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Abstract 

Accurate aerodynamic modeling is crucial for understanding and optimizing the behavior of aircraft 

systems. This work presents a novel approach to developing a low-cost yet high-fidelity aerodynamic 

model using machine learning techniques and experimental flight data from a reduced-scale Generic 

Future Fighter (GFF). The proposed model leverages Neuro-Fuzzy combined with Differential 

Evolution for training the acquired data, while employing a Fuzzy Rule-Based System (FRBS) with 

Gaussian-shaped membership functions for inputs. By effectively predicting forces and moments based 

on input variable values, the developed model serves as a tool for system identification specific to the 

aircraft under investigation. The results shows that the Neuro-Fuzzy has a good adaptability to this kind 

of identifications. 

1. Introduction

The usage of artificial intelligence (AI) and machine learning (ML) in the field of aerodynamics predictions started 

with airfoil lift curve predictions using sparse data and artificial neural networks (ANN) [1] and has been increasingly 

required through the years. In the present time, there have been a lot of publications using the ML techniques to predict 

the unsteady aerodynamics model from numerical or experimental data.  

The Neuro-Fuzzy technique, based on the literature review, is a good ML technique to predict the unsteady 

aerodynamics of an aircraft. [2] presented a full aerodynamic model obtained through experimental data of a full-size 

aircraft using Neuro-Fuzzy and very rich data set, including maneuvers and aleatory deflections of the control surfaces. 

Also, [3] obtained the stability derivatives of a full-size aircraft using Neuro-Fuzzy with Genetic Algorithms, the 

training was also performed using experimental data. 

In terms of the absence of trustful experimental data, [4] designed a reduced-scale version of Cessna 182 and simulated 

the remote-controlled aircraft in a flight simulator environment. The authors acquired good results with the numerical 

data exported from the flight simulator. In addition, the Neuro-Fuzzy with Differential Evolution (NF-DE) behaved 

with high robustness and good accuracy. 

Trusting in the robustness of the NF-DE, this work’s main objective is to develop a low-cost (in computational terms) 

yet high-fidelity aerodynamic model using experimental flight data from a reduced-scale Generic Future Fighter (GFF). 

Such a model has the potential to reduce the reliance on expensive and time-consuming physical experiments or even 

CFD simulations, which consume several times for a large flight envelope, allowing for more efficient design iterations 

and performance evaluations. Additionally, the proposed model can serve as a valuable tool for system identification, 

accurately describing the behavior of the GFF based on input variable values. The exploration of potential applications, 

such as the development of a reduced-scale flight test simulator for new fighters, further underscores the practical 

significance of this research. 

The aim is to capture the flight mechanics of the GFF and create an accurate model that can predict forces and moments 

for the aircraft. This research endeavors to contribute to the advancement of aerodynamic modelling techniques, 

providing valuable insights for aircraft design and simulation. 
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2. Methodology 

This section describes the fuzzy rule-based systems (FRBS), the Neuro-Fuzzy architecture, and the GFF’s non-inertial 

body-axis flight dynamics. 

2.1 Fuzzy Rule Based System 

The FRBS contains four components: the input processor, the rule bases, the inference machine, and the output 

processor [5]. These components can be seen in Figure 1, and their description are listed below. 

 

Input processor – The input processor converts real numbers into fuzzy sets with a degree of membership. This 

process is also known as fuzzification. 

 

Rule bases – The rule bases within the Fuzzy Rule-Based System (FRBS) can be seen as linguistic interpretations of 

the system behavior, forming the core of the FRBS. There rule bases are created based on specialist knowledge using 

IF...THEN type prepositions. This crucial step establish the relationships between the linguistic variables. Allowing 

for the interpretation and reasoning of the system outputs based on the inputs. 

 

Inference machine – The inference machine establishes the correlation between the input fuzzy sets with the output 

fuzzy functions (Takagi-Sugeno method), and the association is oriented by the rule bases. 

 

Output processor – The output processor performs the defuzzification, which is the process of converting the value 

of the output functions back into real numbers through a weight pondered equation. 

