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Abstract 
Shape-based methods have gained increasing attention within the astronautical community in recent times. 

Despite their successful application to low-thrust trajectory design, their mathematical formulation has not been 

completely explored, nor their possible numerical and computational. This works presents several aspects in the 

formulation of these shape-based methods as general optimal control solvers. First, new polynomial families 

are introduced and compared as key elements in the presented methodology. Additionally, polynomial nodes 

are used to construct the optimization grid to enhance the numerical performance of the algorithm. Finally, the 

proposed optimal control solver is evaluated on several testbench low-thrust transfers missions. 

1. Introduction

Shape-based methods have gained increasing attention within the astronautical community in recent times, with 

extensive applications within optimization problems. The rationale behind such methodologies lies in exploiting 

particular functions to ease the representation of the orbital motion of the system, typically a spacecraft. Such analytical 

expressions, usually obtained by imposing boundary or joint conditions of the discretized motion problem, enable a 

quick and fast generation of preliminary trajectories. These preliminary results are then used for mission design 

trajectories or initial guesses, which may undergo further refinement within more complex optimization solvers. 

Clearly, the functions used to represent the trajectory at hands is a key element of the methodology: their mathematical 

properties are then inherited by the numerical algorithm and, consequently, better convergences and more complex 

dynamics will be enabled by a proper choice. 

Shape-based methods for trajectory design were first introduced by Petropoulos and Longuski [1] by selecting an 

exponential sinusoid function to describe the trajectory of a low thrust accelerated spacecraft. Thereafter, sinusoids as 

function family have been a traditional choice to represent spacecraft dynamics for other applications [2]. Wall and 

Conway [3] presented inverse polynomials to match the spacecraft boundary conditions and its intrinsic dynamics. 

More recently, Xie et al. [4] suggested a rapid shaping method based on the radial coordinate form of the initial and 

target orbits, and Roa et al. [5] introduced the concept of generalized logarithmic spirals in a series of works. 

Orthogonal polynomial bases, as well as general spirals, are a common design tool for direct transcription optimal 

control solvers and numerical approximation across a wide range of fields, from Fluid Mechanics to Astrodynamics. 

However, they are not often selected to construct shape-based methods for orbital mechanics applications. More 

recently, Taheri [6] introduced a shape-based formulation to describe spacecraft trajectories based on a finite Fourier 

series. Based on Taheri’s work, Hou et al. [7,8] presented a shape-based method to design the 3D trajectories of electric 

solar wind sails, relying on a Bézier curves approximation, which builds upon the family of Bernstein polynomials. 

Despite their successful application to this low-thrust trajectory design optimization, their mathematical formulation 

was not completely explored to its full potential, nor were their numerical and computational advantages fully 

exploited. In addition, despite some recent work on optimal control [9] general shape-based methods have not been 

employed as a representative tool for optimization engines, but as a low-cost, fast technique to generate dynamically 

compliant trajectories to be refined afterwards in more detailed design phases. 

This work presents a novel approach to tackle optimization problems in astrodynamics using enhanced shape-based 

methods, together with an assessment of the viability of these algorithms as general optimization solvers. New 

functional representations of the system's time evolution are introduced, by means of an orthogonal version of the 

Bernstein polynomials family, to enhance the classical algorithm's numerical behaviour and improve on its 
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convergence properties. Additionally, a direct performance comparison is performed and presented against classical 

orthogonal bases, which have still not been employed in this methodology. The optimization-associated collocation 

problem is then reformulated on the natural nodes of the selected functional bases. The proposed scheme is directly 

applied in the formulation of generic low-thrust orbital transfers. Finally, several benchmark missions of interest are 

solved by the proposed techniques for demonstration purposes, introducing metaheuristic algorithms for determining 

the overall formulation of the algorithm. 

