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Abstract 

In design optimisation problems, it is essential to ensure the convergence to the optimal design space 

with the lowest variability possible. In this respect, the optimisation algorithm plays a key role as it 

drives the exploration of the design space. This paper presents a statistical assessment of two genetic 

algorithms (NSGA-II and IBEA) and a particle swarm optimiser (OMOPSO) for the transonic 

aerodynamic design of compact nacelles for future aero-engines. OMOPSO is the most suitable 

optimisation algorithm due to the lowest variability to find an optimised design with a reasonable 

convergence rate of the optimisation.  

1. Introduction

Aerodynamic shape optimisation is a complex problem which is usually dominated by different operating point and 

multi-disciplinary constraints [1]. Depending on the problem, a global optimal solution may not be found and trade-

offs between the different optimisation objective functions are typically required. Depending on the nature of the 

problem, different optimisation methods can be more suitable and they are generally divided into: (a) gradient-based 

methods (GBM) and (b) gradient-free methods (GFM) [2]. GBM are typically more efficient for very high dimensional 

optimisation problems but they are also more prone to get trapped in local optima [3]. Aerodynamic shape optimisation 

problems are typically governed by non-linear flow physics which makes the problem non-convex. In this respect, 

GFM may be a good method to increase the likelihood of finding the global optima when the computational overhead 

associated to the dimensionality of the problem is acceptable [4].  

Within GFM, genetic algorithms (GA) and particle swarm optimizers (PSO) have extensively been used for non-linear 

aerodynamic optimisations [5–8]. Both methods are classified as evolutionary algorithms (EA) as they use mechanisms 

inspired by nature that emulate the behaviour of living organisms [9]. While GA is based on the Darwinian theory of 

survival of the fittest the PSO method comes from the swarming motion of collective animal behaviour [2]. GA and 

PSO are similar in the sense that both methods follow a population-based searching approach which require the sharing 

of information among the population members through a set of deterministic and probabilistic rules. However, there 

are differences that make each algorithm more adequate for a specific optimisation problem. Comparative assessments 

of GA and PSO algorithms have been reported in the literature [10–13]. The emphasis of these studies was on the 

relative performance between the optimal individual obtained with each algorithm and on the convergence rate. These 

studies agree on the computational efficiency superiority of PSO methods over GA. This computational effort saving 

is problem dependant and is reduced as the optimisation problem is more constrained [13]. Within the aerodynamic 

design area, Lyu et al. [14] applied a GA and a PSO algorithms to the non-linear aerodynamic optimisation of the 

NASA common research model wing at cruise condition. The method considered a computational fluid dynamics 

(CFD) model based on the Reynolds-Average Navier-Stokes (RANS) equations and 8 design variables to parameterise 

the geometry. The PSO algorithm found a slightly better design with a reduction of 0.8 aircraft drag counts relative to 

the GA optimal design for an increase in the convergence rate of PSO compared to GA of about two. 
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Additionally, Mukesh et al. [15] compared a GA and a PSO method to maximise the lift coefficient (CL) of the NACA 

2411 airfoil at cruise condition. The optimisation problem considered 12 design variables and used inviscid 

computational flow solutions. While the GA reported an increase in CL from 0.842 to 0.968, the PSO-based 

optimisation achieved a CL = 1.035.  

 

For challenging design spaces, the optimisation process may fall in premature convergence towards a local optima. 

This is undesirable and a waste of resources as the optimisation would yield a sub-optimal design. Randomness is 

introduced in the optimisation process to mitigate premature convergence and maintain genetic diversity in the 

searching of the design space. In an optimisation driven by an EA the randomness is present both in the initialization 

of the optimisation through a Design of Experiments (DoE) in the first generation and also in the mutation and 

crossover operators used to generate an offspring population between generations. To focus on the performance of an 

algorithm, the second source of randomness is statistically assessed by fixing the samples distribution in the first 

generation.  There is a lack of information in the open literature about the uncertainty carried in the optimisation due 

to the searching performance of the algorithm for transonic non-linear aerodynamic problems. This work presents a 

statistical comparison between different GA and PSO algorithms for: (a) the identified optimal design spaces, (b) the 

variability in the optimal design space reached by each optimiser through repeated optimisations, and (c) the 

convergence rate. The transonic aerodynamic optimisation of a compact nacelle for the next generation of ultra-high 

bypass ratio (UHBR) aero-engines [16,17,18] is used as a test case for the analysis. 

