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Abstract
Aircraft anti-skid controllers rely still mostly on heuristic wheel deceleration-based strategies despite the
recent advances made in automotive applications. This paper presents a novel aircraft braking control de-
sign method which unlocks all the wheel slip control benefits for aeronautics. Based on a simple synthesis
model, a wheel slip controller is derived, its gains being scheduled to adapt to the varying system dynam-
ics. An extended state observer is then used to provide accurate estimations of the wheel grip moment and
slip. Robustness and performance of the proposed approach are finally demonstrated through simulations
on a realistic validation model.

1. Introduction

Despite the recent enhancement of aircraft on-ground control, anti-skid braking systems remain today mostly heuristic
algorithms focused on confining the wheel deceleration within empirical thresholds1, 2 . Although such strategies rely
only on the wheel speed and braking pressure measurements, they lack generality, require tedious tuning procedures
and may be sub-optimal. Recent advances for automotive applications3, 4 introduced novel wheel slip-based control
strategies able to achieve better performance and robustness for a reduced tuning effort. However, those ABS solutions
cannot be directly transferred to aircraft for multiple reasons. A major one is the unavailability of the aircraft velocity
measure to the braking control unit (BCU) for the sake of safety and modularity5 . Besides limited measurements
access, an aircraft antiskid control system has also more stringent requirements in a wider operating range. Mass vari-
ations, runway conditions and carbon brake gain fluctuations make the control design phase a challenging problem. In
addition, the recent efforts to reduce the ground piloting workload introduced development of advanced control func-
tions, e.g. automatic taxi-guidance6, 7 , which could be further improved by means of modern braking strategies able
to perform efficient automatic braking (autobrake). In that respect, to unlock all the potential benefits of slip control
in aeronautics, a real challenge consists in designing robust, high-performing and generic wheel slip control laws that
rely only on the landing gear common set of sensors, namely the braking pressure transducer and wheel speedometer.8

Leveraging the key results regarding tire friction force and wheel slip estimation9, 10 , recent studies adapted active
braking control strategies to aeronautics by using a combination of wheel slip and deceleration as the controlled vari-
able.11, 12 At the expense of an additional tuning parameter, such an approach takes advantage of the wheel speed
measurement reliability, and thus mitigates the effects of slip estimation error and noise sensitivity arising at low
speeds. Several studies used neural networks and fuzzy-logic for the anti-skid13, 14 , however the certification of such
approaches may be difficult due to the high level of reliability expected by aviation authorities. Furthermore, a neural
network-based estimator for wheel slip may not offer better results than model-based observers8 . Model Predictive
Control was also investigated with considerations on how to reduce the inherent computational load of the optimiza-
tion resolution occurring at each time step15 . Due to the slip control intrinsic noise amplification, particularly for low
speed and slip setpoint values, it appears important to design low order controllers, thus limiting the control signal
noise sensitivity. Moreover, designing an effective solution, easily tunable and adaptable, as well as realistic in terms
of computing power and certification issues, is highly desirable for landing gear manufacturers.
The proposed research aims to develop a wheel slip control architecture implementable in current aircraft landing gear
layout thanks to an efficient wheel slip estimation method. The contribution of this paper is twofold:

1. A novel slip control law is designed to cover the entire operating range of the system by combining a scheduled
PI controller, active in the stable region of the friction curve, with a nonlinear dynamic inversion (NDI) controller
used to cope with slip values beyond the friction peak. Actuator dynamics and sensor delays are accounted for
in the design process leading to realistic limitations on the achievable performance.
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2. An efficient extended state observer (ESO) is conceived to reconstruct the wheel grip moment, the aircraft speed
and the wheel slip. The system nonlinearity being inherent to the grip moment, this exhaustive estimation
approach allows to obtain accurate estimates over the whole operating domain but also to perform nonlinear
compensation.

In that respect, the proposed work allows direct implementation of a generic advanced braking control architecture on
aircraft with the current landing gear limited set of measurements commonly available. The complete approach is val-
idated through simulation on a high-fidelity/medium complexity aircraft model previously proposed by the authors.16

The paper is organized as follows: section 2 introduces a simplified single wheel model employed for control
synthesis. The switching control law is derived in section 3. Section 4 presents the extended state observer used to
estimate the wheel grip moment, from which the aircraft speed and wheel slip estimates are deducted. Performance
and robustness of the control strategy are demonstrated in section 5 via simulations on the validation model, depicting
meaningful critical braking conditions.

