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Abstract 
The most effective method to determine the parameters of surface roughness in rarefied gas flow is the 

solution of the inverse problem, because applied in practical calculations profile diagrams show only the 

roughness of the largest scale. However, the main input into the influence of surface roughness on 

aerodynamic values takes the roughness of smaller scale [1]–[3], usually negligible on the profile 

diagram. Thus, the best way to find the roughness parameters is to calculate them from aerodynamic 

measurements, solving the inverse problem. Based on this solution algorithm allows us applying the 

results of our previous investigations concerning the problem of accounting surface roughness in 

aerodynamic calculation [1]–[3]. 

1. Introduction

Many aerodynamic experiments and calculations underestimate surface roughness. The influence of surface roughness 

on aerodynamic macroscopic parameters of rarefied gas flows is especially important because of two reasons. First, 

the velocities and other properties of gas molecules in rarefied gas flow without a boundary layer depend on the 

scattering kernel on the surface. Second, profile diagram measurement applied usually to obtain the parameters of 

surface roughness seems to be most simple and precise method to find the characteristics of the roughness. However, 

exact values of roughness parameters in rarefied gas could not be determined this way, because profile diagrams show 

only the roughness of the largest scale. Thus, the effect of surface roughness produced by the roughness of smaller 

scale remains unnoticed. 

The main purpose of the present paper is to develop the algorithm of numerical calculation of rarefied gas flow near 

rough surface based on known solution of the inverse problem of determining the main surface roughness parameter 

from aerodynamic experimental data. 

The main parameter characterizing surface roughness in basic technical applications is root-mean-square deviation of 

a rough surface  = (𝑀𝑧2)1/2. Here z(x,y) is a deviation of random field simulating rough surface from its average

level. Similar parameters of surface roughness are the average distance   Rz  between the highest peak and the lowest 

valley, and peak-to-peak distance. All these parameters are quite effective in different technical applications – like 

determining surface friction or destruction, and the interaction of rough surface with continuum flow. Nevertheless 

more relevant to the rarefied gas dynamics is the parameter    determined not by the 

height z, but by its partial derivatives 𝑧𝑥 = 𝜕𝑧/𝜕𝑥 and  𝑧𝑥 = 𝜕𝑧/𝜕𝑦 in directions x and y of a random field [1]–[6].

The parameter 1 describes root-mean-square values of the tangent of the angle  n between the local  n  and the global 

N normal vectors on rough surface. Hence, it is independent of the absolute values of the roughness amplitude. Usually 

the parameter  1 is obtained from statistical processing of profile diagram measurements, because it seems to be most 

exact method to find 1. However, the precision of determining the parameter 1 from experimental profile diagram 

measurements could be unsatisfactory, because profile diagrams show only the roughness of the largest scale. And the 

main input into the influence of surface roughness on aerodynamic values in rarefied gas is provided by the roughness 

of smaller scale, usually negligible on the profile diagram [1]–[4]. Moreover, the parameter  1 is not included in 

technical standard of surface quality. Hence, it is difficult to find the values of  1 in the literature. Therefore the only 

precise algorithm to determine the real values of the roughness parameter  1 is extracting it from aerodynamic 

measurements solving the inverse problem. The solution of this problem is based on analytical and numerical 
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evaluation of the influence of surface roughness on scattering function and on momentum and energy exchange 

coefficients in rarefied gas flow.  

2. Poly-Gaussian model of rough surface in rarefied gas flow 

Analytical representation of scattering function V on a rough surface in the form 0
ˆV SV  allows deriving its 

expansion according to the number of gas atom collisions with the surface [5], [6]. Here the roughness operator Ŝ  

does not depend on physical and chemical parameters of the gas and of the surface. Consequently, it depends only on 

the geometrical shape of a roughness and on the trajectory of a reflected gas atom. Physical and chemical parameters 

influence only the local scattering function V0 (scattering function on smooth surface without roughness). Gas particles 

are called atoms in considered problem, because the structure of the molecule is also accounted by the local scattering 

function V0, and it does not affect the roughness operator Ŝ .  

The statement of the problem is based on the assumption that the number of rough irregularities in a small surface area  

dS  is large, so that the scale of these irregularities is smaller than the aerodynamic scale of the flow [6]. Therefore, the 

characteristic scale of the roughness is smaller than the characteristic scale of the flow. Only this assumption permits 

to separate roughness operator Ŝ  and local scattering function V0 . 