 

 
 

Figure 1 - FRBS architecture 

This work used the Takagi-Sugeno (TS) inference method in the FRBS to train the Neuro-Fuzzy. This inference method 

manages the output as functions dependent on the input variables. These output functions incorporate parameters that 

serve as multipliers for the input variables. By adjusting these parameters, the TS method allows for fine-tuning and 

customization of the output functions to accurately represent the relationship between the inputs and outputs, resulting 

in precise and tailored modelling of the system behavior.  

 

To better describe the TS inference method, the two following rules are proposed [5]. The architecture of TS inference 

method is shown in Figure 2. 

 

Rule 1: If (X is 𝑨𝟏 AND Y is 𝑩𝟏) THEN (Z is 𝒛𝟏) 

 

Rule 2: If (X is 𝑨𝟐 AND Y is 𝑩𝟐) THEN (Z is 𝒛𝟐) 
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Figure 2 - Takagi-Sugeno inference method 

2.2 Neuro-Fuzzy 

The Neuro-Fuzzy is a ML technique which combines the interpretability of the FRBS with the adaptability of the 

ANN [6]. The architecture of the Neuro-Fuzzy with the description of each layer responsibility is described below. 

 

 
Figure 3 - Neuro-Fuzzy architecture 

The Neuro-Fuzzy architecture counts with five layers, which can be described as: 

 

Layer one: Each node in this layer receives a single input variable 𝐼𝑖(𝑘) for the training process. The output of the 𝑖𝑡ℎ 

node in the first layer at time 𝑘, denoted as 𝑢𝑖
(1)

(𝑘), is equal to the input variable 𝐼𝑖(𝑘). 

 

𝑢𝑖
(1)(𝑘) = 𝐼𝑖(𝑘) (1) 

 

Layer two: In this layer the fuzzification of input variables is performed, that is, the real numbers are transformed into 

Fuzzy subsets with a certain degree of pertinence. The membership functions (MF) are built for the description of the 

inputs. Considering that the membership functions are approximated by Gaussian functions, the output of node 𝑖𝑗 from 

layer 2 at time k, 𝑢𝑖𝑗
(2)

(𝑘), is given by: 

𝑢𝑖𝑗
(2)(𝑘) = 𝑒

−
(𝑢𝑖

(1)
(𝑘)−𝑚𝑖𝑗(𝑘))

2

2𝜎𝑖𝑗
2 (𝑘)

 

(2) 

Layer three: The rule bases consist of prepositions of the type IF…THEN…, forming the correlation between input 

sets and output functions of the Adaptive Neuro-Fuzzy Inference Systems (ANFIS). For each rule, the logical operator 

AND and OR are applied, which corresponds to the minimum and maximum respectively. The output from the L node 

of the third layer (𝑢𝐿
(3)

(𝑘)) is a function of the layer 2 for the selected output from rule 𝑅𝐿. 
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Layer four: The nodes from this layer are known as consequent nodes, and they are defined as a function (output 

function) 𝑓𝐿: 𝑅𝑛 → 𝑅 in which 𝑓𝐿 = 𝑓(𝐼1, … , 𝐼𝑖 , … , 𝐼𝑛 , 𝑤1𝐿 , … , 𝑤𝑗𝐿 , … , 𝑤𝑜𝐿 , 𝑘), where 𝑤1𝐿 , … , 𝑤𝑜𝐿  are weights that are 

determined in the ANFIS training optimization. Thereby, the output from node 𝐿 of the fourth layer, 𝑢𝐿
(4)

(𝑘), is 

calculated as: 

 

𝑢𝐿
(4)

= 𝑢𝐿
(3)(𝑘)𝑓𝐿(𝐼1, … , 𝐼𝑖 , … , 𝐼𝑛 , 𝑤1𝐿 , … , 𝑤𝑗𝐿 , … , 𝑤𝑜𝐿 , 𝑘) (3) 

 

Layer five: The last layer is responsible for providing the ANFIS result, through a pondered weight estimation given 

by the following equation: 

𝑂(𝑘) = −
∑ 𝑢𝐿

(4)
(𝑘)𝑅

𝐿=1

∑ 𝑢𝐿
(3)

(𝑘)𝑅
𝐿=1

 
(4) 

2.3 Differential Evolution 

The differential evolution (DE) is used to optimize the Neuro-Fuzzy parameters, which are the mean and standard 

deviations from the membership functions used to model the input variables, and the output functions. 