2. Problem objectives and formulation

The objective of the proposed research is to derive a novel wheel slip control scheme for aeronautic application with
advanced functionalities, e.g. autobrake, meeting the safety requirements by mitigating wheel skids and able to effi-
ciently track a slip setpoint in the stable region of the friction curve. The only measurements assumed available are the
commanded torque, i.e. the control signal, and the wheel rotational speed.

2.1 Synthesis model

The mathematical model used for controller design is a simple single wheel model, also referred to as a quarter car
model in the automotive context3 . As depicted in Figure 1, it consists of a wheel attached to a mass m for which
only the longitudinal motion is considered. The wheel is in contact with the runway, assumed perfectly horizontal.
The aerodynamic drag is neglected for control design but will be taken into account in sections 4 and 5 for estimation
purposes and the validation of the control architecture on the high-fidelity aircraft model.

Figure 1: Single wheel model

The single wheel model equations of motion can be written as:
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mv̇ = −Fx (1)

Jω̇ = rFx − Tb (2)

where v, ω, J,and r are the longitudinal velocity, wheel rotational speed, inertia and rolling radius respectively, as in
Figure 1. Tb represents the braking torque and is the control variable of the problem. Fz and Fx are the vertical load
and tire longitudinal friction force respectively, the latter being given by:

Fx = Fz µ(λ) (3)

where µ(λ) is the friction characteristic of the tire/runway interface. This friction coefficient depends mainly on the
wheel longitudinal slip λ defined as:

λ =
v − rω

v
(4)

One can notice that the value of λ remains between 0, corresponding to an unbraked rolling wheel, and 1, reached when
the wheel is locked. Typical friction characteristics µ(λ) are displayed in Figure 2. It should be mentioned that other
parameters, like the velocity v or the vertical load Fz, have an influence on these friction curves, see Pacejka.17

As in Johansen et al.,4 (2) and (4) can be combined to reformulate the problem in a wheel slip-dependent fashion:

λ̇ = −
r
Jv

(
1 +

J
mr2 (1 − λ)

)
Ψ(λ) +

r
Jv

Tb (5a)

v̇ = −
1
m

Fzµ(λ) (5b)

where we denoted by Ψ the wheel grip moment defined as:

Ψ (λ) = r Fz µ (λ) (6)
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Figure 2: Tire friction characteristics µ(λ) for different runway conditions

Considering that, for an aircraft, the wheel inertia J is much smaller than the equivalent mass m, the term J
mr2 is

negligible in comparison with 1, and (5a) can be written as:

λ̇ ≈
r
Jv

(
Tb − Ψ(λ)

)
(7)

As can be seen in Figure 2, the friction µ is a nonlinear function of λ, characterized by a maximum value
corresponding to an optimal slip λopt (displayed for the dry condition only). After linearization around an equilibrium
point (λ̄, v̄), see Savaresi et al,3 Castro et al18 for further details, (7) becomes:

δ̇λ =
r
Jv̄

(
δTb − γ(λ̄)δλ

)
(8)
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where δλ and δTb represent the variations around the equilibrium point values λ̄ and T̄b respectively. γ(λ) is the deriva-
tive of the grip moment with respect to the slip, and is proportional to the friction curve slope according to:

γ(λ) = r Fz
∂µ

∂λ
(λ) (9)

The evolution of γ(λ) for the dry runway friction of Figure 2 is represented in Figure 3, where a linear approximation
of the curve over the stable region is also plotted for the domain λ ∈ [0, λopt].

Figure 3: Evolution of the grip moment slope γ(λ) for a dry runway

Considering (8), the first-order transfer function of the single wheel model, from brake torque to wheel slip,
finally reads as follows:

Gλ̄(s) =
r
Jv̄

s + r
Jv̄γ(λ̄)

(10)

Note that the system is unstable for negative values of γ, i.e. for λ̄ > λopt, where the real pole is positive.

Remarks. As can be seen in Figure 3, for a dry runway, γ experience significant variations , from 60 kN m to 0 N m
on the stable region (γ > 0). Let us write p0, G0 and G∞ the pole, static and high-frequency gains of the open loop
transfer function Gλ̄(s) respectively. The study of its behavior for the operating conditions λ̄ ∈ [0, 1] and v̄ ∈]0, 70]
allows to notice the following:

• at low velocity (v̄ → 0), we have |p0| → ∞ and G∞ → ∞, which means the wheel slip dynamics becomes
extremely fast (i.e. uncontrollable considering the actuator bandwidth and wheel skids are quasi impossible to
counter) while noise sensitivity is amplified. That is why antiskid systems are usually turned off below approx-
imately 10 m/s. These impediments are well known in the automotive industry, but the inability to counter low
velocity skids is all the more obvious in an aeronautic context given the substantial values of Fz. To tackle this
v̄-dependency, a gain-scheduling strategy applied all along the braking process appears relevant as previously
done in Johansen et al,4 Castro et al.18