The approach for solving the problem of simulating the gas atoms scattering from a rough surface numerically has 

been developed in our previous papers [1]–[4]. This approach is based on the expansion of the roughness operator 

considered for Gaussian [5] or poly-Gaussian random field. We have used the approximations of momentum and 

energy exchange coefficients on the rough surface to solve the problem [1]–[5]. DSMC method, applied together with 

discussed expansion, becomes especially effective. 

It seems to be simpler to apply fractal and deterministic models of a roughness (especially constructed of flat elements 

[7] or sine waves) simulating gas-surface interaction [8]–[10]. However, most difficult part of the calculation is not the 

simulation of roughness, but the computation of gas atom scattering from rough surface. Thus, the simplicity of rough 

surface simulation does not affect the computation time appreciably [3] and gives no advantages. Moreover, our 

method reduces the computation time in comparison to the methods based on simple roughness models, because the 

whole information about the roughness geometry contains the roughness operator Ŝ . If we obtain the correct 

representation of Ŝ  and corresponding numerical algorithm, then there is no need to simulate the shape of the rough 

surface in the DSMC calculations. 

Poly-Gaussian model of the roughness is more general, than Gaussian homogeneous isotropic random fields studied 

in St.-Petersburg State University [5], [6]. Both models have several advantages in comparison with other different 

more simple models of surface roughness applied in practice, including polygonal-line roughness [7], fractal [5], [11], 

conical-hole based model of the roughness [8], and the surface constructed of flat elements [9]–[10]. In particular, 

these simple models take into account only the input of large-scale roughness into momentum and energy exchange 

coefficients on the surface [5]. So simple models have no possibility to take into account the micro-roughness (the 

roughness of small scale) – it is the advantage of poly-Gaussian model. Moreover, this model is confirmed on the base 

of experimental data [12].  

Gaussian and poly-Gaussian models have following additional basic advantages. First, Poly-Gaussian and Gaussian 

random fields are differentiable (unlike the surface constructed of flat elements), so that the local normal exists 

everywhere on the surface under simple conditions [4], [5]. Second, the simulation of different real surfaces processed 

in various ways is easy by simple variation of the parameters (scale coefficients, correlation function and weighted 

function). And, third, analytic representation of stochastic characteristics of the number of the crossings of inclined 

trajectory of a gas atom by the random field (such as the probability of the absence of the crossings) simplifies 

numerical Monte Carlo calculation of gas-surface interaction. 

The reason to prefer poly-Gaussian model of roughness (to Gaussian one) is explained in [12] and in [4]: “Non-

Gaussian statistics have rough surfaces of mixed structure, modelled as a result of several stages of processing (by 

pressing, extrusion, grinding, honing etc.) of wearing surfaces after being operated, maintained and so on. Other reason 

for non-Gaussian relief is the deterministic component, which is typical for the processing by whetting, milling, 

polishing etc.” 

Approximation of real micro-reliefs confirms the precision of poly-Gaussian model in different technology processes. 

In particular, the model has been applied to simulate rough surfaces produced as by ionic bombardment of the steel 

using nitrogen ions, as well as by chemical etching of the steel by alcohol solution of nitric acid. In both cases, a very 

good coincidence has been verified. If we compare with the profiles of real surfaces applied for space vehicles (for 

instance, metallic or synthetic), then we conclude that poly-Gaussian models are closer to reality. 
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The scattering function 1 0
ˆ( , ) ( , , )V S V v v v v n  on the rough surface (taking into account only the first reflection 

from the surface, if there are multiple collisions [5]) can be rewritten as 
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Here v and v  are the velocities of incident and reflected gas atoms, v (0, sin , cos )    , 0 ( , , )V v v n is the local 

scattering function, M1 is the normalizing factor [3]. Scalar product of the vectors n and v  is denoted by  n v , n 

and N are local and global normal unit vectors to the rough surface (n – to the smaller area on a rough surface), N and 

z-axis are directed perpendicular to the mean level of the roughness (Fig.1).  

 

 

Figure 1: First reflection of a gas atom from smaller area on a rough surface 

The expression (1) of scattering function contains two roughness parameters:  

– the square mean derivative 1; 

– functional roughness parameter: the normalized correlation function  of the random field  z(x,y). 

