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Abstract

This contribution presents a novel computational approach to aeroelasticity based on the combined use
of the Vortex Lattice Method and the discontinuous Galerkin method. The proposed procedure is the
first step towards the development of a tool for the optimization, control and morphing of flexible aircraft
featuring improved stability and flying performances. Preliminary numerical results are presented for the
static aeroelastic behavior of wings with flat-plate and thin-walled NACA profiles. The obtained results
show the accuracy and the potential of the proposed approach.

1. Introduction

Some aeronautical applications, e.g. high altitude experimental aircraft, MALE and HALE UAVs, favor the use of high
aspect ratio wings, by virtue of their higher lift-to-drag ratio that contributes to reducing fuel consumption. However,
high aspect ratios also imply higher structural flexibility so that, in the evaluation of the aircraft stability and flying
qualities, it is not possible to decouple the flight dynamics from the elastic response.!!7-2!

Aeroelasticity is a complex problem falling in the area of fluid structure interaction (FSI), which requires the
coupled solution of solid and fluid mechanics simulations. Aeroelastic analysis may be tackled by the combination of
Computational Fluid Dynamics (CFD) with Finite Element Methods (FEMs), see e.g. Refs.”-3 Despite their accuracy
and capabilities, such procedures require high computational costs in terms of data preparation, storage memory and
solution time, which are not always affordable, especially during the conceptual design phase. To overcome such
limitations, other lower-order aerodynamic computational techniques, such as the Vortex Lattice Method (VLM), have
been developed. Under some assumptions and in well defined flight regimes, VLM provides accurate enough results in
less time with respect to full-field CFD. It is known that, at low angles of attack, CFD and VLM deliver similar results
in terms of trim conditions with small difference in pressure distribution.?’

For such reasons, VLM is widely used today for conceptual and trade-off studies, when several alternative
configurations need to be quickly evaluated, before selecting the most promising alternatives. VLM has been employed
to investigate the non-planar aerodynamics of flexible wings with large deformation, coupled with FEM for structural
nonlinear analysis,?? or for aeroelastic loads evaluation on wings then analyzed with extended beam models.>* VLM
has also been extended to compressible flows for non-linear aeroelastic analysis.'® VLM is also widely employed
as the reference aerodynamic tool in several studies investigating the effects of aeroelastic deformations on flight
dynamics performance. Results from the Unsteady Vortex Lattice Method (UVLM) could be directly applicable in
the identification of appropriate modeling strategies in nonlinear flexible aircraft flight dynamics simulations.'® The
Doublet Lattice Method (DLM) has been used in a coupled lateral-directional flight dynamic and aeroelastic study
of a Prandtl-plane configuration.® Aerodynamic forces obtained by VLM have been used to validate results in a new
framework for coupled non-linear aeroelasticity and flight dynamics of highly flexible aircrafts.?*

This work proposes the coupling of VLM with discontinuous Galerkin (DG) methods for solving the static
aeroelastic problem of wing structures. With respect to other numerical techniques for solid mechanics, DG methods
naturally offers high-order accuracy with generic mesh elements and ease of parallelization.

The paper is organized as follows: Sec.(2) describes the considered aeroelastic problem introducing the employed
aerodynamic model, the structural model and their coupling; Sec.(3) presents a few numerical results obtained by the
present approach; and Sec.(4) draws the conclusions and outlines avenues of future research.
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2. Problem statement

2.1 Aerodynamic model

The aerodynamic model employed in this study uses the VLM, a low- to medium-fidelity tool that allows evaluating the
aerodynamics of wings for high-Reynolds, low-speed attached flows. The underlying hypotheses and the development
of the numerical methods based on the VLM are well known and are not reported here. Nevertheless, it is worth noting
that the VLM implementation considered in this study allows modeling generally curved lifting surfaces. The reader
interested in the detail of the method is referred to classical aerodynamics books.'¢

2.2 Structural model

The structural behavior of the wing is modeled by a recently developed formulation for beam structures,'? that extends
previous studies on composite plates'>'* and shells.””!' The formulation is based on the discontinuous Galerkin
methods for elliptic PDEs? and provides high-accurate resolution of the displacement fields throughout both the wing
cross section and the wing length.

We consider a wing that may be represented as a beam with length L and cross-section Q. We introduce a
three-dimensional reference system Ox;x,x3 located at the root of the wing and defined such that length of the wing is
spanned by the coordinate x, while its cross-section is spanned by x; and x3.

