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Abstract
This work develops a new cost-efficient solver to formulate fuel-optimal control problems: in particu-
lar, Alternating Direction Method of Multipliers and Model Predictive Control are used to close the gap
between L1 and L2 optimization in classical astrodynamics problems. The combination of these two algo-
rithms allows to render general NLP fuel-optimal problems solvable by Linear Programming techniques
independently of the fuel-consumption proxy used. Moreover, their low footprint makes them a solid can-
didate for real-time, embedded applications. These novel techniques are applied to several rendezvous and
orbital transfer test cases in both the Keplerian and the Circular Restricted Three-Body Problems, together
with impulsive attitude slews.

1. Introduction

Optimal control problems are ubiquitous within astrodynamics and general mission design of aerospace vehicles, in
which tight performance constraints exist. Along this line, fuel-optimal performance is of vital interest, as carrying
additional fuel is contrary to payload capacity. The design of fuel-optimal state trajectories is a major challenge is
space dynamics for which no closed solution can a-priori be found.

Despite the vast literature and effort on the topic, Optimal Control Theory is still an open line of research just
leaving its infancy, especially with regards to Real Time Optimal Control onboard legacy systems. The design of
optimal control laws is constrained by the need to solve complex nonlinear programming problems (NLP) associated
to a Hamiltonian Minimization Condition, either in the form of Pontryagin’s Maximum Principle or the complementary
Hamilton-Jacobi-Bellman PDE equation.1 The reduction of such computational burden is always a desirable goal and
is actually the main focus of this work.

Fuel optimal problems are a prominent problematic in space dynamics optimization since the very times of
the foundation of modern Optimal Control Theory and the celebrated question by Edelbaum.2 In fact, in the late
1960s, Primer Vector Theory (PVT) was born, as the result of the application of Pontryagin’s Maximum Principle to
the problem of impulsive space trajectory optimization. In this sense, the seminar work of Lawden, Neudstadt, Potter,
Prussing et al.3–6 remains as a solid foundation for the latest developments in the field,7, 8 although numerical techniques
are now predominant over analytical studies. In this sense, convex optimization and Model Predictive Control (MPC)
are becoming standard technologies for general optimal control.9 Recent advances have led to the introduction of
alternative solving strategies within space dynamics convex optimization, such as Alternating Direction Method of
Multipliers (ADMM), as shown in Le Cleac’h and Manchester;10 which also already shows relevant applications in
combination with MPC schemes.11, 12

Compared to previous literature, this communication presents novel formulations of general constrained fuel-
optimal control problem through modern optimization techniques, mainly ADMM and MPC, founded on classical
PVT results. These techniques allow to establish a cost mapping principle between fuel-optimal and quadratic-cost
problems; moreover, compared to previous works, the latter are solved exploiting their dual-problem formulation, for
which a simple close-form solution exists in the form of a root-finding problem. Under this new paradigm, general NLP
fuel-optimal problems are rendered solvable by Linear Programming, inexpensive techniques. The low footprint of the
proposed algorithms makes them a solid candidate for real-time, embedded applications, providing optimal solutions
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at nearly null expenses. The proposed solvers are applied to several rendezvous missions to objectively assess their
performance. Additionally, the same methodology is applied to the design of rest-to-rest attitude slews.

The remainder of this paper is organized as follows. Section 2 introduces an abstract formulation of the general
optimal constrained linear regulation problem, with remarks to general in-orbit rendezvous and attitude control. Some
classical results on Primer Vector Theory are presented in Section 4, on which further developments presented in this
work are built, together with their intrinsic analytical and computational problematics. The mathematical algorithms
exploited in the proposed solutions are detailed in Section 5, where some fundamentals in the Theory of Proximal
Operators and Alternating Direction Method of Multipliers are discussed. Sections 6 and 7 details the numerical and
computational, close-form recursive solutions proposed to solve the original regulation problems, while Section 9
provides several real-case mission scenarios to validate and verify their performance and design. Finally, open lines of
research and key takeaways are summarized in Section 10.

2. Optimal Linear Impulsive Regulation in Space Dynamics

This Section introduces the problems of interest to be solved in this paper: given their relevance in space dynamics,
optimal impulsive regulation of general dynamical systems will be the focus of our study.

2.1 The General Regulation Bolza Problem

In fact, the objective of this paper is to propose novel algorithmic solutions to realizations of the following affine
optimal control problem

arg min
u ∈U

J = G (s(t f ), s(0), t f , t0) +
∫ t f

t0
l (s,u, t) dt

subject to ṡ = f(µ, s) + B(t) u ,
s(t0) = s0 ,

s(t f ) = 0 ,
g(µ, s) = 0 ,
h(µ, s) < 0 ,
umin ≤ ∥u∥p ≤ umax ,

(1)

where the state of the dynamical system is described by the vector s and whose first-order evolution with respect to the
independent variable t is governed by the vector field f, characterized by a set of parameters µ and the control vector
field u.

The solution is given by the determination of the phase space flow s∗(t) and control application u∗(t) minimizing
the cost function J while satisfying the boundary conditions equalities g and path constraints h. In the latter case, ∥u∥p
denotes the p-norm of the control action u, which can be used to promote either control sparsity, or to model actuation
saturation and control authority penalties.

The differential equations for the state dynamics can be however expressed in a more convenient way for our
purpose. Indeed, in the design of guidance and control schemes, the following form of the state flow, as given by
Lagrange’s formula, is usually leveraged

s(t) = Φ(t, t0) s0 +

∫ t

t0
Φ(t − τ, τ) B u(τ) dτ .

