM convergence (i.e. re-evaluating the FE model based on a new material allocation).  

3.5 The manufacturability model 

Besides interfaces to stress models, the MDM also features interfaces to manufacturing models. Currently the most 

prominent features of these models are the Project based cost model and the Open source cost model. Both models are 

capable of estimating part cost of an aircraft component modeled in the MDM. In [10], the integration of the open 

source cost model named CATMAC is described in more detail. The integration of the cost model in MDM has shown 

that manufacturing can be taken into account on a similar level as the FEM and stress analyses presented in the previous 

sections. However to achieve the same fidelity level more detailed models are required that model not only part cost, 

but also the manufacturing workflows and other essential manufacturing aspects. Currently developments are 

underway to extend the MDM in this direction and some examples can be seen in Figure 16.  

 

  
Figure 16: Manufacturing items and methods library represented in the MDM 

4. Interacting with MDM 

There are several different ways of interacting with MDM, which interaction is used depends on the context in which 

MDM is used. In the most basic case, a user can interact directly with the MDM using file based or Graphical user 

interface (GUI) inputs. MDM can also be used as a service where MDM is running on a server and a user can set inputs 

and/or get data produced by the MDM from the server. Finally, MDM can also be packaged to work directly in 

optimization workflows.   

4.1 Direct Inputs and operation in a ParaPy development GUI 

To create the various models, MDM requires many inputs to operate. However many of these inputs are standardized 

and can be reused with minimal adjustment. When initializing MDM directly, so running MDM in a python script, the 

inputs are assigned to MDM via files. MDM uses python dictionaries as input items. These can be stored directly as a 

dictionary in a python file or they can also be stored as a JSON file. MDM can handle both types of input. The input 

dictionaries describe the aircraft component to be analysed and the environment in which to analyse. For example, the 

environment can set the variables for the Finite element or stress analyses. Besides the .py or JSON files containing 

the MDM configuration, other files might also be required. For example if the MDM bolts a structure inside an existing 

Outer Mould Line (OML) or uses other geometrical references, this OML and or references have to be provided using 

a STEP file. 

 

Once the MDM is loaded, it is visualized in the development GUI of ParaPy. In this GUI the user can adjust variables 

and inspect the geometry of the model. By adjusting and inspecting, the user can further fine tune the model. In the 

GUI, the user also has the possibility to apply certain filters. Enabling them to, for example, hide reference geometry 

and only focus on their items of interest. Once the user is satisfied with the configuration, they can also trigger the 

different analysis modules from the GUI and inspect the results from the analysis modules. The ParaPy GUI is shown 

in Figure 9. 
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Finally, the user can also store a configuration created in the GUI, including the analyses executed. The configuration 

is stored in a set of files consisting of an MDM JSON file and some files referenced from this main file. By using this 

option, a user can store the work from a ParaPy GUI session and continue at a later date. 

 

The direct input and operation approach is currently the most used at GKN Fokker and used extensively to support 

multiple aircraft component design projects. The interface is quite complex with many options and buttons and 

therefore needs trained users. In future more dedicated user interfaces will be developed to allow disciplinary 

specialists, such as stress or manufacturing specialists, to interact with the MDM model. 

4.2 MDM as a service: the pyMDM client 

Having most disciplinary tools integrated in MDM, these disciplinary tools no longer need to be added to the MDO 

workflow explicitly. Instead, the engineering service requesting a certain parameter such as the total cost can be called, 

which will automatically trigger the execution of the cost tool through the cost model. If the mass is required to 

calculate the cost, Parapy’s dependency tracking will automatically trigger the calculation of the mass without needing 

to add an additional step for it in the workflow. The product model remains available in memory and any changes to 

the model variables will invalidate the dependent analysis models. This approach allows describing the MDO workflow 

with service calls specific to the objectives and constraints of the MDO problem formulation. 