The values1 and   are most important for gas interaction, because all the other statistical parameters of the roughness 

(, Rz, skewness coefficient etc.) can be expressed in terms of main rough surface parameters1 and  . 

The joined poly-Gaussian probability density p of the field z(x,y) and of its derivatives 𝑧𝑥 = 𝜕𝑧/𝜕𝑥 and 𝑧𝑦 = 𝜕𝑧/𝜕𝑦  

in directions x and y is defined by the formula 
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where 
2

0 0, ( , , )v r

x y x yg z z z  is probability density of Gaussian process with correlation function 
2 ( )v r h  and its derivatives 

in the point t0 of a gas atom interaction with the surface. Here ( )F v is a non-decreasing on the interval [0;∞) weighted 

function, and the correlation function ( )r h  must satisfy the restriction: its spectrum must contain continuous 

component [3].  

3. Aerodynamic shadowing effect in rarefied gas on rough surface 

The main difficulty in the calculation of scattering function (1) on rough surface and of aerodynamic macro-parameters 

of the flow is the computation of the conditional probability (1)  of the absence of the level-crossings between the 

random field z(x,y) and the trajectory of the gas atom (assuming the values of , ,x yz z z  to be given) [1], [5], [6]  

 

 
(1)
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This probability (1)  allows us taking into account aerodynamic shadowing effect, which consists in the shadowing 

of a noticeable part of the area on a rough surface by the dimples of the relief for incident or reflected rarefied gas 

atoms. Consequently, this area does not take part in the interaction of these gas atoms with the surface. The calculation 
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of scattering function (1) becomes much more simple without the factor (3), because (1)  depends on the values of a 

random field along the trajectory of a gas atom. So (3) is the integral in functional space (continuum integral), and it 

must be approximated by the integrals of high dimension (in practice, of dimension not less than 200 [5])  

 

 Π(1)(𝜃1, 𝜎1, 𝑧, 𝑧𝑥 , 𝑧𝑦) = lim
𝑛→∞

 lim
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𝑢𝑛

−∞
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Here (0, 0, z) is the point of the first collision of a gas atom with the surface, and p is joined poly-Gaussian probability 

density of the field z(x,y) and its derivatives 1 2, , , n    in n points u1, ..., un, placed along the trajectory of the atom. 

Considered points are distributed uniformly along the x–axis (𝑥 = 0, ℎ, 2ℎ, … , 𝑛ℎ), and ℎ is a pitch of movement along 

the y–axis in the computation. 

The expression (4) requires too much computing time, and becomes useless for DSMC procedure. The difficulty of 

taking into account aerodynamic shadowing effect applying continuum integral computation is the reason why this 

approach is developed only in St.-Petersburg and is ignored in most calculations of rarefied gas flow interacting with 

rough surface (for example, in [7], [8], [9]). 

However, the same problem remains if other random models of the roughness are applied (not Gaussian or poly-

Gaussian). Even rough surface constructed of flat elements, if they are distributed randomly, requires calculating of 

continuum integrals (4) to take into account aerodynamic shadowing effect of the roughness (p becomes joined 

probability density of the field z(x,y) with corresponding distribution). Only most simple deterministic models of the 

roughness like sine waves or other regular periodic functions permit computing of rarefied gas-surface interaction 

without calculating continuum integrals. However, deterministic models do not take into account the micro-roughness, 

therefore this approach reduces substantially the influence of the roughness on scattering function (about 2–3 times in 

practical calculations).  

The conditional probability (1)  of absence of its level-crossings with the trajectory of a gas atom (3) (or (4)) depends 

only on the values of the random field under the trajectory of a gas atom. Hence, only the profile of the surface can be 

considered in the plane of two vectors: of the local normal n and of the velocity v (or v ) of gas particle. Thus, it is 

necessary to study only the probability (1)  for a random process instead of more complicated probability (1)  for a 

random field. Therefore, we consider the properties of poly-Gaussian random processes. 