2. Methodology 

2.1 Geometry definition 

The nacelle geometry definition is parameterised through the Class Shape Transformation (CST) model developed by 

Kulfman [19]. This method has extensively been used for aerodynamic shape parameterisation for airfoils and wings 

[20–22].  A CST curve is built through the product of a class function 𝐶(𝜓) and a shape function 𝑆(𝜓) plus a vertical 

offset between the end points (Eq. 1), where 𝜓 and 𝜉 are the non-dimensional abscissa and ordinate and 𝑐 is the curve 

length. The class function is selected based on the underlying geometry to represent. For the parameterisation of a 

nacelle a rounded leading edge and sharp trailing edge profile is selected (Eq. 2). The shape function contains the 

Bernstein polynomial coefficients 𝑏𝑝𝑖  of n+1 polynomials and are used to adjust the class function to the aimed 

geometry (Eq. 3).  

 

𝜉(𝜓) = 𝐶(𝜓)𝑆(𝜓) + 𝜓𝛥𝜉𝑇𝐸  ;  𝜓 =
𝑥

𝑐
 , 𝜉 =

𝑦

𝑐
(1) 

 
𝐶1.0

0.5(𝜓) = 𝜓0.5[1 − 𝜓]1.0 (2) 

 

𝑆(𝜓) = ∑𝑏𝑝𝑖 (
𝑛

𝑖
)𝜓𝑖(1 − 𝜓)𝑛−1

𝑛

𝑖=0

(3) 

 

Christie et al [23] extended this method to the intuitive CST (iCST) approach and applied it for the intake and fan cowl 

parameterisation [24]. This allows a more straightforward relation between the design parameters and the Bernstein 

polynomial coefficients which makes the geometry parameterisation problem more intuitive and automatic. Seven 

design variables are used to describe the fan cowl: rhi, rte, lnac, rif, rmax, fmax, βnac (Figure 1). Within an optimisation 

process, the nacelle length and end points are typically fixed. This work is focused on a compact nacelle configuration 

given by lnac/rhi = 3.1 and rte/rhi = 0.95 with a fan size representative of an UHBR aero-engine. The remaining four 

parameters are varied during the optimisation: rif, rmax, fmax and βnac (Figure 1). A detailed description on the nacelle 

parameterisation was provided by Tejero et al. [25]. 

 

As the focus is on the optimisation of the nacelle fan cowl, a representative intake that has been designed to alleviate 

adverse flow features in the investigated design space has been used [24]. Additionally, a surrogate conical exhaust 

with a single stream efflux has been considered to produce representative flow features and momentum force term in 

the exit stream-tube of the exhaust [25,26] (Figure 1). This reduces the computational costs associated with the grid 

generation and the CFD calculation within the optimisation approach.  
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2.2 Computational method 

The optimisation method used Computational Fluid Dynamics (CFD) for the flow field data generation. A viscous 

numerical model based on the Reynolds-Average Navier-Stokes (RANS) equations is used to compute the nacelle flow 

field [27]. Turbulent closure is achieved through the k-ω SST model [28]. Sutherland’s law [29] is used to calculate 

the ideal gas dynamic viscosity. A second order upwind spatial discretization scheme is used with the Green-Gauss 

node-based gradient interpolation method. Numerical convergence is achieved in the calculation when two conditions 

are reached: (a) a reduction of five order of magnitude in every residual and (b) an oscillation in the fan cowl force 

lower than 0.05% in the last 500 iterations. 

 

 
Figure 1: 2D axisymmetric nacelle geometry parameterisation. Parameters marked in red are floated in the 

optimisation process. 