• For large values of γ, i.e. very small λ, we have −p0 ≫ 0 and G0 ≪ 1, while when approaching λopt, p0 → 0
and G0 → 0. The system is dramatically fast on most of the stable region of the friction curve, whereas its time
constant increases considerably near the friction peak. Meanwhile, the slip variation for a given increase of Tb

is also amplified near λopt. Based on this analysis, changing the system dynamics in the stable very fast region is
irrelevant. The required control law should rather confer a faster stable pole in the vicinity of the friction peak,
i.e. where the antiskid is generally activated.

• For λ > λopt, i.e. the unstable operating domain, γ and p0 do not vary as considerably as in the stable part with
respect to λ. Though, p0 takes significant values rapidly, the system being unstable and fast.

The hydraulic actuator bandwidth and sensor delay being non-negligible given the fast system dynamics in most of its
operating range, both have to be taken into account for closed loop analysis.

Electro-hydraulic servo-valve actuators can be accurately modeled by second order transfer functions19 . Based
on experimental and manufacturing data, the following model is retained for the actuator dynamics:

4
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A(s) =
ω2

0

s2 + 2ξω0 s + ω2
0

(11)

with ω0 ≈ 30 rad/s and ξ ≈ 0.6 the natural frequency and damping ratio, respectively.
The wheel speedometer is processed using a fixed-position estimator, as in Brown et al20 . The resulting speed

measurement is delayed with respect to the real wheel speed ω. This delay is due to both the sampling period Ts,
generating a constant lag time Ts

2 , and the speedometer finite resolution (number of teeth N), introducing a velocity-
dependent term:

dω(ω) =
2π
N

ω
+

Ts

2
(12)

In the present case, the values N = 100 and Ts = 7 ms characterize the wheel speed measurement delay. As such, the
conservative constant value dω = 5ms, corresponding to the rather unfavorable low velocity ω ≈ 30 rad/s, is retained
for closed-loop preliminary analysis and observer design (sections 2.2 and 4 respectively). This constant delay transfer
function can be modeled by a Padé approximation:

S (s) =
1 − dω

2 s

1 + dω
2 s

(13)

For validation purpose, the aircraft model previously proposed by the authors16 will be supplemented by the
speedometer dynamic delay model (12).

2.2 Preliminary closed loop analysis

Let us consider a PI controller K(s) = Kp +
Ki
s for the system. Without actuator dynamics and sensor delay, the

following second order characteristic equation is obtained from (8):

s2 +
r
Jv̄

(
Kp + γ(λ̄)

)
s +

r
Jv̄

Ki = 0 (14)

A desired uniform closed-loop behavior characterized by natural frequency ωd and damping ξd can, a priori, be
obtained by choosing the integral and proportional gains Ki and Kp as follows:

Ki =
Jv̄
r
ω2

d (15a)

Kp = −γ(λ̄) + 2
Jv̄
r
ξd ωd (15b)

Such control action would in fact be equivalent to compensating the nonlinearity Ψ(λ) through the term −γ(λ̄) in
Kp, and it is also referred to as nonlinear dynamic inversion (NDI). However, the term γ(λ)r

Jv̄ incur considerable and fast
variations (see Figure 3), making the open loop system faster than the actuator.

Given (15), a preliminary closed loop analysis can show the limitations introduced by the servo-valve dynamics
and speedometer delay. The closed loop containing the nonlinear single wheel model, as well as the actuator (11),
sensor (13) and PI controller, as represented in Figure 4, is linearized for different values γ(λ̄). Note that the wheel
slip is assumed to be measured and delayed accordingly. A constant longitudinal velocity v̄ = 40 corresponding to a
favorable case is retained. The resulting maximum real part of the closed loop poles is plotted in Figures 5 and 6 for
different desired cutoff frequencies ωd (see (15)) and operating points γ(λ̄), so as to detect instability.