The probability density of poly-Gaussian random process in n points x1, ..., xn, corresponding to the arguments t1, ..., 

tn, is the mixture of Gaussian densities defined by the formula 
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where 1( , ..., )nx xx . Here ( )v  and ( )nR v  are the vector of a mean value and the correlation matrix of the values 

of random process in n points, ( )nR v  is the determinant of the correlation matrix, 
1( )nR v

– its inverse, the upper 

index T denotes transposition, ( )F v is a non-decreasing on the interval [0;∞) weighted function. The function ( )F v  

can be as continuous, as well discrete (stepped) – only the convergence of the integral is necessary. 

In addition to discussed above merits of considered random fields, Poly-Gaussian random process has two more known 

advantages: 

– it can approximate an arbitrary random process with any desired accuracy [13]. 

– the sample relief of poly-Gaussian random process can be simulated numerically by the simple algorithm based on 

the transformation of Gaussian distributions [12]. 

This algorithm is developed for many applications like light scattering on rough surface, growing of thin films for the 

micro-electronics, surface diagnostics by electronic spectroscopy, a friction in machinery etc. [12]. The possibility of 

precise approximation of real micro-reliefs is confirmed also in different technology processes. In particular, rough 

surfaces are simulated which have been modelled as well by ionic bombardment of the steel using nitrogen ions, as by 

chemical etching of the steel by alcohol solution of nitric acid. In both cases, experimental measurements confirmed 

numerical results with high precision. The techniques of similar type are applied to model the surfaces of flying 

vehicles moving in rarefied gas. 
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4. Applying Rice expansion in numerical calculations of rarefied gas atoms 

scattering from rough surface 

Suggested by Miroshin [6] Rice expansion we apply to calculate the conditional probability (1) in (1)–(4). This 

expansion in terms of the factorial moments Nm of m-th order of the number of the intersections of the random field 

with the trajectories of gas atoms has the form 
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The values  Nm  can be expressed as the 2m-fold integrals of the joint probability density of  z(x,y)  and its derivatives  

i  (i=1,2,…m). The representation of the factorial moments Nm of m-th order of the number Au[0; T] of the excursions 

of the random field above the level u of a trajectory of a gas atom has been derived in [14] from the generalized 

expression (2) of poly-Gaussian probability density of random field and of its derivatives  
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Here 
G

mN  are the factorial moments of m-th order of the number of the excursions of corresponding Gaussian random 

field above the level 
u

v
 on the same interval [0; T]. 

Asymptotic evaluation of the factorial moments Nm(u) for high level u is well-known for Gaussian processes [6], and 

for poly-Gaussian (spherically-invariant [15]) processes it takes the form 
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function for 0h  , and the weighted function F(v) has a step on the right side of the interval, i. e. for some v0  the 

function F(v) = 1 for all v > v0, and the left-sided limit at this point v0 is less than 1: 
0 0

lim ( ) 1
v v

F v
 
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means that the probability mixture determining poly-Gaussian field has Gaussian component with the maximal value 

of the variable v. Thus, the asymptotic evaluation of the number of the excursions of poly-Gaussian process above the 

high level is similar to corresponding Gaussian asymptotic evaluation only if the weighed function ( )F v  defines 

Gaussian component with the maximal value of the variable v0. In all other cases asymptotically all the moments (8) 

are substantially different, i. e. aerodynamic characteristics of the surface simulated by poly-Gaussian random field 

can be noticeably different from the characteristics of the surface simulated by Gaussian random field. Typical poly-

Gaussian profiles and probability densities (5) are clearly different from Gaussian profiles and probability densities as 

presented in [12]. 

Numerically the factorial moments Nm(u) (7) can be computed applying the expression of Gaussian random process as 

an integral of a Wiener process [5], [16]. 

There are two possibilities to apply obtained results to the problem of studying the influence of surface roughness on 

aerodynamic characteristics in rarefied gas flow. 

On one hand, it is possible to derive asymptotic evaluations describing studied influence on smooth surface. However, 

in this case we need to take into account that similar evaluations in Gaussian case are very complicated and they are 

containing integrals in a functional space – continuum integrals. The computation of these integrals requires their 

approximation by the integrals of high dimensions (4). Besides, real surfaces always contain micro-roughness (even 

by the best processing), which could not be considered as smooth surface. Therefore, asymptotic evaluations on smooth 

surface are not widely applied in practice. The main practical conclusion that could be made from asymptotic 

investigations is that the influence of surface roughness for poly-Gaussian model of roughness may be more noticeable, 

than for Gaussian model (because each next factorial moment Nm+1 turns to infinity sooner, than each previous one). 
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On the other hand, it is possible to apply poly-Gaussian model in numerical DSMC calculations. Obtained results allow 

us selecting appropriate random field on preliminary stage of the computation so that it could satisfy two conditions. 