 

The rest of this document is structured as follows: Section II presents the shape-based methodology with its general 

mathematical formalism. This is later applied to specific low-thrust, time-free and time-fixed orbital transfer problems 

in Section III, testing its capabilities. Section IV is devoted to present and solve testbench missions, solved under 

various constructions of our algorithm, while introducing genetic algorithms in combination with our shape-based 

approach to find supreme, Pareto front multi-objective optimal transfer solutions. Finally, conclusions and further 

research are discussed in Section V. 

2. Shape-based methods as an optimization methodology 

This section develops the shape-based approach as a general solver for optimal control problems, expanding the details 

and introducing the novelties of the formulation when compared to previous work [7,8].  

 

Shape-based methods are semi analytical techniques to solve general optimization Bolza Problems of the form  
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where the state of the dynamical system is described by the vector ( )ts and whose first-order evolution with respect to 

the independent variable 𝑡 is governed by the vector field ( ) ( ) , , ,t t tf s u   with   a set of parameters and ( )tu is 

the control vector field. 

 

The optimal solution is given by the determination of the phase space flow ( )t
s  and control application ( )t

u  

minimizing the cost function J  while satisfying the boundary conditions equalities ( ) ( ) , ,
f

t t th s u and path 

constraints ( ) ( ) , ,
f

t t tg s u . 

 

To reach that solution, the proposed algorithm is analogous to direct transcription methods, e.g. [13], in which the 

infinite dimensional Bolza problem is discretized into a Non-Linear Programming Problem (NLP), where the 

evaluation of the discrete cost function is directly optimized [10].  

 

Consequently, a discrete independent variable grid is defined,  
i

T t= , at which the cost function, the path constraints 

and the boundary inequalities are evaluated. As for the shape-based approach, the state vector evolution is then 

prescribed by setting a pre-determined functional shape and then computing it at the very same grid. Finally, regarding 

the dynamic constraints, they are intrinsically imposed by computing the control law ( )
i

tu as their residual to the state 

evolution derivatives.  

 

The optimization or decision variables are usually defined as the set of parameters that will determine the prescribed 

shape of the state’s phase space trajectory. The process is presented hereafter: 
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Firstly, the state vector is projected onto some polynomial basis
i

P , either orthogonal or non-orthogonal and computed 

at the temporal mesh, 

 

 ( ) ( )
0

iN
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s t c P t
=

=   (2) 

 

The polynomial order 
i

N  may be different for each of the state vector components in a general formulation, 

nevertheless, for the rest of this work the contrary will be assumed to ease the notation. In case a wider scope is 

required, without difficulty this condition can be relaxed to allow for different practical order expansions. 

 

From Eq. (2), once the basis is defined, the derivatives of the state vector with respect to the independent variable are 

clearly available.  As a result, in the studied NLP problem, the set of decision variables will be primarily composed of 

the coordinates 
k

c , while other options could also be included. 

 

From this expression, the control law evaluated at the discrete grid ( )
i

u t can be computed as 
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The specific difference of our approach with respect to other methodologies is the inclusion of the boundary conditions 

in the prescribed functional/polynomial shape of the trajectory. Indeed, using such a semi analytic approach, the 

optimization solver needs only to handle path constraints. This is achieved by defining the symmetric set 

 
1 2 1
, , ,

N N
c c c c

−
=  of polynomial coefficients and then fixing it for boundary conditions through the following linear 

system: 
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The decision variable set to be optimized is therefore reduced to  
3 4 5 4 3 2
, , ,..., , ,

N N N
c c c c c c

− − −
=x  together with 

additional degrees of freedom, such as the time of flight. For Cauchy Two-Boundary Value Problems (TBVP), a 

minimum third-order polynomial expansion is needed to allow free degrees of freedom to be determined. 

 

For a given TBV Bolza problem of the form of Equation (1), the complete shape-based optimization procedure is 

summarized in the following scheme:  

1. Define the discrete sampling grid  
i

T t= in the interval  0
,

f
t t . For time-free problems, a 

domain rescaling can be used to include the final time as an optimization variable.  