As can be seen in Figure 5, even for positive γ, with the designed controller, the closed loop is unstable. A
uniform behavior, even over the open-loop stable subdomain γ > 0, is not achievable with a PI controller since the
system dynamics incur considerable changes, from significantly faster to slower than the actuator. Figure 6 shows that
the unstable region is not stabilized by the controller, in fact, in most of the domain where γ < 0, the open loop unstable
pole p0 is considerably fast and the system cannot be stabilized considering the actuator dynamics and sensor delay.
More generally, the significant variations incurred by the system are faster than the actuator bandwidth in most of the
domain, which leads to an imperfect compensation of the nonlinear term Ψ(λ). Thus, a uniform behavior cannot be
achieved.
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Figure 4: Closed loop block diagram (K(s) given in (15))

Figure 5: Evolution of the highest real part value among closed loop poles (γ > 0, Kp and Ki given in (15))

Figure 6: Evolution of the highest real part value among closed loop poles: the closed loop remains unstable ∀ γ ≤ 0
and (Kp,Ki) given in (15)
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This preliminary study showed the main difficulties of the problem arising from the strong nonlinearity of the
tire/runway friction characteristic. Given the drastic changes in system dynamics and the non negligible actuator
bandwidth and sensor delay, the closed loop behavior displays serious limitations. A uniform closed loop dynamics
over the entire operating domain is impossible to attain with a low order controller. However, it should be more relevant
to focus on conferring a desired behavior in the vicinity of the friction peak, where the actuator has sufficient bandwidth
with respect to the system dynamics (p0 → 0). Moreover, given the impossibility to stabilize the unstable region, a
suitable strategy to leave this domain and retrieve the stable configuration is needed.

3. Wheel slip control

3.1 Stable region scheduled PI controller

As confirmed by the preliminary analysis performed in 2.2, a low order controller can have a meaningful impact on the
system poles only in the vicinity of the friction peak. In fact, a uniform behavior cannot be obtained over the whole
possible values of λ, and this is also true for the subdomain λ < λopt. This subsection deals with the stable domain of
the friction curve, which is characterized by wheel slip values below the friction peak, i.e. λ < λopt.
Let us consider the following PI control action, given the setpoint λc assumed not far from λopt, while neglecting in the
first instance the actuator dynamics and sensor delay:

Tb = Kp(v) (λc − λ) +
∫ t

0
Ki(λ(τ), v) (λc(τ) − λ(τ))dτ (16)

with Kp(v) and Ki(λ, v) assumed linear functions of v and λ and v respectively. The dynamics of the longitudinal
velocity v is neglected as it varies slowly in comparison with λ.
Equation (7) allows to rewrite the system nonlinear equations:λ̇ = r

Jv

(
Kp(v) (λc − λ) − x − Ψ(λ)

)
= f1(δλ, x)

ẋ = Ki(λ, v) (λ − λc) = f2(δλ, x)
(17)

with δλ = λ − λc.

Then, denoting f =
[

f1
f2

]
and X =

[
δλ
x

]
, the jacobian matrix of the system can be expressed as:

∂ f
∂X
=

− r
Jv

(
Kp(v) + γ(λ)

)
− r

Jv

Ki(λ, v) + ∂Ki
∂λ
δλ 0

 (18)

From (18), the following second order characteristic equation is obtained:

s2 +
r
Jv

(
Kp(v) + γ(λ)

)
s +

r
Jv

(
Ki(λ, v) + δλ

∂Ki

∂λ

)
= 0 (19)

A desired closed-loop behavior, characterized by the design parameter α, can be obtained by choosing Ki and Kp

such that:

(
Kp(v) + γ(λ)

) r
Jv
=

r
Jv
γ(λ) + α (20a)

r
Jv

(
Ki(λ, v) + δλ

∂Ki

∂λ

)
=

r
Jv
γ(λ) α +

α2

2
(20b)

Indeed, such gains would ensure that near the friction peak (γ ≈ 0), the following poles are obtained:p1 = −
α
2 (1 + j)

p2 = −
α
2 (1 − j)

(21)

while when γ ≫ 1: p1 ≈ −
r
Jvγ(λ)

p2 ≈ −α
(22)

From (20a), the gain Kp can be deduced:

Kp(v) =
Jv
r
α (23)
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Assuming that γ is a linear function of λ in the stable region of the friction curve:

γ(λ) ≈ γ0 − γ1 λ (24)

with γ0 and γ1 positive fitting coefficients (γ0 = 1.11 × 106 Nm and γ1 = 1.48 × 107 Nm for the dry runway in Figure
3). In that respect, the coefficients β0 and β1 such that Ki(λ, v) = β0 − β1 λ can be determined from (20b):β1 =

1
2α γ1

β0 = α γ0 −
1
2α γ1 λc +

Jv
r
α2

2

(25)

Thus, the integral gain expression can be written as:

Ki(λ, v) =
α

2

(
(γ0 − γ1 λ) + (γ0 − γ1 λc)

)
+

Jv
2r
α2 =

α

2

(
γ(λ) + γ(λc)

)
+

Jv
2r
α2 (26)