1. The random field must approximate well the roughness profiles of real surfaces applied in practice.  

2. It must have necessary properties for optimizing numerical procedures (depending on physical and chemical 

characteristics of the gas and of the surface) for the best simulating rarefied gas atoms scattering from the surface. 

The most general expansion of the scattering function V on a rough surface 
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could be obtained from the expansion of the local scattering function 0 ( , , )V v v n  in a series in terms of the orthogonal 

functions ( )k n  
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where ( , )kb v v  are the coefficients in the expansion (9) or (10), and 
1

ˆ( , ) ( )k kK S  v v n  are continuum integrals 

depending only on the parameters of the random field simulating the rough surface 
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The values ( , )kK v v  are completely defined by gas atom trajectory and by roughness parameters: 1  and ( )r . Thus, 

it is possible to compute these integrals preliminary, before the main DSMC computation of a rarefied gas flow. This 

proposition is valid in our approach for an arbitrary local scattering function 0 ( , , )V v v n  with only one restriction. The 

scattering function 0 ( , , )V v v n  must have an approximation in the form (10) with only a few parameters to describe 

the physical and the chemical features of the gas and of the surface. Applied in practice scattering functions including 

diffuse, specular, Nochilla, Cercignani–Lampis and others satisfy this condition. Fig.2 shows an example of computed 

integral (11) depending on roughness parameter 1 . The decreasing of the accuracy for 1 >1/3 and >70 could be 

explained by insufficient number of the realizations of random field in computation. 

 

 

Figure 2: Continuum integral (11) depending on 1  and on the incidence angle  (in deg.)  

Knowing the analytical scattering model for the smooth surface without a roughness, the estimated parameters 

( , )kb v v  in (9) can be transformed according to the roughness operator in (11). The integrals (11) we must compute 

at preliminary step. From the equations (9)–(11), it follows that the parameters for the rough surface are linear 

combinations of the parameters on the smooth surface; the coefficients of the linear expansion depend on the values 

( , )kK v v . Simulating the calculated distribution, we obtain the velocities v  of the gas atoms that are scattered by the 

rough surface. In terms of the computational speed, our algorithm has an advantage over the methods that use simple 
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geometrical models to simulate the shape of the rough surface [7], [8], [9]. Eliminating the need for the geometrical-

shape simulation in DSMC, and taking into account all the shape information at the preliminary steps allows us to 

achieve this advantage. 

Applying all considered methods of the calculation of surface roughness effect in rarefied gas, we propose 

following solution algorithm for aerodynamic calculation of rarefied gas flow on the base of the solution of inverse 

problem.  

1.  Determining the set of the orthogonal functions ( )k n  (we have applied trigonometric approximations used in the 

local interaction theory). 

2.  Expanding the local scattering function 0 ( , , )V v v n  in a series in terms of the system ( )k n ; hence the coefficients  

( , )kb v v  are calculated. 

3.  Computing the integrals ( , )kK v v  (11) in function space of the realizations of random field. The values (11) must 

be calculated for different number k, incidence angles, reflection angles and for different values of roughness 

parameter   1 . Then it is necessary to expand obtained integrals ( , )kK v v  in function space in a series in terms 

of the system ( )k N  for different values of   1  and  k  (where N is the normal vector to the average level of rough 

surface).  

4.  Expanding the scattering function  ( , )V v v   on rough surface (or the momentum and energy exchange coefficients 

obtained from the experimental data) in a series in terms of the system ( )k N . 

5.  Calculating the values of ( , )kK v v  from two expansions of  ( , )V v v  in a series in terms of orthogonal functions 

( )k N  with the coefficients ( , )kb v v . If the known experimental values of ( , )V v v  are here applied, then the 

solution of the inverse problem is obtained, finding as the roughness parameter   1 , as well the correlation function 

from calculated ( , )kK v v . 

6.  Computing the scattering function V on a rough surface by (9)–(11) gives finally the dependence of ( , )V v v  on 

surface roughness. 