In order to make it possible to run an MDM instance and change it at runtime without needing to completely instantiate 

the model, a Flask based server has been created to host MDM instances. A separate package ‘pyMDM’ has been 

created to interact with the server to create instances, remove them, change variables and retrieve properties. Pymdm 

has been used to run Design of Experiments from RCE as explained in [11]. Figure 17 shows the main workflow where 

the initialize_mdm block adds an instance to the server and the set_get_mdm block changes specific variables and 

retrieves specific results, as specified in an XML input file, thereby making the workflow setup generic.   

 

 
Figure 17: Screenshot RCE workflow with an initialize_mdm block and set_get_mdm block 

4.3 Optimization 

MDM can also be used in optimization workflows. How MDM is packaged in such a case depends on the workflow 

manager used and the characteristics of the workflow that is run.  

One case of using MDM in a workflow is described in [5]. In this case, the MDM is part of a workflow to optimize a 

flap. In the workflow, MDM is used several times. Firstly to create the flap geometrical and FEM model and secondly 

to estimate the flap weight. In both cases, MDM is run as a python script with a file input describing the flap to be 

analyzed. In case of AGILE 4.0, CPACS is the standard communication format, this is an open source XML format 

for describing aircraft systems. MDM interprets this CPACS configuration file plus a set of standard .py files to 

generate a model and update the CPACS file with analysis results.  

Another case where MDM is incorporated into a workflow is the DEFAINE use case. In this case the MDM server is 

used and services are requested from this sever when needed. This process is described in detail in [11] 
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5. Application cases 

The MDM is actively used in various aircraft programs, for which the data is confidential. In order to develop new 

features and test the MDM models, an example case representative for an Electric Vertical Take-off and Landing 

(eVTOL) aircraft wing ‘example_wingbox_3’ has been added to the standard MDM examples. Figures 6, 11 and 12 

show representations of this model. Besides aircraft programs the MDM has also been used in EU-subsidized projects, 

two of which are briefly described in the sections below. 

5.1 AGILE 4.0 use case 

The AGILE 4.0 project focused on applying Model Based Systems Engineering (MBSE) techniques to multi-objective 

optimization problems. In this context, the MDM was used to model flaps of a 90 passenger regional jet. Detailed 

results of this study are available in [4]. To support the creation of a surrogate model of the flap weight and cost 

,multiple flap sizes were modeled using the MDM. Besides the wing structure, the structure of the flap mechanisms 

were also modeled and two different mechanism types were evaluated, examples of which can be seen in Figure 18. 

  
Figure 18 Two flaps modelled for the Agile 4.0 project. Left a flap with a large chord and a standard kinematic 

solution. Right a small chord flap with an advanced kinematic solution 

 

5.2 DEFAINE use case 

In the DEFAINE project, the objective is to perform design space exploration for the aileron structure architectures of 

an Unmanned Air Vehicle (UAV). The objectives of this optimization are total mass of the aileron and total cost. In 

this case, the number of ribs, number of hinges, hinge positions of the aileron and material types (AL2024, 

thermoplastic composites, thermoset composites, thermoset with honeycomb) are varied, and the aileron is sized. This 

means that the material properties are determined, for which a reserve factors of more than 1.0 is achieved. The 

resulting material specifications can be inspected in the MDM (Figure 19). As a preliminary step towards full design 

space exploration using the new architecture optimization methods, multiple design concepts were analysed in a Design 

Of Experiments (DOE), resulting in a plot shown in Figure 20. The pareto front consists of configurations made from 

thermoplastic composites.   

 

skin1

skin2

 
Figure 19: DEFAINE aileron with sized material properties. Each colour represents a different material lay-up. 
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Figure 20 DOE results for the DEFAINE aileron architecture optimization case 

6. Conclusion 

This paper has shown how the Multidisciplinary Modelers (MDM) package is at the heart of design automation at 

GKN Fokker. Its ability to model wing-like structures and to link these models efficiently to analysis tools has enabled 

the automation of the engineering design process for aircraft components. The MDM is set up modularly, which will 

facilitate extending its capabilities. The multiple ways MDM can be used or be provided data, via a server or direct, 

has enabled it to be applied to multiple industrial design cases and in multiple subsidized collaboration projects.  