The first term corresponds to the homogeneous solution of the dynamics, given by the discrete mapping of the initial
conditions to the epoch of interest t through the State Transition Matrix (STM) of the system Φ. The convolutional,
integral term constitutes the effect of the control action u(t) through the control input matrix B on the dynamics.

In astrodynamics applications, a discrete or impulsive manoeuvre sequence is usually conceived as a feasible
and natural control strategy. Particularising Lagrange’s formula for such action plan u(t) =

∑
i Ui δ(t − ti) yields the

following result

s(t) = Φ(t, t0) s0 +

N∑
i=1

Φ(t, ti) B Ui (2)

2
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where the δ(t − ti) is Dirac’s delta generalized function. Introducing the time shifting property of the STM, the above
result can be further expanded as

s(t) = Φ(t, t0) s0 +

N∑
i=1

Φ(t, t0)Φ(ti, t0)−1B Ui .

Some guidance techniques, such as those presented in here, are founded on the premise of discrete dynamics.
The classical results just presented can be used to construct a discrete map s(ti+1) = F(s(ti)) for a given discrete time
sequence 0, ti, ti+1..., under the action of both continuous and discrete control functions. For the latter case,

si+1 = Φ(ti+1, t0)Φ(ti, t0)−1 si + Φ(ti+1, t0)Φ(ti, t0)−1B Ui .

Finally, depending on the system dynamics f and the status of the final time as a decision variable or as a fixed
parameter, four different regulation problems can be identified, as compiled in Table 1.

Time-fixed Time-free
Linear Type A Type C

Nonlinear Type B Type D

Table 1: Regulation problems of interest.

This preliminary study proposes a novel close-form, low-footprint, fast and accurate solver for Types A and B
(time-fixed). Solutions to Types C and D are currently under development and remain as an open line of research.

3. The time-fixed, Lp Regulation Problem

In space dynamics, minimization of fuel consumption is a primary goal in impulsive trajectory planning (energy in-
vestment applies for continuous actions). Therefore, the running cost li is further particularised to represent a control
effort metric or performance index, given by the integral lp-norm of the control action sequence Ui. Moreover, the final
end cost G may be dropped without loss of generality, so that finally, after discretization of the dynamics, the general
Bolza problem in Eqs. (1) is transcribed into the following equivalent form

arg min
Ui

J =
∑

i

∥Ui∥p

subject to s f − Φ(t f , t0) s0 =
∑

i

Φ(t f , ti) B(ti) Ui ,

s(t0) = s0 ,

s(t f ) = 0 ,
g(µ, s) = 0 ,
h(µ, s) < 0 ,
umin ≤ ∥Ui∥p ≤ umax ,

Different p-norms provide different proxies to fuel consumption. In fact, it can be shown that only the l2, l1 and
l∞ norms (globally referred to as L1 metrics) have physical significance when dealing with impulsive thrusting units,13

despite the common use of the squared l2-norm, denoted l22. These are defined as, for a vector v ∈ Rn,

∥v∥2 =
√

v⊺ v , ∥v∥1 =
n∑

i=1

|vi| , ∥v∥∞ = max |vi| .

Quadratic penalties L2, such as the l22, provide however analytical solutions to these optimal problems (see the
Linear Quadratic Gaussian), and therefore are the workhorse in Aerospace Engineering when it comes to trajectory
optimization and planning. The following Sections explore numerical techniques to close the gap between L1 and L2
optimization in terms of finding close-form solutions for the former.

3.1 Dynamics of interest

Section 9 provides simulation examples in which the proposed algorithms are verified and validated via objective
analysis of their performance. The dynamics of these systems of interest are now briefly described.

3
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Keplerian Rendezvous Orbital rendezvous may be basically defined as making a spacecraft, named the chaser,
acquire the same position and velocity as a given reference, known as the target, which may be a physical or virtual
object.

Let the target’s centre of mass position be described by the vector rt. Introducing the Euler-Hill reference frame,
composed of the the R-bar ur, V-bar uv and H-bar uh directions, by definition,

rt = rt ur, uh =
h
h
, uv = uh × ur . (3)

In this case, h is the specific angular momentum of the target. In the same fashion, let the chaser’s center of mass be
described by rc. The relative position vector ρ is now defined as

ρ = rc − rt = x ur + y uv + z uh (4)

In an inertial frame, differentiating twice Eq. (4) with respect to time and incorporating the appropriate Newtonian
gravity field term yields

ρ̈ =
µ

r3
t

rt −
µ

∥ rt + ρ ∥3
(rt + ρ)

where µ is the gravitational parameter of the primary or massive body in consideration. Realizing the previous vector
equation in the Euler-Hill frame, which is non-inertial, the following result arises

ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × ω × ρ =
µ

r3
t

rt −
µ

∥ rt + ρ ∥3
(rt + ρ) (5)

where ω = ωuh and ω̇ = ω̇uh are the angular velocity and acceleration, respectively, of the Euler-Hill frame with
respect to the inertial frame, but realized in the former.

However, rendezvous applications in the Keplerian, two-body regime are usually rather founded on linear rel-
ative motion models, among which the Hill-Clohessy-Wiltshire (HCW) system is one of the most common choices.
Although Hill arrived at the very same result when studying the Moon’s motion as seen from the Earth nearly a cen-
tury before,14 this set of equations were again developed and popularized in the 1960s to study Keplerian rendezvous
missions.15 This linear model arises when the gravitational terms of the complete relative motion nonlinear equations
are expressed in Taylor series, assuming a circular target’s orbit, with ω̇ = 0 and ω = n = µ1/2 r−3/2

t and the assumption
of a close range relative state ρ/rt ≪ 1, so that Hill-Clohessy-Wiltshire equations are of the form15

ẍ − 2nẏ − 3n2x = 0 ,
ÿ + 2nẋ = 0 ,

z̈ + n2z = 0 .