Note that since the setpoint is assumed near the optimal value λopt, we have γ(λc) ≈ 0 and the integral scheduled
coefficient becomes finally:

Ki(λ, v) =
α

2

(
γ(λ) +

Jv
r
α
)

(27)

The scheduled gains Kp(v) and Ki(λ, v) given by (23) and (27) allow to preserve the inherent system stability
and rapidity when γ ≫ 1, while they guarantee a stable, faster dynamics in the vicinity of λopt. The system linearized
around any λ̄ < λopt will verify: p1 + p2 = −

r
Jv̄γ(λ̄) − α

p1 p2 =
r α
Jv̄ γ(λ̄) +

α2

2

(28)

The design parameter α is chosen to meet, at the friction peak, the constraints regarding the actuator bandwidth,
namely:

ωd(γ = 0) =
α
√

2
=
ω0

3
(29)

which corresponds to α = 14.

3.2 Unstable region NDI controller

In this subsection, a controller operating in the domain characterized by λ > λc is derived. More specifically, the
proposed controller is activated as soon as the slip exceeds the setpoint λc by a sufficient margin (further defined in
section 3.3), its objective being to bring back the slip into the domain λ ≤ λc in finite time.

Let us write tk, the time at which the controller in question is initialized, t the current time and Ψ̂(λ(t)) the best
current estimate of the grip moment. We assume that the grip moment and its estimate stay both bounded by the
maximum braking torque applicable Tbmax > 0, representing the actuator maximum capacity. In this way, the error
∆Ψ(λ(t)) = Ψ̂ (λ(t)) − Ψ (λ(t)) verifies:

|∆Ψ(λ(t))| ≤ Tbmax ∀ t ≥ tk (30)

In order to avoid abrupt changes in the control action after switching and to ensure that the braking pressure is
smoothly released until the longitudinal slip reaches the objective λc in the stable region, we consider the following
control law:

Tb(t) = Ψ̂(λ) − K (t − tk) (31)

where K is a positive constant to be tuned.
Let us initially assume that a perfect estimation of Ψ is available. In this case, (7) becomes:

λ̇ = −
r
Jv

K (t − tk) (32)

Recalling that v undergoes slow variations when compared to λ (v̇ ≪ λ̇) on the considered interval [tk, t], then by
integration one obtains:

8
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λ(t) = λ(tk) −
r

2Jv
K (t − tk)2 (33)

From which we readily observe that the desired objective λc is reached in finite time t fnom :

t fnom = tk +
(

2Jv
Kr

(
λ(tk) − λc

)) 1
2

(34)

which is clearly a decreasing function of K.

Remark 1. In a worst-case configuration where the estimation error is such that: ∀ t ≥ tk, ∆Ψ(t) = δΨ > 0, the
required time t fwc becomes:

t f wc = tk +
δΨ
K
+

 δ2ΨK2 + 2
Jv
Kr

(λ(tk) − λc)
 1

2

(35)

and we have:

t f wc ≤ t fnom + 2
δΨ
K

(36)

Remark 2. From (34) and (36), the benefits of a gain-scheduling approach with respect to v is again noticeable.
Indeed, by choosing K(v) = Γ v, with Γ a positive design constant, the leaving time becomes insensitive to the velocity.
Hence, an improvement of (31) is proposed as:

Tb(t) = Ψ̂(λ) − K(v) (t − tk) (37)

As a final result, the explicitly time-varying control law (37) brings the system (7) back in the safe region (λ ≤ λc)
in a finite time t f , which is a decreasing function of K(v).

3.3 Switching strategy

To avoid unwanted switching between the two control laws near λc, a positive threshold hλ, such that λc + hλ < λopt, is
defined so as to introduce an hysteresis cycle in the commutation strategy as illustrated in Figure 7.

Figure 7: Switching strategy and resulting controller operating domains

More precisely, as clarified next, the switching strategy is implemented to enforce continuity of the commanded
braking torque.
Let us denote tk and tk+1 two successive switching times where by convention t0 = 0 s is the initial time. Then, in each
interval [tk, tk+1], the control law is either defined by the implicitely time-varying PI based structure:

u(t) = uPI(t) = u(tk) + Kp (v) · (λc − λ) +
∫ t

tk
Ki (λ) (λc − λ) dτ (38)

or by the NDI-based explicitely time-varying expression:

9
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u(t) = uTV (t) = T
(
u(tk), Ψ̂(t)

)
− K(v) · (t − tk) (39)

where T (c, s(t)) denotes a smooth transition operator from the constant first input argument c = u(tk) to the varying
signal s(t) = Ψ̂(t). This operator will then guarantee the continuity of the commanded torque when switching occurs
from (38) to (39) with tk such that λ(tk) = λc + hλ. Next, note that switches from law (39) to (38) take place when
λ(tk) = λc, in which case uPI(tk) = u(tk) and continuity is then enforced.