To increase its capability MDM will be continuously developed. Some of these future developments will be: 

 Web Graphical User Interface, to make using  MDM easier for disciplinary specialist from for example stress or 

manufacturing a web GUI will be developed that provides specific views on a product for the specific specialist. 

 Tip to tip wing, currently only one side of a wing is modelled. In the future, the modelling of a complete tip-to-tip 

wing will be enabled. This will eliminate certain problems that currently arise, for example when that are 

symmetries in a wing. 

 Fuselage model, a big next step is the addition of a fuselage model to the MDM, this is described in more detail 

in [9] 

 

MDM will continue to be at the heart of the engineering automation effort at GKN aerospace. Enabling to respond 

quickly to customer requests and supply the best engineering solutions to its customers. 

Acknowledgement 

The research presented in this paper has partially been performed in the framework of the DEFAINE (Design 

Exploration Framework based on AI for froNt-loaded Engineering) project and has received funding from 

ITEA 3 programme. 

References 

[1] A.H. van der Laan, T. van den Berg, L. Hootsmans, "Integrated Multidisciplinary Engineering Solutions at Fokker 

Aerostructures", 5th CEAS Air and Space Conference, Delft, 2015 

[2] T. van den Berg, A.H. van der Laan, "A multidisciplinary modeling system for structural design applied to aircraft 

moveables", AIAA AVIATION 2021 FORUM, VIRTUAL EVENT, 2021. 

[3] La Rocca, G. “Knowledge Based Engineering: Between AI and CAD. Review of a language based technology to 

support engineering design.”, Advanced Engineering Informatics, vol. 26, no. 2, pp. 159-179., 2012. 

[4] Parapy, "The ParaPy platform " [online]. URL : https://parapy.nl/features/ [retrieved 10 January 2023] 

[5] A.H. van der Laan et. al., “Bringing Manufacturing into the MDO domain using MBSE”, AIAA AVIATION 

2022 FORUM, Chicago, 2022 

DOI: 10.13009/EUCASS2023-097



A multidisciplinary modelling system for aircraft structural components 

     

 15 

[6] A.M.R.M. Bruggeman, “An MBSE-Based Requirement Verification Framework to support the MDAO Process”, 

AIAA AVIATION 2022 FORUM, Chicago, 2022 
[7] M. Baan, et. al., “DEFAINE – Design Exploration Framework based on AI for front-loaded Engineering: 

Achievements and Open Challenges”, submitted to Joint 10th EUCASS-9th CEAS Conference, 
[8] J.S. Sonneveld, A.M.R.M. Bruggeman, G. La Rocca, T. van den Berg, B. van Manen, “Dynamic workflow 

generation applied to aircraft moveable architecture optimization”, submitted to Joint 10th EUCASS-9th CEAS 

Conference, Lausanne, 2023 
[9] B. van Manen, T. van den Berg, A.H. van der Laan, B. Timmer, “A multidisciplinary modeling system for 

designing fuselage structures: Extending the Multidisciplinary Modeler”, submitted to Joint 10th EUCASS-9th 

CEAS Conference, Lausanne, 2023 
[10] A.H. van der Laan et. al., “An open source part cost estimation tool for MDO purposes”, AIAA AVIATION 

2020 FORUM, online, 2020 
[11] Jente S. Sonneveld et. al, “Dynamic workflow generation applied to aircraft moveable architecture optimization“, 

CEAS 2023, Lausanne 

[12] La Rocca, G. “Knowledge Based Engineering Techniques to support Aircraft Design and Optimization”, PhD 

thesis, Delft University of Technology, 2010. 

[13] van den Berg, T., “Harnessing the potential of Knowledge Based Engineering”, PhD thesis, Delft University of 

Technology, 2013.“ 

DOI: 10.13009/EUCASS2023-097