The mechanical behavior of the wing is represented by the vector u = (uy, up, u3)7 of the displacement compo-
nents and the vectors o = (0711, 0722,0733,023,013,012)T and ¥ = (Y11, Y22, V33, Y23, Y13, Y12) 7, Which collect the com-
ponents of the strain and stress tensors, respectively, using Voigt notation. We also introduce the vector £ = (7,15, 13)7
of the prescribed surface traction components and the vector b = (b, by, b3)T of the known volume forces. Upon as-
suming that the wing behaves as a linear elastic solid undergoing small deformations, the strain-displacement relation
and the stress-strain relation may be written as

0
y:Ik—u and o =Cy, H
8xk

respectively, where I, with k = 1,2,3, are 6 X 3 matrices containing ones and zeros only,13 and C is the 6 X 6 matrix
containing the elastic coefficients. In Eq.(1) and in the remainder of this paper, Latin subscripts take values in {1, 2, 3},
Greek subscripts take values in {1, 3} and summation is implied when subscripts are repeated.

In the context of high-order beam theories,* the displacement field u is expressed as the sum of products of
known functions of the cross-section coordinates x; and x3 and unknown functions of the lengthwise coordinate x;.
Such an expansion may be conveniently expressed using the following matrix expression'>~14

u = Z(x;, x3)U(xy), (2)

where U(x,) is a N,-dimensional vector containing the unknown functions of x,, which are also referred to as genere-
alized displacements, and Z(xy, x3) is a 3 X N, matrix containing the known cross-section functions of x; and x3. Here,
N, denotes the order of expansion of the selected high-order beam theory and is defined as N, = (N, + N, + N, +3),
where N, is the order of expansion of the k-th displacement component.

The governing equations associated with high-order beam theories are derived from the Principle of Virtual Dis-
placement (PVD) of three-dimensional elasticity. In particular, using Eq.(2) into the PVD, integrating the mechanical
variables across the wing cross-section, and performing integration by parts, it is possible to show!? that wings modeled
by high-order beam theories are governed by the following set of differential equations

d d d —
- Q—U+RU +RT—U+SU=B for x, € D, 3
dx; dx; dx;

where O = [0, L] denotes the modeling domain of the beam, the terms Q, R and R are N, X N, generalized stiffness
matrices defined as follows

0Z /Al 0Z
0= fZTczzz dQ, R-= fZTCQQ— dQ, and S= f —Cop7— dQ, )
Q Q O0xy o 0xg 6)%

with ¢y = I,I CI,, and B is the vector of generalized domain loads defined as

EEfZTZdQ+f Z7tdoQ. %)
Q 0Q

Eventually, we assume that the wing is subjected to fixed boundary conditions at its root section, i.e. U = 0 at x, = 0,
and traction-free boundary conditions at its tip section.
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2.3 Discontinuous Galerkin formulation

The discontinuous Galerkin formulation for the structural model presented in Sec.(2.2) is derived following the Inte-
rior Penalty DG approach previously employed for composite plates'®'* and shells>~'! and applied here to the one-
dimensional beam problems. In particular, the domain D is divided into N, non-overlapping elements, i.e. D ~ D" =
UQ’;I D¢, where D° is a generic e-th element. The space V" of discontinuous basis functions is introduced as follows

VP =(y: D' SR |v(xy € D) ePP(D)Ye=1,...,N,}, (6)

where PP(D°) is the space of polynomials up to degree p defined over the element 9°. Then, it is possible to show that
the DG-based discrete solution U" of Eq.(3) with the associated boundary conditions must satisfy

Bp(V,U") = Lp(V,B) ©)
for any V € (V"")Ne, where
dvT [ _dU" du’
Bp(V,U" = f O—— +RU"|+VT(RT +SU"||dx,+
D dx; dx, dx;
du” dvr
- > (virie==—+RU"} + { =—Q+ VTR { [U"]|+ >  ulVI'IU"]
xoelh dx2 dx2 xpelh

U avr
- (vx2 VT (Qd— +R U) + ( 0+ VTRT) Uhv)(z) +(uvru")
x2 X2=0

de x=0
(3)
and
Lp(V,B) = f VB dx,. ©)
Dt
In Egs.(8) and (9), the terms {e} and [e] denotes the so-called average and jump operators, defined as
1

{.} = z(.e + .e+l) and [[.]] = o¢ — .€+l, (10)

the term fz)h odx; = 3, fD, e dx, denotes the so-called broken integral, I is the set of inter-element interfaces, and
Vy, is the element’s outward unit normal. Note that, being the beam model one-dimensional, v{, = —1 and v§, = +1 for
xy =y¢ and xp = y¢, respectively, where y° and y are the two end points of the e-th element.