 

 
Figure 4 - Differential evolution scheme representation 

The parameters for the DE are shown in Table 1. The training time takes around 4-5 hours to be complete using the 

parameters presented below. 

 

Table 1 - Differential evolution parameters 

Parameter Value 

Number of individuals 150 

Number of variables 25 

Crossing probability 0.95 

Mutation probability 0.4 

 

2.4 GFF flight dynamics 

The Generic Future Fighter (GFF) is a 13% scale representation of a 5th generation fighter, and conceptual design was 

developed by SAAB aeronautics. The subscale aircraft was built by Linköping University [7]. For this aircraft, [8] 

created a low-cost instrumentation to acquire the aerodynamic data through experimental flights. The aircraft is 

equipped with onboard devices, e.g., Pixhawk, which records the acceleration, the attitude angles rate, the velocity, the 

sideslip angle, the angle of attack, and more. The Figure 5 shows the 6 degrees of freedom (DOF) from the reduced 

scale GFF. 

 

According to [9], the forces that acts in the non-inertial body axes of the aircraft can be obtained with the Equations 5, 

6 and 7. 
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𝑎𝑋𝑐𝑔
=

𝑋

𝑚
= (�̇� + 𝑄𝑊 − 𝑅𝑉 + 𝑔 sin 𝜃) 

 

𝑎𝑌𝑐𝑔
=

𝑌

𝑚
= (�̇� + 𝑈𝑅 − 𝑊𝑃 − 𝑔 cos 𝜃 sin 𝜙) 

 

𝑎𝑍𝑐𝑔
=

𝑍

𝑚
= (�̇� + 𝑉𝑃 − 𝑄𝑈 − 𝑔 cos 𝜃 cos 𝜙) 

(5) 

 

 

(6) 

 

 

(7) 

 

 
 

Figure 5 - GFF 6 DOF 

The moments around the non-inertial body axes, depends on the derivative of the roll, pitch, yaw, and the inertial 

moments. The moments that act in the GFF’s center of gravity can be described in Equations 8, 9 and 10, according to 

[7]. 

  

𝐿 = 𝐼𝑋𝑋�̇� − 𝐼𝑋𝑍(�̇� + 𝑃𝑄) + (𝐼𝑍𝑍 − 𝐼𝑌𝑌)𝑄𝑅 

 

𝑀 = 𝐼𝑌𝑌�̇� + 𝐼𝑋𝑍(𝑃2 − 𝑅2) + (𝐼𝑋𝑋 − 𝐼𝑍𝑍)𝑃𝑅 

 

𝑁 = 𝐼𝑍𝑍�̇� − 𝐼𝑋𝑍�̇� + (𝐼𝑌𝑌 − 𝐼𝑋𝑋)𝑃𝑄 + 𝐼𝑋𝑍𝑄𝑅 

(8) 

 

(9) 

 

(10) 

 

Where 𝐼𝑋𝑋, 𝐼𝑌𝑌 , 𝐼𝑍𝑍 are the inertial moments and 𝐼𝑋𝑍 is the product of inertia, which is equal 0 for this aircraft. The 

inertial moments values are 0.56, 5.28 and 5.56, respectively. Also 𝑃 is the roll rate, 𝑄 is the pitch rate and 𝑅 is the 

yaw rate. 

 

3. Results 
 

This section is going to present the aerodynamic model for each DOF of the GFF obtained with the Neuro-Fuzzy. The 

training and validation graphs are going to be presented. For the training and validation 35,000 and 11,000 data points 

have been used respectively. To evaluate the accuracy of the trainings and validations, the coefficient of determination 

(𝑅2) is applied. 