(6)

Their non-homogeneous form may take into account any other orbital perturbation or control actions. To our advantage,
the STM of the HCW model is analytical. However, if the circular orbit assumption is relaxed, the equivalence between
time and true anomaly as the independent variable of the equations of motion breaks,3, 16 giving rise to different State
Transition Matrices.17–20

CR3BP Rendezvous A similar result to the nonlinear Keplerian system Eqs. (5) can be actually derived for the
CR3BP, in which the target and chaser are not only influenced by the gravitational well of a massive body, but by two
of them, known as the primaries, and whose relative state is described by a planar circular Keplerian orbit.

When realised in the natural synodic reference frame to the primaries’ motion, the relative state between the
target and the chaser is described by the following set of nonlinear equations21, 22

rt =
[
ξ χ η

]⊺
,

ẍ − 2ẏ − x = (1 − µ)
(
ξ + µ

∥rt − R1∥
3 −

x + ξ + µ
∥ρ + rt − R1∥

3

)
+ µ

(
ξ − 1 + µ
∥rt − R2∥

3 −
x + ξ − 1 + µ
∥ρ + rt − R2∥

3

)
+ ux,

ÿ + 2ẋ − y = (1 − µ)
(

η

∥rt − R1∥
3 −

y + η
∥ρ + rt − R1∥

3

)
+ µ

(
η

∥rt − R2∥
3 −

y + η
∥ρ + rt − R2∥

3

)
+ uy,

z̈ = (1 − µ)
(

ζ

∥rt − R1∥
3 −

z + ζ
∥ρ + rt − R1∥

3

)
+ µ

(
ζ

∥rt − R2∥
3 −

z + ζ
∥ρ + rt − R2∥

3

)
+ uz.

(7)

In the above result, µ is the normalised gravitational parameter of the orbit M2/(M1 + M2), where Mi is the
mass of the primaries. Moreover, it is customary to use dimensionless coordinates, such that the distance between

4
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the primaries is used as characteristic length and their orbital period around their common barycenter is taken as
characteristic time. In these dimensionless coordinates, the primaries revolve at one radian per unit of dimensionless
time and show constant position vectors

R1 = −µ i , R2 = (1 − µ) i .

Retaining up to first order terms in Eqs. (7) yields the Rendezvous Linear Model (RLM),22, 23 which can be
compactly expressed in matrix form as:

ṡ = As + Bu =[
ρ̇
ρ̈

]
=

(
03×3 I3×3
Σ Ω

) [
ρ
ρ̇

]
+

(
03×3
I3×3

)
u, (8)

where 03×3 and I3×3 denotes 3-dimensional null and identity matrices, respectively; the Coriolis acceleration term Ω
reads

Ω =

 0 2 0
−2 0 0
0 0 0


and the Hessian matrix Σ can be computed as

Σ = −(κ1 + κ2) I3×3 + 3 κ1 (e1 ⊗ e1) + 3 κ2 (e2 ⊗ e2),

where the operator ⊗ denotes the dyadic product, ei are unit vectors pointing from the i-th primary to the target space-
craft and the κi are coefficients defined as

ei =
rt − Ri

∥rt − Ri∥
, κi =

µi

∥rt − Ri∥
3 . i = 1, 2 .

While the original RLM model was derived as a linearization of the true relative dynamics around the target
position vector, in this work we exploit the Relative Libration Linear Model (RLLM), which considers relative motion
near the collinear libration points, assuming both the target and chaser spacecraft to be on an LPO. In such cases, Σ is
expected to become constant or (quasi-)periodic, respectively and can be shown to read22

Σ =

1 + 2c2 0 0
0 1 − c2 0
0 0 −c2

 .
The fundamental frequency c2 depends on the libration point both spacecraft orbit, as defined in Richardson.24

Attitude slews Additionally, boresight pointing applications or general attitude slews are also studied under the light
of impulsive torques, such as those provided by Reaction Control Systems (RCS).

The attitude dynamics are described by the following Initial Value Problem (IVP), composed of Euler’s equations
of the rigid body with appropriate initial conditions

Iω̇ + ω × Iω = u , ω (0) = ω0 . (9)

The angular velocity ω shall be realised in the body frame of the system, in which the inertia dyadic I is constant
in time.

The kinematics of the problem are expressed through Shuster’s unit quaternions q = [qv, q4]⊺ = [sin θ/2 e, cos θ/2]⊺,
which describe rotations from the global, departure reference frame to the objective, local one (contrary to those of
Hamilton, which provides the inverse transformation).25 The IVP describing the quaternion evolution in time is

q̇ =
1
2
ω ⊗ q , q(0) = q0 . (10)

The ⊗ operator here describes the quaternion product, given by the following S O(4) isoclinic rotation Q

q1 ⊗ q2 = Q(q1) q2 =

(
q4I − q̂v qv

−q⊺v q4

)
q2 ,

for which the hat map ∧ : R3 → so(3), an isometry between R3 and so(3), is defined such that x̂ = −x⊺ and x̂y = x× y.
Moreover, in the above results, the angular velocity is overloaded to be a pure quaternion, ω→ [ω, 0]⊺ .