2.4 Aeroelastic coupling

The coupling between the VLM introduced in Sec.(2.1) and the DG formulation for beam structures introduced in
Sec.(2.3) is discussed in this section. Two models are valid for steady-state acrodynamics and static elasticity; therefore,
it is worth noting that the aeroelastic coupling considered here is to be intended as static aeroelastic coupling.
According to the VLM discretization strategy,'® the wing is replaced by N, vortices of unknown strength; then,
upon enforcing the non-penetrability condition of the velocity field through the lifting surface, the VLM leads to the
following system of algebraic equations
AT =B, an

where I is a N,-dimensional vector collecting the unknown strengths of the vortices, A is N, X N, matrix of the
aerodynamic influence coefficients and B is the N,-dimensional right-hand side vector that is function of the free-
stream velocity V.

The DG method also leads to a linear system of equations. In particular, upon expressing U" as the product of
known basis functions and unknown coefficients for each mesh element, and letting V range over the basis functions,
it is possible to show'> that Eq.(7) leads to an algebraic system of the form

KXZF3+FA, (12)

where: X is a (NV,N,)-dimensional vector collecting the unknown DG coefficients, with N, being the number of un-
known coefficients (or basis functions) per each element; K is the stiffness matrix of the wing structure; Fg is the
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Figure 1: (a) Wing with a flat-plate cross-section. (b) Wing with a thin-walled airfoil-shaped cross-section

right-hand side vector stemming from the structural loads, such as weight or concentrated forces; and Fp is the right-
hand side vector stemming from the aerodynamic loads obtained by the VLM.

The coupling between Eq.(11) and Eq.(12) is two-fold. On the one hand, Fp directly depends on the vortices
strengths, i.e. Fo = Fa(I"). On the other hand, the location and the tangent plane at the VLM control points, where the
non-penetrability condition is enforced, depend on the deformation of the structure; this means that the matrices A and
B in Eq.(11) depend on X. Although such a coupling is in general non-linear, it is possible to linearize Eqs.(11) and
(12) as

0B
AoT =B —X 1
0 0+ =% (13)
and P
A
KX =F —7T 14
stor L (14)

respectively, where the matrices Ay and B are obtained by the VLM discretization for the wing in the undeformed
configuration. Combining Eqs.(13) and (14) leads to the static aeroelastic problem

Kae X = Fag, (15)
where oF B
A, - _
Kae = Kg — 6_I‘A°16_X and Fae = Fs + A;'By. (16)

Eventually, upon noting that B and Fa may be written as B = VB and Fa = poo VMFA, where B and FA are computed

assuming unitary free-stream velocity V., and free-stream density p., Eq.(16) allows computing the divergence speed
Vp for the considered wing configuration by solving the following eigenvalue problem

IF 4

Ks - puVp—=Ay = |X = 0. 17

[ 24 ar o GX) (17)

3. Results

In this section, the tool developed in the preceding section is employed to solve the aeroelastic problem for two wing
structures. We consider a wing with a flat-plate cross-section and a wing with a airfoil-shaped thin-walled cross section
as shown in Fig.(1a) and Fig.(1b), respectively. Both structures are made of isotropic aluminium with Young’s modulus
E = 69 GPa and Poisson’s ratio v = 0.33.

The first set of results investigates the effect of the order p of the basis functions of the DG method on the
convergence performance of the proposed formulation. We consider the wing with the flat-plate cross-section having
c=1m, b/2 =5mand ¢ = 0.02m, see Fig.(1a). The wing is modeled using a third-order beam theory (BT) and is
subjected to a free-stream velocity V., = 30 m/s and an angle of attack @ = 1°. A 10 x 50 lattice is employed as the
VLM mesh. The maximum deflection and the twist of the wing tip are reported in Fig.(2) as a function of the basis
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Figure 2: Convergence results for (left) the wing tip maximum deflection u_|;, and (right) the wing tip twist Au,|gp.
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Figure 3: Wing tip twist as a function of the free-stream velocity approaching the divergence speed (the dashed line).

functions order p and the overall number of degrees of freedom of the discrete system. In figure, data points with
the same marker are obtained by changing the number of mesh elements of the structural mesh, whilst the gray area
denotes the region with less than 5% deviation from the result obtained with largest number of degrees of freedom.
From the plots, it is clear that higher-order approximations achieve faster convergence to the solution and require fewer
degrees of freedom than the corresponding lower order schemes.