2. Generate an initial guess ( )
i

t  for the optimal phase space flow using a densified sampling grid 

and Equation (2) for a third-order expansion of the state vector, to analytically include boundary 

conditions in it.  

3. Compute the initial guess for the decision variable x using a least-squares method on ( )
i

t .  

4. Optimize the decision variable vector x  using an NLP solver. At each iteration,  

a. Solve the set through Equation (4) to impose boundary conditions.  

b. Compute the control law using Equation (3) at the sampling grid. 

c. Minimize the cost function J  in Equation (1) over the sampling grid while respecting 

path constraints. 
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5. Once solved, obtain the optimal state evolution and the final control law through Equation (2) 

and (3), respectively. 

 

Standard NLP solver algorithms suffice to compute the optimal solution of the proposed problem via the shape-based 

approach. In this work, all examples have been computed using the Sequential-Quadratic Programming (SQP) 

algorithm built in Matlab’s fmincon function [14,15]. 

2.1 Orthogonal polynomial families for phase space flow projection 

As it was introduced in Section 1, up to now, little work has been dedicated to the use of orthogonal polynomial families 

to express the evolution of the system’s state vector in shape-based methods [6], despite their vast experience in direct 

transcription methods and numerical optimization. The latest work on shape-based methods, by Huo et al. [7,8], 

focused on Bernstein polynomials to model the motion of spacecraft in low-thrust transfers, which are precisely non-

orthogonal. 

 

They present a 1n + Bernstein basis polynomials of degree 𝑛 are defined as  

 

 ( ) ( ), 1
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  (5) 

 

Bernstein polynomials are naturally interesting for TVBP problems, as they show roots at both [0,1], allowing for 

analytical expressions to impose boundary conditions on the optimal trajectory to be solved for. They also show natural 

smoothness and approximation properties that proved to be interesting for low-thrust trajectory design. 

 

However, the classical orthogonal families usually show enhanced numerical properties within optimization 

techniques, and consequently, they will be studied through this work. Specifically, Chebyshev, Legendre, Hermite and 

Laguerre polynomials are presented. All of them require an appropriate mapping to their domain of definition 

 0
: ,

f
t t → . 

 

Moreover, this work also introduces an additional orthogonal set of polynomials, the orthogonal Bernstein family [11], 

which are defined as  
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They are introduced not only for completion and comparison with previous works, but also to show their numerical 

enhanced properties when compared to their non-orthogonal version. Although there is a clear increase in mathematical 

complexity, they still retain the characteristic smoothness of classical Bernstein polynomials. 

 

2.2 The nodal sampling distribution grid 

As already discussed, the continuous problem is evaluated and solved in the discrete set of sampling points  
i

T t= , 

as in direct transcription methods. The selection of these points may follow any distribution of interest as they will 

modify consequently the error distribution of the trajectory discretization. Being the functional approach only a part of 

the optimization process, as it will be shown this error tends to be of second order compared to optimization algorithm 

errors, and so, they are a secondary problem to be studied. In this work, linear, normal, and random distributions have 

been standardly used. 
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One of the main novelties of this work is the introduction of the nodal sampling distribution as a design parameter, 

based on the natural roots of the state vector polynomial expansion basis. The nodal distribution is defined as the 

disjunct union of node sets for each polynomial in the expansion 

 

 ( ) , ,| 0k j k k jT P = =   (7) 

 

Indeed, the use of the nodal distributions allows to analytically quantify the approximation error of the polynomial 

family, given classical Approximation Theory results, and enhance the numerical behaviour of the expansion when 

compared to other distributions. Moreover, they intrinsically exploit the complete mathematical domain at which the 

polynomial family is defined. For both the Laguerre and Hermite families, that are supported in an open domain, an 

approximation to their nodes is achieved by means of a bijective mapping of the Legendre nodes as an initial guess for 

a Newton-Rhapson method. 