Remark. During normal operations in practice, it is observed that u(tk) ≈ Ψ̂(tk) so that the transition operator can be
removed to recover equation (37) without significant impact on the global behavior.

4. Estimation

The present section deals with the estimation of the key variables of the problem.
An extended state observer able to estimate the nonlinear grip momentΨ(λ), only from wheel speed measurement

and commanded torque, is first presented. This estimate is used not only to generate the control signal when the NDI
controller is active (see (39)), but also to derive estimates of the aircraft speed v and controlled variable λ.

4.1 Extended State Observer for grip moment estimation

Consider the nonlinear system of (7), neglecting the longitudinal velocity variations compared to the slip dynamics.
The system can be rendered linear by considering the grip moment Ψ(λ), which contains the nonlinearity, as a second
state variable, whose variations are neglected:

 ω̇
Ψ̇

 = 0 1
J

0 0

  ω
Ψ

 +  − 1
J

0

 Tb

ω =
[
1 0

]  ω
Ψ

 (40)

Note that the wheel speed ω is measured, while the applied braking torque is not generally directly available. Based on
the above, an observer can be implemented as followed: ˙̂X = A X̂ + B Tc + L (ωm − ω̂)

ω̂ = C X̂
(41)

where X̂ =
[
ω̂

Ψ̂

]
is the state vector estimate, L =

[
L1
L2

]
is the observer gain matrix, A =

[
0 1

J
0 0

]
, B =

[
− 1

J
0

]
and

C = [1 0]. The inputs are the wheel speed measurement ωm and commanded torque Tc.

The gains L1 = 40 and L2 = 800 × J are retained so as to ensure the observer convergence with a bandwidth ωobs ≈

28rad/s.
The grip moment estimate Ψ̂ returned by the observer is used by the NDI controller operating in the unstable

region of the friction curve (see (39)) but also in the following subsection to reconstruct the wheel slip λ.

4.2 Wheel slip estimation

Taking into consideration the entire aircraft, on which the aerodynamic drag D = −kdv2 is not negligible, (5b) can be
rewritten:

v̇ =
D

mtot
−

1
mtot

n∑
i=1

Fxi = −
kd

mtot
v2 −

1
r mtot

n∑
i=1

Ψi (42)

where n is the number of braked wheels (supposed of same rolling radius r), Ψi, Fxi are respectively the grip moment
and longitudinal force of the ith wheel. mtot is the aircraft total mass, while kd is the coefficient verifying D = −kdv2.

From Ψ̂ and (42), an estimate of the longitudinal acceleration can be deduced as:

˙̂v = −
kd

mtot
v2 −

1
r mtot

n∑
i=1

Ψ̂i (43)
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which, via integration, leads to the longitudinal velocity estimate as in (44), provided the initial value of the aircraft
v0 is known. The latter can be estimated accurately from the initial values of the wheel speed as v0 = max

1≤i≤n

(
r ωmi (0)

)
,

given that the slip is null prior to braking.

v̂(t) = v0 −
1

mtot

∫ t

0
kdv(τ)2 −

1
r

n∑
i=1

Ψ̂i(τ) dτ (44)

Finally, each wheel slip λi is estimated as:

λ̂i = 1 −
r ωmi

v̂
(45)

Remark. The aircraft aerodynamic constant kd was assumed to be known. A satisfying estimate can be obtained
through the wheel speed measurements just before the brake torque is applied according to the following:

kd =
mtot r

v2
0

ˆ̇ω0 =
mtot

r max
1≤i≤n

(
ωmi (0)

)2
ˆ̇ω0 (46)

where ˆ̇ω0 is an estimate of the wheel deceleration obtainable from the speedometer measurements on a sufficiently long
time horizon (e.g. 10 Ts).

5. Simulation results

In this section, the complete braking control architecture is tested via simulation on the high-fidelity aircraft on-ground
model presented in Ndiaye et al.16

5.1 Validation model and test scenarios

The nonlinear 6 degrees-of-freedom aircraft model considered offers a reliable simulation environment for braking
control validation by incorporating longitudinal-vertical cross-coupling phenomena typical of braking. In particular,
the behavior of the shock-absorbers is particularly well described which allows to depict accurately the wheels rolling
radii variations and the resulting effects on the wheel slip and friction forces. The model is supplemented with the
servo-valve second order dynamics (11) and the model for speedometer delay (12). The resulting overall tractable
model provides precise simulation results used to validate the proposed braking control scheme. The set of data, cor-
responding to a single-aisle aircraft, available in Ndiaye et al16 are used for the simulations.