7.  Substituting the expansion (9) into the integrals representing momentum p,  and energy q exchange coefficients, 

we obtain the dependence of p,  and energy q on surface roughness. 

5. Rarefied gas atoms scattering from rough surface: DSMC computation 

According to the proposed algorithm, it is necessary to solve the inverse problem on its first stage. Therefore, we need 

original experimental measurements of aerodynamic values (scattering function, momentum or energy exchange 

coefficients) on the same surface with different roughness parameters. Unfortunately, only few known experiments in 

rarefied gas satisfy these conditions. Testing our algorithm for the solution of the inverse problem, we have applied 

experimental data from [9] and [10].  

The comparison of computational results for two different models of a surface roughness with experimental data 

obtained in TSAGI [9]–[10] is presented for argon atoms scattering from Kapton surface for incidence angles  = 60 

and = 60 (Fig.3). 

Dotted line presents the scattering function (indicatrix) on smooth surface without roughness; it is closer to diffuse 

scattering, than to specular or ray reflection, and coincides well with Nochilla and Cercignani–Lampis models. Dash-

dotted line shows the numerical results obtained by Erofeev, Friedlander et.al. [9]. Solid lines demonstrate our results 

on poly-Gaussian surface with the same roughness parameters. Different signs present experimental results [9] for 

smooth (white, 1) and rough (black, 2) Kapton surface. 

 

              

Figure 3: The argon scattering indicatrix on smooth and rough Kapton surfaces for incidence angles  =0;  =60. 
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Comparing numerical results of direct simulation with the experiment and analysing the graphs we can conclude that 

either aerodynamic shadowing effect failed to take into account in [9], or considered partially: aerodynamic shadowing 

effect gives a wider indicatrix graph as well onwards, as in backwards direction.  

The results depend on the local scattering kernel, and the solution of inverse problem shows that the value of  1 

obtained by proposed algorithm from experimental data is 10%–30% higher than the value of  1 from the profile 

diagram measurements (or from direct measurements of geometrical parameters of artificial roughness). The difference 

is the input of the roughness of smaller scale not visible on profile diagrams. 

Similar results are obtained from another experimental measurements in [9] and [10], for example from the normal 

momentum exchange coefficients of reflected gas flow (Ar and He) for different molecular energy E of incident 

molecular beam and different (Kapton or aluminium) surface roughness. The calculated value of  1 is 5%–35% higher 

in all computations than in profile diagram measurements. 

Numerical DSMC computations for some local scattering functions have demonstrated, that the influence of surface 

roughness on momentum and energy exchange coefficients increases noticeably for poly-Gaussian model compared 

to Gaussian or to simple deterministic one. 

6. Conclusion 

Considered Gaussian and poly-Gaussian models of surface roughness allow us precise accounting surface roughness 

in rarefied gas flow near rough surface. Necessary stage of the algorithm is analytical and numerical solution of the 

inverse problem of determining surface roughness parameter  1 in the interaction with rarefied gas flow. Obtained 

results lead us to following conclusion. 

1. The solution of inverse problem is the best way to determine surface roughness parameters, because the 

roughness parameter  1 is not measured in the experiments: it is not included in technical standard of surface 

quality. Moreover, profile diagrams show only the roughness of the largest scale, hence the precision of 

measuring  1 from the profile diagram could be low. The computational error of proposed algorithm increases 

with 1. 

2. Poly-Gaussian model of roughness, applied to take into account aerodynamic shadowing effect on rough 

surface, permits constructing the most effective solution of inverse problem. Taking into account aerodynamic 

shadowing effect on rough surface (which is usually underestimated), we need to calculate the probability of 

absence of level-crossings and related function space integrals in scattering function. Statistical parameters of 

this model (verified by experiment) have better coincidence with the parameters of real surfaces applied in 

practice. For instance, Poly-Gaussian model has been applied to simulate rough surfaces produced in different 

technology processes. 

3. Solving both direct and inverse problems of surface roughness, the best way to reduce computing time is 

simulating the random field (modeling rough surface) preliminary, before the main DSMC computation of 

rarefied gas flow. This structure of computational algorithm allows obtaining time economy for the same 

precision even in comparison with more simple models of roughness. 

4. Proposed algorithm is verified for different models of roughness, and the effect of aerodynamic shadowing on 

rough surface is studied for real surfaces (like Kapton and Al) and gases (like Ar and He). 