 

3. Shape-based methods for low-thrust orbital transfers 

This section develops the application of the presented methodology to optimal boundary value control problems in 

Orbital Mechanics, specifically continuous-thrusted orbital transfers or rendezvous problems. In fact, as already 

discussed, the shape-based approach was developed as a fast method to generate accurate initial guesses for these 

problems, to be later used in more sophisticated mission design and optimization phases.  

 

In particular, the shape-based approach applies to both fixed initial and final boundary conditions problems, including 

both time-free and time-fixed transfers.  

 

Particularising Equation (1) for this case requires the definition of a dynamical system and state vector that will 

completely define the evolution of the system with respect to an independent variable. For the sake of simplicity, the 

orbital transfer problem under discussion will be studied under Keplerian dynamics with time as the independent 

variable, although other formulations may be used, yielding better results from the authors’ experience, including the 

use of regularized coordinates. In the same fashion, the state vector is defined to be the position vector of the system 

expressed in some inertial frame in cylindrical coordinates,  
T

z =s , while other parametrizations are 

obviously available. 

 

 

The TBVP is given by  
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where 𝜇 is the gravitational parameter of the central body of interest, 𝑡𝑓 is the final time of flight, 𝒂 denotes the 

acceleration control vector resolved in cylindrical coordinates and 𝑟 = √𝜌2 + 𝑧2 is the radial distance to the origin of 

the inertial frame in which the motion is described. 

 

In the following, the TBVP just presented will be treated in normalized coordinates, given by characteristic distances 

𝑟∗ and characteristic time 𝑡∗, such that 𝜇∗ = 1. Moreover, the evolution of the system is parametrized by the normalized 
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time variable 𝜏 =  𝑡/𝑡𝑓, therefore providing an homogenous treatment of both time-free and time-fixed problems. The 

TBVP is transformed into 
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Derivatives denoted by (∎̇) refer to the normalized time variable from now on, and we choose 𝒖 as the normalized 

acceleration. 

 

Finally, the state vector components are projected onto some orthogonal or non-orthogonal polynomial family, as given 

in Equation (2). 

 

For constrained low-thrust orbital transfers, the continuous Bolza optimization problem to be finally solved is therefore  
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where  𝒂𝑚𝑖𝑛 and 𝒂𝑚𝑎𝑥 are appropriate control bounds. These bounds are logically case-dependent and while 𝑎𝑚𝑖𝑛  is 

often equal to 0, 𝑎𝑚𝑎𝑥 will depend on mission details. The optimization variable vector
T

ft=   x c  is composed of 

the polynomial coordinates for each state vector component and possibly the final time of flight in time-free problems. 

For minimum-time problems, the cost function is
f

J t=  while for minimum-propellant missions it can be defined as 

the discrete integral
1

0
J d=  u . 

 

Once solved, the optimal solution is then mapped back to the time and dimensional domain, including the final cost 

function  
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Under this formulation, the low-thrust transfer problem can be then solved by means of the shape-based algorithm 

described in Section 2.  

 

In the case of low-thrust transfers, one of the critical points on its resolution is the generation of an adequate initial 

guess. While direct transfers are a natural initial guess choice, after some benchmarking on the problem they have 

proven to be non-very robust compared to the choice of a multi-revolution trajectory. This last option allows to set the 

number of revolutions introduced as an extra optimization variable (it may also be fixed for mission design purposes) 

and, as a result, they increase the parametric optimization space. Consequently, we will use multi-revolution for this 

study. 

 

The initialization process starts by first estimating the direct transfer time of flight 𝑡𝑓,0 for time-free problems through 

the Vis-Viva Theorem [12] 
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where 𝑟0 and 𝑟𝑓 refers to the boundary initial and final orbital radius and 𝑣𝑖 is the associated orbital velocity. This initial 

estimation is corrected by a preliminary number of revolutions 𝑁0 
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To impose the boundary conditions, the original in-plane angle 𝜃𝑓 and first-time derivative of the initial and final state 

vector shall be corrected at each iteration of the optimization method, including the initial guess, by 
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where j indicates the iteration index.  