 

The input variables were adjusted and scaled to a normalized range of 0 to 1. This normalization facilitated the process 

of modifying the input variables when necessary, as they were now represented within a standardized and consistent 

range. 

 

3.1 Longitudinal 

 
The longitudinal forces and moments are the force in X-axis, the force in Z-axis, and the moment around Y-axis (pitch 

moment M). 

 

3.1.1 Force X 
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The force X coefficient is calculated with Equation 5, where 𝑇 is the thrust of the GFF. The training and validation 

graph can be observed in Figure 6. The coefficient of determination for the training is 44%, and for validation is 46%. 

 

 
 

Figure 6 - X force coefficient 

After accomplishing the training, the input membership functions parameters are available and illustrated in Figure 7. 

Table 2 is presenting the membership functions parameters for the angle of attack, the elevator deflection, and the 

pitching rate. Also, the Table 3 shows the output constant functions optimized for 𝐶𝑋. 

 

 
Figure 7 - Membership functions for the input variables of 𝐶𝑋 

Table 2 – Means and standard deviations for the input membership functions referred to 𝐶𝑋 

 Mean Standard deviation 

𝛼 (0.0677 0.8000 0.9629) (0.0731 0.3000 0.2270) 

𝛿𝐸 (0.4000 0.3000 1.0000) (0.3000 0.1559 0.0100) 

𝑞 (0.0835 0.3102 0.9651) (0.0927 0.3000 0.0100) 

 
Table 3 - Optimized outputs for X force coefficient 

Output Consequent 

𝐶𝑋 (-0.0737 -0.0800 -0.0300 -0.0382 -0.0151 0.0300 0.0400) 

 
The stability derivatives for the tangential force coefficient can be observed in Figure 8. The most influent variable 

for this force is the angle of attack. 
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Figure 8 - Stability derivatives for 𝐶𝑋 

3.1.2 Pitch Moment 

 
The pitch moment is calculated using the Equation 9, and the input variables used to model this moment coefficient 

aerodynamically were: elevator deflection, aileron deflection and angle of attack rate. The coefficient of determination 

for the training is 60% and for validation is 44%. The Figure 9 shows the training and validation graphs. 

 

 
Figure 9 - Pitch moment coefficient 

The shape of the input’s membership functions can be observed in Figure 10, while the parameters from the MF are 

shown in Table 4. The output values for the seven constant functions are illustrated in Table 5. 

 

 
Figure 10 - Membership functions for the input variables of 𝐶𝑚 

 
Table 4 - Means and standard deviations for the input membership functions referred to 𝐶𝑚 

 Mean Standard deviation 

𝛿𝐸 (0.3760 0.7017 0.7106) (0.2166 0.2156 0.2439) 

𝛿𝐶 (0.0000 0.4000 0.9726) (0.0100 0.2500 0.0100) 

�̇� (0.1121 0.4152 0.8551) (0.1986 0.1401 0.2430) 
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Table 5 - Optimized output functions for pitch moment coefficient 

Output Consequent 

𝐶𝑚 (-0.040 -0.0493 -0.0137 0.0200 0.0112 0.0277 0.0458) 

 

The stability derivatives for the pitch moment coefficient are presented in Figure 11. The most influential variable is 

the elevator deflection. The canard deflection is linked to the elevator deflection, and it is inversely proportional to 

that. 

 

 

Figure 11 - Stability derivatives for 𝐶𝑚 

3.1.3 Force Z 

 

The force coefficient in Z-axis is the most accurate degree of freedom. The input variables are the same used to train 

the 𝐶𝑋, which are: angle of attack, elevator deflection and pitching rate. The coefficient of determination for the training 

is 96% and for validation is 88%. The Figure 12 shows the training and validation graphs. 

 

 
Figure 12 - Z force coefficient 

The membership functions for the three input variables can be observed in Figure 13. The parameters used to build the 

Gaussian functions are shown in Table 6. 