5. The value of  1 obtained from the solution of inverse problem is substantially higher (up to 30–35%) than the 

value of  1 from the profile diagram measurements. Thus, this example confirms the advantage of our method 

of accounting surface roughness on the base of preliminary determining roughness parameter  1 from the 

solution of inverse problem. 

References 

[1] O. A. Aksenova, and I. A. Khalidov, 2019. Inverse Problem of Finding Surface Roughness Parameters in 

Rarefied Gas Flow. In: Rarefied Gas Dynamics, AIP Conference Proceedings 2132: 1700051–1700058. 

[2] O. A. Aksenova, and I. A. Khalidov, 2016. Analytic Model of the Effect of Poly-Gaussian Roughness on Rarefied 

Gas Flow near the Surface. In: Rarefied Gas Dynamics, AIP Conference Proceedings 1786:1000071–1000078. 

[3] I. A. Khalidov, 2014. Application of Poly-Gaussian Random Processes for the Simulation of Rough Surface in 

Rarefied Gas Flow. St.Petersburg University Vestnik. Ser.1, 59, No.3: 428–436 (in Russian). 

[4] I. A. Khalidov, 2014. Study of rarefied gas flow interaction with rough surface on the base of poly-Gaussian 

mathematical model. St.Petersburg State Polytechnic University Journal. No.4: 129–138 (in Russian). 

DOI: 10.13009/EUCASS2022-4897



9TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) 

     

 9 

[5] O. A. Aksenova, and I. A. Khalidov, 2004. Comparison of Fractal and Statistical Models of Surface Roughness 

in the Problem of Rarefied Gas Atoms Scattering. St.Petersburg University Vestnik. Ser.1, No.1: 61–66 (in 

Russian). 

[6] R. N. Miroshin, 1981. Intersections of Curves with Gaussian Processes. St.-Petersburg University Publishers, 1–

280 (in Russian). 

[7] A. Ukhov, B. Porodnov, and S. Borisov, 2009. Numerical Simulation of Gas Dynamics Conductivity of Micro 

Channels with Consideration of Surface Structure. In: Rarefied Gas Dynamics, AIP Conference Proceedings 

1084, edited by Takashi Abe. 712–717. 

[8] N. E. Gimelshein, T. C. Lilly, S. F. Gimelshein, A. D. Ketsdever, and I. J. Wysong, 2007. Surface Roughness 

Effects in Low Reynolds Number Nozzle Flows. In: Rarefied Gas Dynamics, edited by M. S. Ivanov and 

A. K. Rebrov (Novosibirsk: Siberian Branch of RAS): 695–702. 

[9] A. I. Erofeev, O. G. Friedlander, et al., 2012. The Influence of Roughness of the Surface on the Interchange of 

Momentum between Gas Flow and Solid Surface. In: Rarefied Gas Dynamics, AIP Conference Proceedings 1501, 

edited by M. Mareschal. 1168–1174. 

[10] A. I. Erofeev, A. P. Nikiforov, et al., 2016. The Influence of the Roughness of the Surface on Scattering of Free-

Molecular Gas Flow from Solid Bodies. TSAGI Journal, 47, 4, pp. 12–27 (in Russian). 

[11] O. A. Aksenova, 2001. Mathematical Modeling 13, No.7, pp. 99–103 (in Russian). 

[12] M. Litvak, and V. Malyugin, 2012. Poly-Gaussian Models of a non-Gaussian Randomly Rough Surface. 

J. Technical Phys. 57, No.4:524–533. 

[13] Sh. M. Chabdarov, and A. T. Trofimov, 1975. Poly-Gaussian Representations of Interferences and Descrete 

Signals Reception. Radio  Engineering and Electronics, 20, No.4: 734–745 (in Russian). 

[14] O. A. Aksenova, and I. A. Khalidov, 2004. Surface Roughness in Rarefied Gas Aerodynamics: Statistical and 

Fractal Models. St.Petersburg, St.Petersburg University Publishers:1–120 (in Russian). 

[15] Kung Yao, 1973. IEEE Transactions on Information Theory, 19, No.5., pp. 600–608. 

[16] Rough Surfaces, 1982. Edited by N. R. Thomas, Longman Groups, London. 1–261. 

 

DOI: 10.13009/EUCASS2022-4897