Discrete transitions for the attitude problem are available via the STM matrix of the problem.

5
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4. Analytical solutions

Classical optimal impulsive control theory for linear systems is developed in this Section, mainly applied to classical
orbit transfers in space dynamics. These results suppose the foundation of the developments to follow.

4.1 Classical Primer Vector Theory

In the late 1960s, the foundational works of Lawden et al.3, 6, 26, 27 in space trajectory optimization for impulsive
probes led to the seminar Primer Vector Theory,28 which establishes the necessary and sufficient conditions for optimal
transport within Newtonian gravity. These arises as the result of the application of Pontryagin’s Maximum Principle to
the problem of optimal impulsive control.

These necessary conditions (NCS) are conveniently expressed via the adjoint of the velocity vector λv, named
the primer vector by Lawden or p.

p = −λv .

In practice, these NCS may be used, for example, to determine optimal additional mid-course impulses to a given
planned sequence to reduce fuel consumption. The modern formal statement of the necessary and sufficient conditions
is due to Carter,29 although his augmented system of 8 constraints is fundamentally equivalent to those presented here
and is therefore omitted for brevity. Informally, they read28

1. The primer vector and its first derivative are continuous everywhere.

2. The Euclidean norm of the primer vector satisfies p(t) ≤ 1 with the impulses occurring at those instants at which
p(t) = 1.

3. At the impulse times the primer vector is a unit vector in the optimal thrust direction.

4. As a consequence of the above conditions, ṗ⊺p = 0 at an intermediate impulse (not at the initial or final time).

4.2 Neustadt-Potter Theorem: Maximum Number of Impulses

A fundamental result to this communication is the Maximum Number of Impulses Theorem by Neustadt and Pot-
ter,4, 5, 30 which has a long tradition within rendezvous studies since the times of Edelbaum.2, 8

Informally, it states that for a time-fixed linear system of dimension q, the regulation solution requires at most q
impulses and such solution is also optimal.

Based on this result, Potter cleverly devised an algorithm to reduce a (q + m) impulsive action sequence to the
equivalent q-one, without any increase in the cost. The new q impulses occur at the same times and directions as those
in the original (q + m) sequence. Unfortunately, it only applies for l2-optimization.

This impulse reduction algorithm is termed hereafter as pruning, as it effectively prunes redundant impulses from
an initial, fuel-optimal candidate sequence, generated over a dense independent grid T . This enables to disregard the
design of the impulses execution times τi, eliminating it from the set of decision variables. For linear systems, the
algorithm guarantees to achieve the solution of the optimization problem.

The method presented here follows Prussing’s discussion on the topic.31 Consider the fuel-optimal regulation
problem

arg min
Ui

J =
∑

i

∥Ui∥2

subject to s f − Φ(t f , t0) s0 =
∑

i

Φ(t f , ti) B Ui ,

s(t0) = s0 ,

s(t f ) = 0 .

At the k-th recursion, the candidate (q + m − k) sequence Uk
i is updated through

Uk+1
i =

µi

∥Uk
i ∥2

Uk
i , ∀i , k = 0, 1, 2...,m , (11)

where the weights µi are defined through

βi =
αi

∥Uk
i ∥2
, βr = max βi , µi = ∥Uk

i ∥2

(
1 −
βi

βr

)
. (12)

6
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The α-coefficients are defined as the linear coordinates spanning the kernel of the following application

(
Û1 Û2 . . . Ûq+m−k

)
α = 0 , Ûi =

Uk
i

∥Uk
i ∥2
. (13)

which, for the k-th sequence, is an indeterminate linear system. The signs of αi are globally selected to satisfy∑
i

αi ≥ 0 . (14)

Given an initial candidate sequence {U}, this algorithm can be run m times to obtained the pruned sequence of q
impulses.

5. Proximal Operators and Alternating Direction Method of Multipliers

The main technical novelty of this work is the complete application of Alternating Direction Method of Multipliers
(ADMM) in its full potential as the main solver for the regulation problems of interest, given its ability to provide close-
form, algorithmic solutions to general optimization problems. The use of ADMM as our main optimization solver will
enable close-form solutions to general Lp-regulation problem, as detailed example by example in the following Section.

ADMM is an algorithm intended to blend the decomposability of dual ascent with the superior convergence
properties of the method of multipliers, and is highly used as general convex optimization technique.32 ADMM, as an
operator splitting algorithm, takes the form of a decomposition-coordination procedure, in which the solutions to small
local subproblems are coordinated to find a solution to the large global, original problem.

ADMM addresses the following consensus optimal problem,

arg min
x, z

f (x) + g(z) ,

subject to Ax − Bz = c .
(15)

The ADMM solution is first given by introducing the following Augmented Lagrangian to be minimized

L (x, z,u) = f (x) + g(z) + (ρ/2) ∥Ax − Bz − c + y∥22 + D

where D is some additive constant, ρ > 0 is a penalty constant and y is the dual problem decision variable. The use
of Augmented Lagrangian formalism is of relevance because it provides a much more robust algorithm than classical
dual ascent, for example, converging even when f takes non-definite values or is strictly non-convex.32

Once introduced, the Lagrangian is minimized by the following iterates, providing the close-form solution to the
original problem

xk+1 = arg min
x

Lρ
(
x, zk, yk

)
, (16)

zk+1 = arg min
z

Lρ
(
xk+1, z, yk

)
, (17)

yk+1 = yk + ρ
(
A xk+1 − B zk+1 − c

)
. (18)

The iterates need to be finished under appropriate terminating conditions, which are discussed in-depth in Boyd.32

Under the following two conditions: 1) f and g are closed, proper, and convex; their epigraphs are nonempty
closed convex sets; 2) strong duality holds, the unaugmented Lagrangian has a saddle point; the ADMM iterates
provide the following relevant convergence results:

1. Residual convergence. A xk − B zk − c = rk → 0 as k → ∞; the iterates approach feasibility.

2. Objective convergence. f (xk) + g(zk) → J+ as k → ∞, the objective function of the iterates approaches the
optimal value.