 

Consequently, the initial guess of the trajectory is computed by solving the boundary condition linear system using an 

a-priori selected third-order polynomial expansion. At this point, different families behave differently: while Bernstein 

polynomials provide an analytical, closed expression for such initial guess [7,8], other families will require to 

numerically solve the system. Nevertheless, it is possible to perform a transformation between bases, using a simpler 

base for the initial trajectory then transferring it to the family for the final optimization process. This option presents 
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another advantage: it is usually the case that the initial trajectory is over-sampled in a densified time mesh, while the 

final evaluation is planned for a sparser set of sampling points; in this situation, a least-squares solution can be 

employed to retrieve the initial guesses for the polynomial expansion from the over-sampled trajectory. 

 

4. Testbench missions, applications, and studies 

The following Section introduces several low-thrust orbital transfers examples to exemplify the capabilities of the 

methodology presented. Moreover, a metaheuristic technique to construct the algorithm is also introduced, revealing 

its effectiveness in finding global maximum solutions. 

4.1 Low-thrust transfer examples  

The shape-based methodology will be now applied to compute the optimal, minimum-propellant, time-free transfer 

between two LEO orbits in an inertial, geocentric reference system. The initial and final orbital elements are assumed 

to be known, including the initial and final anomaly. If this was not the case, the latter can always be selected as an 

optimization variable of the problem. Table 1 summarizes the initial and final classical orbital elements (where the true 

anomaly has been used) of the transfer in normalized coordinates.  

 

Table 1:  Initial and final orbital elements of the transfer 

 𝒂 𝒆 𝒊 [deg] 𝐑𝐀𝐀𝐍 [deg] 𝝎 [deg] 𝜽 [deg] 

Departure orbit 1       0.001 0  0  0  95  

Arrival orbit 1.05 0.005 1  15  10  270  

    

Several algorithms were constructed based on different polynomial families and sampling grids for comparative 

purposes. In all cases, the sampling grid contained 60 nodes. Additionally, the polynomial expansion was restricted to 

the 9-th order.  

 

The first reported case, considered as the baseline solution for the comparison, was computed using a 60-th order 

expansion and 500 nodes. Maximum thrust available was restricted to 0.05 mm/s2, which corresponds to the 

characteristic thrust level of current electric propulsion systems.  

 

Table 2 summarizes the different results of the methodology applied for the described low-thrust problem, including 

all the algorithms considered and the properties of the solution. Figures 1, 2 and 3 refer to the optimal trajectories found 

and the associated acceleration profiles. The time taken to solve the problem in each case was averaged on 25 iterations. 

Simulations have been performed using an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz with 15.7 GB of RAM. 

 

All the studied families and their variations converge to an optimal solution, as they all satisfy first-order optimality 

conditions. Nevertheless, different results are achieved depending on the exact construction of the shape-based method, 

depending on the sampling grid and the selected family. This is the expected conclusion, as the different combinations 

of sampling grid and polynomial basis provide the algorithm with different numerical properties and capabilities of 

reproducing the natural dynamics of the problem.  

 

Moreover, the evaluation of some polynomial families is obviously more computationally expensive than others: 

including the resolution time result in a trade-off between relative error and solving time. This can be appreciated when 

comparing the baseline solution, clearly computationally expensive, with the rest of the studied families: For 2 orders 

of magnitude in solving time, 3𝜎 relative errors are of 30% for the estimation of the ∆𝑉 and 3% for the time of flight. 