 

DOI: 10.13009/EUCASS2023-094



SHORT PAPER TITLE 

     

 9 

4 
Figure 13 - Membership functions for the input variables of 𝐶𝑍 

 
Table 6 - Means and standard deviations for the input membership functions referred to 𝐶𝑍 

 Mean Standard deviation 

𝛼 (0.2697 0.6329 0.8465) (0.2389 0.0000 0.2500) 

𝛿𝐸 (0.1437 0.6366 0.9877) (0.2500 0.2205 0.2500) 

𝑞 (0.1246 0.4866 0.8905) (0.0864 0.2500 0.1182) 

 
The constant functions for the 𝐶𝑍 is shown in Table 7. 

 

Table 7 - Optimized output functions for Z force coefficient 

Output Consequent 

𝐶𝑍 (-1.2157 -1.0222 -1.1000 -0.9000 -0.2054 -0.0343) 

 

The stability derivatives for the vertical force coefficient is presented in Figure 14. 

 

Figure 14 - Stability derivatives for 𝐶𝑍 

In conclusion, the stability derivatives in the longitudinal axes unequivocally demonstrate that the angle of attack is 

the most critical variable, followed by the elevator deflection and the pitching rate. 

 

3.2 Lateral-Directional 

 
The lateral-directional encompass the force in Y-axis, the moment around X-axis (roll moment L), and the moment 

around Z-axis (yaw moment R). 

 

3.2.1 Roll Moment 

 

The roll moment coefficient is a little tricky to guarantee a good training, especially for aircrafts with low inertia 

moments like the GFF. To achieve a reasonable fit, three input variables was used: sideslip angle, sideslip angle rate 

and aileron deflection. The coefficient of determination for the training is 31%, which is a low 𝑅2. However, for the 

validation is 41%. The Figure 15 presents the training graph (on the left side) and the validation graph (on the right 

side). 
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Figure 15 - Roll moment coefficient 

The membership functions for the three input variables can be seen in Figure 16, and the parameters from these MFs 

are presented in Table 8. Table 9 shows the output variables for the seven consequent functions. 

 

Figure 16 - Membership functions for the input variables of 𝐶𝑙 

Table 8 - Means and standard deviations for the input membership functions referred to 𝐶𝑙 

 Mean Standard deviation 

𝛽 (0.3717 0.6241 0.7766) (0.2809 0.1829 0.3000) 

�̇� (0.0121 0.5100 0.8690) (0.0604 0.2453 0.2147) 

𝛿𝐴 (0.0860 0.6701 0.8584) (0.2397 0.2615 0.1113) 

 

Table 9 - Optimized output functions for roll moment coefficient 

Output Consequent 

𝐶𝑙 (-0.0104 -0.0063 -0.0008 0.0008 0.0042 0.0119 0.0128) 

 
The stability derivatives for the roll moment coefficient can be seen in Figure 17 below. The sideslip angle has a crucial 

influence in the prediction of 𝐶𝑙. 
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Figure 17 - Stability derivatives for 𝐶𝑙 

3.2.2 Force Y 

 
The force in the Y-axis has three input parameters, which are: sideslip angle, angle of attack, and sideslip angle rate. 

The accuracy of the aerodynamic model is measured with the coefficient of determination, and in this case the value 

is 64% for the training, and 76% for the validation data set. The training and validation graph are presented in               

Figure 18. The membership functions shape used to describe the fuzzy sets of the input variables are Gaussians, and 

they are illustrated in Figure 19. 

 

 

Figure 18 - Y force coefficient 

 
Figure 19 - Membership functions for the input variables of 𝐶𝑌 

The parameters of the Gaussian functions for the three input variables used to model the Y-axis force coefficient are 

presented in Table 10. 
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Table 10 - Means and standard deviations for the input membership functions referred to 𝐶𝑌 

 Mean Standard deviation 

𝛽 (0.0084 0.4054 0.8465) (0.1566 0.1986 0.1198) 

𝛼 (0.0075 0.4156 0.6713) (0.0657 0.1723 0.1961) 

�̇� (0.0051 0.4328 0.8548) (0.1942 0.1974 0.1154) 

 

 
The output functions are modelled as constant parameters, and they are presented in the Table 11 below. 