Still, ADMM will be practically useful mostly in cases when modest accuracy is sufficient, even whenever one
of the two assumptions do not hold. Moreover, ADMM will converge even when the minimization steps are not carried
out exactly. This will be especially useful given the possibility of performing further pruning of candidate impulsive
sequences, as in our case.

7
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Moreover, the particular consensus equation x − z = 0 leads to the following x-minimization

x+ = arg min
x

(
f (x) + (ρ/2) ∥x − v∥22

)
,

where the righthand side is identified with a proximal operator,33 denoted prox f , ρv. The x-minimization in the prox-
imity operator is generally referred to as proximal minimization. This work is highly founded on general, analytical or
close-form proximal minimizations, as it will become apparent in the following sections.

The remaining free decision variables are the impulsive times τi at which the control sequence and the flow map
are evaluated. The impulsive times define the independent grid T = {τi}∀i.

6. Naïve solution via dual-based Linear Programming

The motivation for this work is found in previous results by Le Cleac’h and Manchester,10 which successfully demon-
strated the use of the ADMM algorithm for space trajectory optimization, by consensing both an L1 and L2 fuel opti-
mizations by means of a hybrid cost function. Their close-form solution is fundamentally constructed upon the discrete
Linear Quadratic Regulator (LQR), while further simplification is possible if the problem is transcribed into its dual,
Lagrange-multiplier/co-state form, as indicated in Barea et al.34 Such solution is depicted here now as a preliminary
step towards full exploitation of the ADMM scheme.

Consider the unconstrained l1 fuel-optimal problem

arg min
Ui

J =
∑

i

∥Ui∥1

subject to s f − Φ(t f , t0) s0 =
∑

i

Φ(t f , ti) B Ui ,

s(t0) = s0 ,

s(t f ) = 0 ,

(19)

to be solved via the ADMM technique. To achieve so, the following consensus, separable problem is introduced

arg min
x, z

f (x) + g(z) ,

subject to X − Z = 0 ,

f (x) = α
∑

i

∥xi∥1 ,

g(z) =
∑

i

z⊺i zi + IC (Z) ,

X = ver{xi}, Z = ver{zi}, ∀i .

(20)

The indicator function IC is defined for the flow map C = {Z ∈ R3N | Φ̂Z = s f − Φ(t f , t0) s0} as

IC =

{
0 if Z ∈ C
∞ if Z < C

The resulting ADMM iterates are now described. First, the proximal minimization for x is given by a scalar
soft-thresholding update32

xk+1
i = max

(
0, zk

i − yk
i − α/ρ

)
−max

(
0, −zk

i + yk
i − α/ρ

)
.

For the z-case, its minimization step is equivalent to the discrete LQR, as mentioned previously. However,
exploiting Lagrange’s formula and the indirect formulation of the minimization of g(z) leads to a root-finding problem
of reduced dimensionality for the Lagrange multiplier, solvable by means of Linear Programming techniques.

First, the corresponding unconstrained augmented Lagrangian is introduced

J+ =
N∑
i

z⊺i zi +
ρ

2
(zi − xi − yi)⊺ (zi − xi − yi) + λ⊺

sd (t f ) − Φ(t f , t0) s (t0) −
N∑

i=1

Φ(t f , ti)B zi

 =
=

N∑
i

z⊺i zi +
ρ

2
(zi − xi − yi)⊺ (zi − xi − yi) + λ⊺

e − N∑
i=1

Φ(t f , ti) B zi


8
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The necessary conditions for optimality are given by the Lagrangian function’s stationary point with respect to
(zi, λ), resulting in the following 3N + 6 equations for the 3N + 6 variables

zi + ρ (zi − xi − yi) − B⊺Φ(t f , ti)⊺λ = 0 ,

e −
N∑

i=1

Φ(t f , ti) B zi = 0 .
(21)

Solving for λ reads the following linear systeme − ρ

1 + ρ

∑
i

Φ(t f , ti) B (xi + yi)

 = ∑
i

B⊺Φ(t f , ti)⊺Φ(t f , ti) B

 λ , (22)

where the controllability gramian maps the co-state to the natural dynamics error e. It is interesting to note the feedfor-
ward role of the x vector of impulses. Once λ is obtained via efficient solving of the linear system, the L2 impulses zi

are computed using the previous result, thus completing the ADMM iterates. Physically, this L1-L2 consensus solution
represents the same energy sequence, which applies for different actuator configurations, for which the different either
L1 or L2-norm is appropriate.

7. Optimal linear ADMM regulation

Building on the previous both theoretical and practical results, this Section presents the integral application of the
ADMM close-form algorithm to the Lp fuel-optimal problem, in various of its common forms.

7.1 ADMM solution for l2-optimization

The case for p = 2 will be first considered, for which both the pruner and classical PVT applies. The particularisation
of this problem of interest is given again by

arg min
Ui

J =
∑

i

∥Ui∥2

subject to s f − Φ(t f , t0) s0 =
∑

i

Φ(t f , ti) B Ui ,

s(t0) = s0 ,

s(t f ) = 0 ,
0 ≤ ∥Ui∥2 ≤ umax .