 

The observed difference in error between ∆𝑉 and time of flight is also a natural result: while the computation of the 

first directly depends on the evaluation of a numerical integration scheme over the finite grid and it is therefore directly 

affected by it, the computation of the final time of flight is achieved by imposing the dynamics of the problem, which 

are grid independent. 
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Table 2:  Results of the different algorithms on the proposed mission scenario 

Polynomial basis Sampling 

Grid 

Optimal 

total ∆𝑽 

[m/s] 

Time of 

Flight 

[days] 

Solving 

time [s] 

Function 

evaluations 

Iterations 

Bernstein 

Bernstein 

Sundman 

Linear 

897.40 

1011.44 

603.64 

587.90  

106.0246 

0.6613  

39033 

2816 

201 

80 

Bernstein  Random 935.65 594.57  0.5879  2067 58 

Orthogonal Bernstein Linear 1010.64  588.78  1.1245  3104 79 

Orthogonal Bernstein Random 1009.13  613.45  1.2692 3389 88 

Orthogonal Bernstein Normal 1010.96  861.06  1.1522  3321 88 

Chebyshev Chebyshev  1010.22  587.88  1.0511  3681 100 

Chebyshev Sundman 999.70 599.72  0.5342  3002 83 

Legendre Legendre 1010.26  587.86  1.0188  3463 95 

Laguerre Legendre 1136.49 589.27  1.0981  4476 124 

Hermite Legendre 1065.70 588.96  0.9498  3154 82 

  

 

Figure 1: Baseline low-thrust trajectory for the Bernstein-Sundman case 
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Figure 2: Optimal low-thrust trajectory for the Chebyshev-Sundman case 

 

 

 

Figure 3: Constrained acceleration profile for the baseline, Chebyshev-Sundman and Chebyshev-Chebyshev cases 
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4.2 Metaheuristic construction of the algorithm  

As it can be extracted from the presented results (see Table 2), although with small variations, both the selected 

polynomial basis and topology of the final optimal sampling grid affect the numerical solution. At the same time, it 

can also be concluded that all the families reach an optimal solution and that the fundamental solution features remain 

invariant for all cases. 

 

These differences may be traced back to the intrinsic numerical capabilities of the algorithms as function of its 

construction: the number of nodes, their distribution, the function polynomial basis and possibly the degree of 

expansion of the state vector evolution. 

 

A genetic algorithm (in particular, Matlab’s implementation of NSGA-II [16]) is now proposed to metaheuristically 

construct the shape-based method to yield a global maximum solution. The performance index to be minimized is 

multi-objective and depends on the specific application in which the shape-based approach will be used: if the optimal 

solution found may be refined by more complex optimization solver, the solution time may be the figure to be 

minimized, instead, for example, of the final ∆𝑉.  

 

In addition, some sampling grid topologies-polynomial basis combinations are not possible, given the domain of 

definition of the latter. All in all, this construction can be posed as mixed-integer NLP problem, for which genetic 

algorithms are a standard solver. 

 

The previous mission scenario is now solved using this technique, in which the search space ℑ is expanded by: i) the 

polynomial basis; ii) the number of sampling nodes; iii) the distribution of such nodes; iv) the polynomial expansion. 

For this case, the cost function to be minimized by the solution 𝜀 ∈  ℑ is the combination of both the final and the time 

of flight in a multi-dimensional index 

 

 arg min
T

fJ V t


 


 =  J
 (15) 

 

where 𝜎 is a Boolean parameter coding the convergence results of the algorithm. A more complex function balancing 

the number of function evaluations, or the solving time is also suggested. The sparse Pareto front results, obtained after 

seconds, are found in Table 3, whereas Figures 4, 5, 6 and 7 show the minimum ∆𝑉 and 𝑡𝑓 optimal low-thrust 

trajectories and their associated acceleration profiles. 

 
Table 3:  Metaheuristic Pareto front for the proposed mission scenario 

 
Polynomial 

basis 

Sampling 

Grid 

Number 

of nodes 

Polynomial 

order 

Optimal 

total ∆𝑽 

[m/s] 

Time 

of 

Flight 

[days] 

Solving 

time [s] 