Besides aircraft stopping distance, the following meaningful performance criterion is used to assess the braking
efficiency:

e% = 100

∫ t f

ti
µ
(
λ (t)

)
dt∫ t f

ti
µmax (t) dt

(47)

where µmax is the maximum friction available at the tire/runway interface, ti and t f are the braking process initial and
final times.

The proposed slip control architecture is assessed on two Rejected takeoff (RTO) braking maneuvers occurring
on two different runways:

1. A homogeneous dry runway.

2. A heterogeneous runway characterized by a sudden transition from dry to very wet condition, the associated
µ-discontinuity occurring 220 m after braking initiation.

During an RTO, the takeoff process is aborted due to an unexpected hazardous event and the aircraft has to be
stopped safely within the remaining length of runway available. In such a critical situation, the objective is clearly
to continuously exploit a maximum amount of the friction available at the runway in order to generate the minimum
braking distance. In both scenarios, the aircraft speed is initialized at the takeoff decision speed v1 = 70 m/s.

The first maneuver aims at assessing the ability to generate an optimal steady high-performance braking in
the nominal configuration corresponding to a homogeneous dry runway. In the specific proposed scenario, the large
negative friction curve slope of the unstable region, typical of dry runways (see Figure 2), has the propensity to cause
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Figure 8: Overall braking control architecture (the braking supervisor logic is not detailed in the present paper)

profound wheel skids. As a result, the scenario tends to disadvantage suboptimal overaggressive antiskid systems. By
the second scenario, the objective is to test the adaptation to a drastic change in friction coefficient, due to a puddle e.g.,
during a hard braking process. Moreover, the wet runway section is characterized by a lower friction coefficient µ with
moderate slope values above the peak (see Figure 2). Such a configuration is likely to handicap too conservative braking
control systems. The combination of both scenarios is relevant to validate the performance, robustness and versatility
of the braking control architecture. Remark that both maneuvers are perfectly symmetrical, i.e. no crosswind, a same
runway condition experienced by right and left landing gear wheels as well as a single slip reference signal for all the
wheels are assumed.

5.2 Results analysis

The simulations results of the homogeneous and heterogeneous braking scenarios appear in Figures 9 and 10 respec-
tively. Regarding the first scenario, to assess the efficiency of the controller switching strategy, the results obtained
with and without the hysteretic commutation (see section 3.3) are displayed for both the single wheel synthesis model
(introduced in section 2.1) and the complete aircraft validation model. In particular, the aircraft and wheel speeds as
well as the reference, realized and estimated wheel slips, are represented for each of the four cases in Figures 9a -
9h. The evolution of the reference and realized slips allows to study the overall tracking ability of the control scheme.
The observer performance can be more specifically assessed through the results of the heterogeneous braking, which
corresponds to the worst case regarding estimates accuracy. Therefore, the realized and estimated aircraft speed and
wheel grip moment are also depicted for the second scenario, see Figures 10c and 10d respectively. Note that for
the validation model, the results correspond to only one of the four landing gear wheels, the other wheels producing
exactly the same results since both maneuvers are symmetrical. The slip setpoint variations observed in simulations
result from the braking supervisor logic, not detailed here.

Regarding the controllers commutation, Figure 9 shows that the hysteretic switching strategy allows to achieve
a better tracking of the slip setpoint signal by reducing the activation time of the NDI controller, whose activation state
(1 for activated, 0 for inactivated) is displayed at the bottom of the wheel slip plots in Figures 9b, 9d, 9f and 9h. When
no hysteresis switching is applied, unwanted commutations are observed on both the synthesis and validation models.
Despite its first order dynamics (10), the single wheel model slip response incurs overshoots and consequent controller
commutations as a result of the slip estimate discrepancy, see Figure 9b. For the validation model, the overshoots result
from the landing gear vertical dynamics, i.e. variations of the wheel rolling radius r and vertical load Fz, that produces
noticeable oscillations on the wheel slip response, as can be seen in Figure 9h. The value hλ = 0.03 defined in design
is sufficient to maintain the wheel slip in the PI controller operating domain without unnecessary activation of the NDI
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(a) Synthesis model (without hysteresis): Aircraft and wheel speeds (b) Synthesis model (without hysteresis): Wheel slip control and estima-
tion performance

(c) Synthesis model (with hysteresis): Aircraft and wheel speeds (d) Synthesis model (with hysteresis): Wheel slip control and estimation
performance