(23)

Again, to exploit the ADMM algorithm, the separable form of the problem reads as follows

arg min
x, z

f (x) + g(z) ,

subject to x − z = 0 ,
f (x) = IC (X) ,

g(z) =
∑

i

∥zi∥2 + IB (zi) .

(24)

In this case, f represents the indicator function of the flow map set C = {X ∈ R3N | Φ̂X = s f − Φ(t f , t0) s0}. On
the other hand, g both penalizes fuel consumption and constrains the impulses to lie on a ball of maximum radius umax
B = {z ∈ R3 | 0 ≤ ∥zi∥2 ≤ umax}.

The solution is given by the iteration of the following system of proximal minimizations

Xk+1 =
(
I − Φ̂†Φ̂

)
(Zk − Yk) + Φ̂†

[
s f − Φ(t f , t0) s0

]
, (25)

zk+1
i = max

0, 1 − 1
ρ ∥xk+1

i + yk
i ∥

 (xk+1
i + yk

i

)
, (26)

zk+1
i = min

(
∥zk+1

i ∥, umax

)
zk+1

i / ∥z
k+1
i ∥ , (27)

Yk+1 = Yk + Xk+1 − Zk+1 . (28)
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The dagger operator in Φ̂† indicates the Moore-Penrose pseudo-inverse and the use of the upper-case vectors X, Z refers
to vertical concatenation of the whole sequence. The first update is the projection of X on the convex set AX = b. The
update of Z is performed block-wise and is the proximal operator of the l2-norm (block soft-thresholding operator).
Because all vector norms are convex and the set B is also convex, the algorithm shows dual convergence, and both
primal and dual feasibility (in both Zk+1 and Xk+1).

The asymmetric nature of the ADMM in the X and Z updates has physical implications in the resulting solution.
At such, the resulting X sequence is flow-feasible, reading it is designed to achieve the regulation of the relative state
(rendezvous the spacecraft). However, the final Z is hardware-feasible and fuel-optimal, but it may not result in total
regulation. Because of the residual convergence properties of ADMM, this difference will end up being numerically
negligible.

The final converged solution is in general non-sparse, but whose objective value is nearly optimal. As we have
already introduced, for linear systems under impulsive control, a maximum number of q impulses exists, which is also
optimal, and can be recovered from an initial guess. Thus, the converged primal sequence of impulses X is pruned to
compute the optimal sequence, yielding an close-form optimal and sparse impulsive sequence.

The use of the indicator function and the set-oriented definition of the flow constraint allows to explicitly achieve
close-form solutions without the need of continuation techniques of any ruling parameter α between the L1/L2 opti-
mizations, compared to previous studies, like in Le Cleac’h.10

7.2 ADMM dual-based solution for l2-optimization

A more advanced form of the previous solution directly addresses the optimality conditions given by Carter’s PVT
solution, yielding a formulation of the l2-problem in its dual variables or co-states.

Solving Carter’s problem has been proven to be non-polynomial and non-convex, in general requiring of ad-
vanced numerical machinery to be properly solved.7 However, the combination of the ADMM with the pruning algo-
rithm can be shown to provide optimal results at nearly null computational expenses. Moreover, despite the loss of the
convergence conditions for the ADMM solution, the algorithm is still capable of providing solutions which satisfy the
necessary and sufficient conditions of optimality almost to numerical precision.

Defining the following partitions of the decision vectors X, Z and Y

X =
(
Xv Xp

)⊺
, Z =

(
Zv Zp

)⊺
, Y =

(
Yv Yp

)⊺
,

the problem, in a mixed direct-dual statement for the co-states and the associated impulses, is the following

arg min
p,U

J =
∑

i

∆vi

subject to s f − Φ(t f , t0) s0 =
∑

i

Φ(t f , ti) B(ti) Ui ,

s f − Φ(t f , t0) s0 = −
∑

i

Φ(t f , ti) B(ti)∆vi pi ,

s(t0) = s0 ,

s(t f ) = 0 ,
∆vi = ∥Ui∥2 ,

0 ≤ ∥pi∥2 ≤ 1 ,
pi = Ui/∥Ui∥ .

(29)

The flow map constraint appears both in its dual and direct statement to provide a symmetric update of the primer
vector sequence in both the X and Z proximal minimizations. As such, a close-form solution of the problem is given
by the following iterates

Xk+1
v =

(
I − Φ̂†Φ̂

)
(Zk

v − Yk
v) + Φ̂†

[
s f − Φ(t f , t0) s0

]
, (30)

xk+1
p,i = xk+1

v,i / ∥x
k+1
v,i ∥2 if ∥xk+1

v,i ∥2 > 1 , (31)

zk+1
v,i = max

0, 1 − 1
ρ ∥xk+1

v,i + yk
v,i∥

 (xk+1
v,i + yk

v,i

)
, (32)

Zk+1
p =

(
I − Φ̄†Φ̄

)
(Xk+1

p + Yk
p) + Φ̄†

[
s f − Φ(t f , t0) s0

]
, (33)

Yk+1 = Yk + Xk+1 − Zk+1 . (34)

10

DOI: 10.13009/EUCASS2023-057



A DUAL-BASED LP FORMULATION OF FUEL-OPTIMAL REGULATION GUIDANCE

The linear operator Φ̄ differs from its direct counterpart Φ̂ by definition

Φ̄ = hor {−∆viΦ(t f , t0)Φ(ti, t0)−1} , Φ̂ = hor {Φ(t f , t0)Φ(ti, t0)−1} , ∀i.