Function 

evaluations 

Iterations 

Legendre Chebyshev 46 10 995.09 586.07 1.1122 4672 118 

Legendre Linear 47 10 1026.09 585.48 0.7752 3307 85 

Bernstein Regularized 60 10 971.35 599.11 1.1349 3558 91 

Chebyshev Legendre 33 10 994.18 586.29 1.1042 4870 121 

Chebyshev Linear 33 10 1024.95 585.53 0.5425 2541 62 

Bernstein Regularized 35 10 972.13 599.05 1.0882 4166 107 

Legendre Chebyshev 42 10 994.77 586.16 1.0938 4740 120 
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Figure 4: Projected sparse Pareto front solution 

 

 

Figure 5: Global Maximum ∆𝑉 low-thrust trajectory (left) and associated acceleration profile (right) 

 

Figure 6: Global Maximum 𝑡𝑓 low-thrust trajectory (left) and associated acceleration profile (right) 

 

DOI: 10.13009/EUCASS2022-4923



     

 13 

The first conclusion that can be extracted from the obtained Pareto front is that orthogonal bases are highly promoted 

under the elitist scheme, showing up in 75% of the Pareto front. Moreover, a regularized independent variable grid 

provides the cheapest trajectories, also noted from the initial comparison given in Table 2.  

Regarding the order of the polynomial expansion, all Pareto front solutions show the maximum allowed, which also 

could be induced from the previous study but not verified. This tendency was preserved when going further than the 

order presented in Table 3 up to orders of the baseline solution. 

The solutions’ number of nodes present an almost normally distribution. All combinations show similar numerical 

performance in terms of function evaluations and iterations.  

Another interesting consequence is that sparse sampling grids appear frequently as a solution of the Pareto front. This 

can be related to greater errors in the computation of the cost function, leading to a coarser, spurious solutions. On the 

other hand, when compared to the original results in Table 2, which were computed using a doubly dense optimization 

grid, no great difference is observed. Such result seems to point at a saturation tendency of the final optimal solution 

with the  number of nodes: after exceeding a certain threshold, their influence on the final results is minimized. 

This suggest the relative lack of importance of the number of nodes in the grid when solving the problem, whose 

solution is mainly driven by the exact geometrical distribution of the grid or equivalently, its density.  

Finally, the use of Bernstein polynomials provides the fastest resolution time, which is a consequence on how boundary 

conditions are handled: in this case, the Bernstein family allows for analytical expressions instead of a numerical 

computation for Equations 4. 

 

5. Conclusions 

This work presents an extended formulation of classical shape-based methods for general Two-Boundary Value Bolza 

problems, with applications within low-thrust trajectory optimization and design. Such methodology enables a low-

cost NLP optimization to replace more computation-hard classical direct transcription methods. New functional bases 

on which to express the system's motion are presented together with their performance comparison against classical 

orthogonal polynomials. Moreover, natural nodes of the selected natural bases are employed as the independent 

variable sampling grid on which to solve the problem, to profit from the numerical enhancements this approach brings 

when combined with the functional bases state vector projection. The presented methodology is finally particularised 

and discussed within orbital low-thrust transfers.  

 

Several benchmark missions are presented and solved using the aforementioned techniques to demonstrate their 

capabilities in real mission scenarios, demonstrating the capabilities of the method under different combinations of 

parameters. Moreover, genetic algorithms are employed to construct optimal metaheuristic formulations of the 

proposed methodology to find supreme, Pareto front solutions to the presented missions and assess the effect of the 

formulation on the optimal result. The nature of such dependency and the exact agents affecting the method are still to 

be unveiled.  A preliminary study on the effect of boundary conditions on the convergence rate of the algorithm is at 

the very moment being conducted.  

 

Despite the general accuracy of the obtained results and the general demonstrated numerical properties of the method, 

in terms of efficiency and simplicity, several lines of research are still open and remain as interesting follow-up works 

for the presented research. First, the formal study of the exact evolution of the numerical error both in the computation 

of the cost function and the optimal trajectory approximation is still to be conducted. Moreover, the algorithm has been 

devised to be applicable to additional insightful test cases, including optimal landing trajectories on asteroids, attitude 

path planning and Initial Orbit Determination, which will further reveal the benefits of the proposed methodology. 
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