In the second of test, we investigate the effect of the free-stream velocity on the twist of the wing tip upon
considering the static aeroelastic analysis (SAA) given in Eq.(15) as opposed to considering a static structural analysis
(SSA) only, whereby the aerodynamic loads are transferred to the structure without the aeroelastic coupling. We
consider the same wing as the previous set of test modeled using a 5-element structural mesh with basis functions
order p = 5, and keep all other parameters unchanged. The obtained results are reported in the plot of Fig.(3), which
shows the expected behavior of the aeroelastic response as the velocity approaches the divergence speed computed
using Eq.(17).

The third set of tests shows the effect of the wing span b on the wing tip maximum deflection for the SAA and
the SSA cases. Unlike the previous cases, the wing has a thickness ¢ = 0.1 m, is subjected to a free-stream flow at
Ve = 70m/s. All other parameters are kept unchanged. The computed results are reported in Tab.(1) for different wing
span values and beam theories; the comparison with the results available in the literature confirms the accuracy of the
present formulation.

In the fourth set of tests, we consider the wing with the airfoil-shaped thin-walled cross-section. With reference
to Fig.(1b), the geometrical properties of the wing are b/2 = 5m, {;/c = 0.006, {;/c = 0.015, {»/c = 0.0105. The wing
is subjected to the free-stream conditions V., = 50m/s and @ = 3°, and is modeled via a fourth-order beam theory
and a 5-element structural mesh with p = 5. In this case, we investigate the effect of using a flat VLM formulation,
where the vortices lattice is obtained by discretizing the chords surface of the wing, as opposed to using a curved VLM
formulation, where the vortices lattice is obtained by discretizing the mean-thickness surface of the wing. It is worth
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Table 1: Wing tip maximum deflection in mm as a function of the wing span b and different structural theories.

BT, BT, BT; BT,
b/2 [m] Ref’  Present Ref®> Present Ref’ Present Ref’ Present NASTRAN
5 SSA | 29928 29499 2.8620 29324 29192 29340 2.9325 2.9361 -
SAA | 29933 29622 2.8731 29445 29307 2.9462 2.9443 2.9483 2.9505
10 SSA | 56366 55.671 54.631 55.426 55.358 55438 55478 55.470 -
SAA | 56402 56.845 55.717 56.585 56.465 56.605 56.611 56.637 56.723
20 SSA | 1000.3 990.83 981.43 987.73 988.76 987.87 989.72 988.21

SAA | 1003.0 1091.8 1075.8 1087.6 1084.1 1088.4 1087.3 1088.8 1092.8

Table 2: Wing tip maximum deflection in mm obtained using a flat VLM surface versus a curved VLM surface.

Ref’> Flat VLM Curved VLM
SSA | 8.6854 8.8967 9.2117
SAA | 8.8377 8.9159 9.2018

stressing that the angle of attack is to be considered with respect to the zero-lift direction, which, for the curved VLM
case, has been evaluated as oy = —2.1396°. The obtained results are reported in Tab.(2) for the SAA and the SSA cases,
and recover the results obtained in the literature by Carrera et al.,> who also employed a flat VLM discretization.

4. Conclusions

A novel numerical approach to static aeroelasticity has been presented in this research study. The proposed formula-
tion uses the VLM to solve the aerodynamic problem and high-order DG-based beam theories to solve the structural
problem of wing structures. The coupling between the two methods has been discussed and numerically tested. The
obtained results have confirmed the accuracy and shown the potential of the formulation.

The presented methodology serves as a first step towards the development of a fast tool for estimating the flight
dynamics performances of highly flexible aircraft during preliminary design stages. Future studies will be devoted to
the application of the method to unsteady aeroelasticity, to the study of the wing-tail coupling and to the analysis of
different morphing wing configurations for improved flight performances.
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