The Zp update is actually non-linear, although the consensus form of the ADMM optimizations allows to treat it
as a projection on a linear polyhedra set.

7.3 ADMM solution for l1-optimization

The fuel-optimal case for p = 1 will be now studied. The l1-problem is usually more difficult to solve than the l2
one, given the lack of differentiability of the cost function.13 However, under the ADMM paradigm, the solution is
straigthforward.

The particularisation of this problem of interest is given again by

arg min
Ui

Eqs. (19)

subject to 0 ≤ ∥Ui∥1 ≤ umax .
(35)

Again, the ADMM, separable form of the problem reads as follows

arg min
x,z

f (x) + g(z) ,

subject to x − z = 0 ,
f (x) = IC ,

g(z) =
∑

i

∥zi∥1 + IB (zi) .

(36)

The solution is trivially given by the iteration of the following system of proximal minimizations

Xk+1 =
(
I − Φ̂†Φ̂

)
(Zk − Yk) + Φ̂†

[
s f − Φ(t f , t0) s0

]
, (37)

zk+1
i = max

(
0, xk+1

i + yk
i − 1/ρ

)
−max

(
0, −xk+1

i − yk
i − 1/ρ

)
, (38)

zk+1
i = max

(
0, zk+1

i − λ
)
−max

(
0, −zk+1

i − λ
)
, (39)

Yk+1 = Yk + Xk+1 − Zk+1 . (40)

The soft-thresholding (·)+ in the proximal minimization of the l1-norm is performed entry-wise, via a scalar
update, for each component of each impulse zk

i . The projection onto the ball B is achieved through the l∞-norm, as
stated by the Moreau decomposition (given they are dual operators32), which defines the λ parameter as

λ =

 0 if ∥zi∥1 ≤ zmax

arg min
λ

∑3
j

(
|zi, j| − λ

)
+
= zmax if ∥zi∥1 > zmax

l1-optimal impulsive sequences are also used to promote sparsity, yielding actions plans of low control frequency, which
are desirable from both an operational and hardware perspective. It is natural to couple the presented optimization with
the intersection of the B-ball with the cardinality set D = {Z | card(Z) ≤ n}, so that the final ADMM problem is
modified to

g(z) =
∑

i

∥zi∥1 + IB
⋃
D(zi) . (41)

After the re-definition of the indicator function IB, the close-form solution for the z proximal minimization is
analytically adapted to

zk+1
i = max

(
0, xk+1

i + yk
i − 1/ρ

)
−max

(
0,−xk+1

i − yk
i − 1/ρ

)
,

zk+1
i = max

(
0, zk+1

i − λ
)
−max

(
0, −zk+1

i − λ
)
,

zi =

{
0 if ∥zi∥1 < Ds

zi if ∥zi∥1 ∈ Ds
,

which results in keeping the n larger impulses and nullyfing the rest. This example shows how the ADMM algorithm
can render trivial solutions to highly complex control optimization problems, at low computational cost.
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8. Optimal nonlinear ADMM regulation

The presented guidance, trajectory planning techniques presented benefit from surrogate relative motion models when
addressing the regulation problem at hands, mainly based on an appropriate linearization of true nonlinear dynamics and
the corresponding STM Φ(t, t0). Therefore, any control policy Π(t) computed under such dynamics is not guaranteed
to regulate the relative state vector under the true nonlinear field. In general, some form of feedback is needed to
successively refined Π(t) and ϕ(t, t0) to comply with the nonlinear relative motion dynamics. This is achieved through
iterating a backward-forward pass or sweep structure until convergence, which may be implemented online through
Model Predictive Control (MPC), as described now.

MPC is an optimal control technique based on iterative optimization, introduced in the late 1980s,35, 36 which
shows a long tradition within rendezvous and proximity operations studies.21, 37–42 In the MPC paradigm, an optimal
surrogate guidance problem is solved for a given time horizon ti = 0, 1, ...,T ; and as a result, both a state trajectory
{si(ti)} = s1, s2, ..., sT and control action policy {Ui(ti)} = U1,U2, ...,UT are returned. The controller only executes
the action at the initial time U1, and, after the plant natural rollout one time step ahead, the optimization problem
is run again with the time horizon receded ti = 0, 1, ...,T − 1. In this way, the true nonlinearities and unmodelled
uncertainties in the surrogate guidance model are accommodated through a time-receding horizon scheme under the
true plant dynamics.

9. Applications and mission cases

9.1 Hill-Clohessy-Wiltshire Keplerian rendezvous

The first mission design scenario applies for a HCW rendezvous scenario, in which the traslational relative state be-
tween the target and chaser spacecraft is to be regulated, as given in Section 2.

It is customary to use canonical units, so that µ = 1 for the given reference orbit semimajor axis rt. The mission
time of flight is selected to be t f = 2π (one orbital period).

Following Alfriend et al.,43 the initial relative conditions are given by

s0 =
[
−0.005019 0.01 0.01 0.01 0.01 0

]⊺
,

which corresponds to bounded, librating relative motion.
The mission time is discretized into equally spaced 500 grid points, in which an impulse may or may not occur.
Initially, the unconstrained l2-norm fuel optimal problem is considered. After resolving the 500 impulses, spar-

sity in the initial candidate sequence is promoted through the PVT pruner, which is used to refine the sequence and
reduce it down to 6 maneuvers only. Figs. 1 depicts the converge results, while Fig. 3 demonstrates that the sequence
is effectively able to rendezvous the two spacecraft (strict regulation of the final relative state).