Table 11 - Optimized output functions for Y force coefficient 

Output Consequent 

𝐶𝑌 (-0.0725 -0.0281 -0.0178 0.0024 0.0217 0.0694 0.0666) 

 
The stability derivatives for the side force coefficient are presented in Figure 20. There is a slight difference between 

the influences in this case, and the sideslip angle seems to be the most influent input variable in this case. 

 

 

Figure 20 - Stability derivatives for 𝐶𝑌 

3.2.3 Yaw Moment 

 
The yaw moment is the moment around the Z-axis of the non-inertial body axis of any aircraft. In this study, the input 

variables used to model this moment are aileron deflection, rolling rate and sideslip angle rate. The accuracy for the 

training data set is 80%, and for the validation data set is 74%. The training graph and the validation graph can be 

observed in Figure 21. The membership functions for the input variables are presented in Figure 22. 

 

 

Figure 21 - Yaw moment coefficient 
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Figure 22 - Membership functions for the input variables of 𝐶𝑛 

The means and standard deviations for all the nine membership functions of the input variables are presented in the 

Table 12. 

 
Table 12 - Means and standard deviations for the input membership functions referred to 𝐶𝑛 

 Mean Standard deviation 

𝛿𝐴 (0.2325 0.4690 0.8880) (0.1854 0.1401 0.1764) 

𝑝 (0.0839 0.4276 0.7718) (0.0603 0.1355 0.0124) 

�̇� (0.2388 0.5274 0.7865) (0.1824 0.1504 0.1765) 

 
At least, the coefficients from the seven output functions optimized for the 𝐶𝑛 can be observed in Table 13. 

 

Table 13 - Optimized output functions for yaw moment coefficient 

Output Consequent 

𝐶𝑛 (-0.0099 -0.0079 -0.0017 0.0019 0.0061 0.0099 0.0130) 

 

The stability derivatives for the yaw moment coefficient are shown in Figure 23. The roll rate does not have a crucial 

effect on the validation data set. The aileron deflection and the sideslip angle rate are essential for predicting the 𝐶𝑛.   

 

 
 

Figure 23 - Stability derivatives for 𝐶𝑛 

 

All the validations are calculated between 80 to 110 milliseconds, which makes this approach a fast model and 

simulation tool. However, the training time requires to be analyzed on ground, due to fact that the training time needs 

between 3 to 5 hours to be completed. 

 

This chapter presented all the training and validation graphs for the 6 DOF of the GFF, followed by the membership 

functions shapes and parameters of all input variables. The results also presented the seven consequent functions for 

every force and moment.  
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4. Conclusion 

 
This study presented a machine learning technique able to understand and model the dynamic of a reduced scale RC 

piloted aircraft. The results certify that the Neuro-Fuzzy can be applied in the unsteady aerodynamic model acquisition.  
 
The force coefficient in the X-axis does not perform a good training and a good validation due the fact of the 

uncertainties of the trust approximation from the GFF. It is a little tricky to predict with high precision the value of the 

reduced scale ram jet used in the subscale aircraft. 

 

The pitch moment provides a good training, with 60% accuracy. However, the validation accuracy is low, which means 

that the validation set could be influenced by wind perturbations that were captured by the sensors, which has no 

correlation with input variables. 

 

The roll moment is the most difficult parameter to model in the GFF’s case. It happens because the inertia moment 

around X-axis (𝐼𝑋𝑋) is very low, equal to 0.56. This maybe explain the very low correlation between the moment and 

its input variables, most of the time the aircraft is being perturbed by the wind speed instead of the control surfaces or 

the attitude angles. 

 

The Z-force coefficient, the yaw moment coefficient and the Y-force coefficient has a good correlation coefficient for 

the training and for the validation, although they can be improved more by adding one or two input variables. However, 

the computation cost will be increased, which requires a better computer to perform the training. 
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