(e) Validation model (without hysteresis): Aircraft and wheel speeds (f) Validation model (without hysteresis): Wheel slip control and estima-
tion performance

(g) Validation model (with hysteresis): Aircraft and wheel speeds (h) Validation model (with hysteresis): Wheel slip control and estimation
performance

Figure 9: Dry runway RTO: effects of hysteretic switching on single wheel and complete aircraft validation models
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(a) Aircraft and wheel speeds (b) Wheel slip control and estimation performance

(c) Aircraft longitudinal speed: realized and estimated (d) Wheel grip moment: realized and estimated

Figure 10: Braking on a heterogeneous runway, from dry to wet, with µ−discontinuity at 6.5s (results corresponding
to a right landing gear wheel)

controller, see Figures 9d and 9h.
As far as the homogeneous braking performance is concerned, Figures 9g and 9h show that the proposed control

law allows to track the reference wheel slip without any excessive overshoot. The estimated wheel slip signal, used in
the closed loop by the controller, satisfactorily follows the realized slip in spite of an increasing mismatch over time.

With regard to the heterogeneous braking, the transition from a dry to a very wet portion provokes a short-lived
wheel lock as depicted in Figures 10a and 10b. However, this wheel lock remains limited in time (< 0.1 s) and was
almost inevitable regarding the differences in friction for the dry and wet conditions used in simulation (see Figure 2).
We can notice that for a moderate slip setpoint value on the wet runway section (λc ≈ 0.75 λopt), the slip response
oscillations are reduced. The unstable region NDI controller remains inactive during most of the braking process.
Meanwhile, the realized friction stays very high (µ ≈ 0.95 µmax). Nevertheless, the slip estimation error is more
important than for the first scenario at the end of the simulation. This can be explained by the longer deceleration
occurring on the wet runway, which leads to a larger cumulated error. The reduced realized slip values achieved on the
wet runway tend to amplify the relative estimation error

(
eλ = λ̂−λλ

)
as well. This discrepancy between the actual and

estimated slips being negative (eλ < 0) and the setpoint λc being relatively near the optimum λopt during an RTO, the
realized slip λ becomes repeatedly greater than λopt and skids are incurred from t = 31 s. While limited (λ < 0.1),
these wheel skids activate the NDI controller when they are detected by the commutation logic (i.e. when λ̂ ≥ λc + hλ)
and a recurring switching is observed accordingly.

Table 1: scenarios performances results

Dry runway∗ Heterogeneous runway
e% [%] 95.67 94.51
Realized braking distance [m] 571 1095
Minimum braking distance attainable [m] 535 1000
∗ Results obtained with the hysteretic commutation logic

Despite severe conditions imposed by the two braking scenarios, the wheel slip control architecture herein pro-
posed demonstrates ability to satisfactorily track the reference input and generate very efficient braking as shown in
Table 1. As a result, the braking distances remain very close to the theoretical minimum attainable values. Room for
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improvement should be sought in ways to mitigate chattering effect due to the switching process while still ensuring
the unstable region is left when crossed into. Even though the observer is very accurate in estimating v and Ψ, the
reconstruction of λ generates a potentially hazardous mismatch regarding closed-loop stability at the end of a long
braking process and for low slip values. Note that the simulations were performed until the aircraft velocity attains the
critical value of 10 m s, below which an open-loop braking is assumed to be safe enough regarding skid induced tire
blowout risks.

6. Conclusion and future work

An efficient aircraft braking control architecture is presented and tested on a reliable and validated simulation environ-
ment. The main constraints typical of aeronautics, such as actuator bandwidth, sensor delays or limited measurements
available, are considered in design and validation. The wheel slip control law relies on the combination of a gain-
scheduled PI controller, achieving high-performance tracking in the stable region, together with a NDI controller guar-
anteeing efficient leaving of the friction curve unstable domain. The controllers are provided by accurate estimations
of the grip moment, aircraft velocity and of the controlled variable λ. Such an exhaustive approach allows a successful
adaptation to the vast operating conditions. The estimates are realized by means of an extended state observer which
directly considers the nonlinearity as part of a state variable, alleviating the potential mismatch introduced otherwise
by linearization. The advanced validation of the overall architecture demonstrated stability, which substantiate the ben-
efits of wheel slip control applied to aircraft braking. The evolution of the wheel slip estimate error over long braking
processes, however, together with ways to reduce chattering without compromising the ability to leave the unstable
domain, must be further investigated. Future work will also focus on studying strategies to identify λopt and update the
setpoint λc accordingly21, 22 .
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