(a) Candidate ADMM solution. (b) Pruned PVT solution.

Figure 1: Final candidate and pruned impulse sequences for the direct formulation of the l2-problem.

The same problem is solved via the dual formulation of the l2-ADMM solution, in which the primer vector
optimality conditions are directly addressed. Again, Figs. 2 shows the final sequence solutions, while the regulation
of the relative state is depicted again in Fig. 3. Note how the candidate solution is already composed of 6 impulses
only, satisfying the optimality conditions of the problem. Comparison between the direct and indirect formulation is
addressed in Fig. 4, in which the convergence of both algorithms towards the fundamental PVT cost limit is graphically
demonstrated.
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(a) Candidate ADMM solution. (b) Pruned PVT solution.

Figure 2: Final candidate and pruned impulse sequences for the indirect formulation of the l2-problem.

(a) Direct solution. (b) Indirect solution.

Figure 3: Regulation of the relative state in the l2-problem.

Finally, similar results are also presented for the l1-problem, which is additionally constrained to respect a maxi-
mum control authority of ∆V = 0.001 and achieve the rendezvous in less than 20 impulses, via a cardinality constraint.
Despite the additional complexity, the algorithm still solves the problem at null computational burden. Its results can
be analysed in Figs. 5a and 5b.

Table 2 summarizes the main performance metrics of the three algorithms proposed.

Table 2: Main performance indices for Scenario I.

l2-ADMM l2-dual ADMM l1-ADMM
Sequence cost 0.0139 0.0139 0.0184
ADMM/PVT cost ratio 0.9932 0.9993 N/A
Computational time [s] 1.64 1.36 4.54
Final state error 4.4043 × 10−16 5.3436 × 10−16 8.1811 × 10−16

9.2 Impulsive cislunar rendezvous

The MPC-ADMM naïve solution to the l1-fuel optimal problem is applied for a practical case of orbital rendezvous
between two northern halo orbits in the Earth-Moon L2 Lagrange point.

The initial conditions of both the target spacecraft St and the relative state s in the normalized, synodic frame are
given by

St =
[
1.1049 0.0216 −0.0431 0.0035 0.2138 0.0298

]
,

s =
[
0.0126 −0.0216 0.0235 −0.0035 −0.0296 −0.0298

]
.

The mission time of flight is selected to be t f = π (14 days). The rendezvous mission shall be accomplished via
40 impulses. The final results, in terms of the impulsive sequence and the final state evolution, may be found in Fig. 6,
in which the regulation of the relative state can be appreciated.

13

DOI: 10.13009/EUCASS2023-057



A DUAL-BASED LP FORMULATION OF FUEL-OPTIMAL REGULATION GUIDANCE

(a) Convergence ratio of the direct
solution.

(b) Convergence ratio of the indirect
solution.

Figure 4: Comparison between the l2-problem direct and indirect solutions in terms of control effort.

(a) Final impulse sequences for the
l1-problem.

(b) Regulation of the relative state for
the l1-problem.

Figure 5: Final impulse sequence and relative state regulation of the l1-problem.

9.3 Boresight pointing

The presented algorithms can be easily adapted to optimal attitude planning. In this case, successive linearization
together with an MPC scheme are used to optimally plan the needed torque law to achieve the following rest-to-rest
slew, characterized by final and initial conditions

s0 =
[
0 0 0 1 0 0 0

]⊺
, s f =

[
0 0 sin(π/8) cos(π/8) 0 0 0

]⊺
,

which corresponds to a rotation of 45◦ around the body z-axis, to be performed via equally spaced 100 maneuvers in up
to 600 seconds. The algorithm successfully achieves the regulation of the relative state, resulting in the desired slew,
as shown in Fig. 7.

10. Conclusions

This work proposes novel formulations of constrained, time-fixed, linear and nonlinear fuel-optimal impulsive control
problems in astrodynamics, in the form of general consensus optimization. A novel combination of Proximal Operators
and classical Primer Vector Theory is presented, yielding a really low footprint, accurate and fast optimal control solver.
Comparing its performance and capacities to standard convex optimization techniques, the proposed solver stands as a
solid candidate for real-time, embedded guidance applications.

In particular, candidate Lp-norm fuel-optimal control sequences are generated through Alternating Direction
Method of Multipliers. The feasible sequence is then pruned and refined through classical Primer Vector Theory
results, promoting sparsity and further reduction of the cost function, if necessary. For the q-dimensional linear case,
the pruned sequence of q-impulses is shown to be optimal. The methodology is further extended for nonlinear systems
in combination with Model Predictive Control. In addition, ADMM is also used to close the gap between L1 and
L2 optimization in classical astrodynamics problems, allowing to establish a cost mapping principle between fuel-
optimal and quadratic-cost problems; second, this latter L2 optimization is solved exploiting its dual-problem multi-
stage formulation, for which a close-form solution exists. All in all, the combination of these two techniques allows to
render general NLP fuel-optimal problems solvable by Linear Programming techniques.
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(a) MPC-ADMM control sequence. (b) Regulation of the relative state. (c) Synodic rendezvous trajectory.

Figure 6: Main performance results for Scenario II.

(a) MPC-ADMM torque sequence. (b) Regulation of the relative attitude. (c) Trajectory on the attitude sphere.

Figure 7: Main performance results for Scenario III.
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