 

The 2D axisymmetric nacelle is located in a semi-circular domain. A domain independence study conducted by Tejero 

et al. [16] determined a radius of 80 times the nacelle maximum radius rmax. A structured mesh strategy with a C-grid 

refinement for the boundary layer is applied. The first layer size is adjusted for a y+ lower than one to solve the boundary 

layer. A grid independence study based on Roache’s method [30] determined a GCI of 0.3% in nacelle cruise drag for 

a mesh with an overall cell count of 70k elements. The farfield is modelled with a pressure-farfield boundary condition 

where the freestream conditions are set. The fan face is modelled with a pressure-outlet boundary condition with a 

target mass flow. A pressure-inlet boundary condition is used in the simplified exhaust. In order to minimise the impact 

of the exhaust flow on the nacelle drag performance, the exhaust total pressure and temperature match the freestream 

conditions. Non-slip wall boundary conditions are used in the intake and fan cowl to model the shock-boundary layer 

interaction phenomena and to account for shear stress term of the nacelle drag. The method was validated by Robinson 

et al. [31] with available experimental data for 2D axisymmetric nacelles that covered a range of transonic Mach 

numbers from 0.8 to 0.89 and mass flow capture ratio (MFCR) from 0.45 to 0.7. At the cruise condition defined by M 

= 0.85 and MFCR = 0.7 the difference in nacelle drag between experimental measurements and the CFD calculations 

was within 3.5%. In terms of drag rise Mach number, a difference of 0.005 was quantified between experiments and 

CFD. 

2.3 Drag calculation method 

The nacelle drag is the key metric to minimise in the nacelle optimisation process. A nearfield method based on 

industrial standard [32] has been used to assess the nacelle drag. In the thrust-drag bookkeeping method the forces are 

considered positive in the downstream direction. The forces external to the streamtube define the drag domain and are 

expressed by 𝜙 while the internal forces correspond to the thrust domain and are represented by 𝜃 (Figure 2). The 

forces across the upstream and downstream boundaries (𝐹𝐺) are computed through the integration of the pressure and 

momentum terms in the boundary of interest. The forces exerted on the walls are calculated by integrating the pressure 

and viscous terms on the corresponding boundaries. Based on this accounting method, the nacelle drag is composed of 

not only the viscous and pressure terms on the fan cowl (𝜙𝑛𝑎𝑐) but also the pressure term in the drag direction of the 

pre-entry (𝜙𝑝𝑟𝑒) and post-exit (𝜙𝑝𝑜𝑠𝑡) flow streamtube (Eq. 4) (Figure 2). The main challenge of the method lies with 

the calculation of 𝜙𝑝𝑟𝑒 and 𝜙𝑛𝑎𝑐 as it requires the identification of the stagnation point which changes with the 

operating condition and the nacelle geometry. To address this problem, Christie et al. [33] developed the modified 

nearfield method. This approach calculates 𝜙𝑝𝑟𝑒 and 𝜙𝑛𝑎𝑐 as a combined term based on the balance of forces in the 
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pre-entry control volume. 𝜙𝑝𝑜𝑠𝑡 is directly computed from the integration of pressure in the downstream direction of 

the post-exit streamtube. A description of the method was provided by Christie et al. [33]. 

 
𝐷𝑛𝑎𝑐 = 𝜙𝑝𝑟𝑒 + 𝜙𝑛𝑎𝑐 + 𝜙𝑝𝑜𝑠𝑡 (4) 

 

 
Figure 2: Thrust and drag bookkeeping method for the nacelle drag evaluation. 

2.4 Optimisation approach 

Compact nacelle designs increase the surface curvature gradients and make the designs more sensitive to important 

off-design operating conditions [26].  Therefore, several operating conditions must be considered during the nacelle 

optimisation process to achieve aerodynamic robust designs. This justifies the need for a multi-point optimisation 

method. In this work, in addition to the cruise condition given by M = 0.85 and MFCR = 0.7 (Eq. 5) the sensitivities 

to an increase in the flight Mach number from 0.85 to 0.87 (Eq. 6) and a decrease in the aero-engine MFCR from 0.7 

to 0.65 (Eq. 7) are also considered. The minimisation of the nacelle drag at these conditions defines the three objective 

functions of the optimisation approach. 

 

𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒 =
𝐷𝑛𝑎𝑐|𝑀=0.85,𝑀𝐹𝐶𝑅=0.7

1
2
𝜌∞𝑉∞

2𝐴ℎ𝑖

 (5) 

 

𝐶𝐷−𝛥𝑀 =
𝐷𝑛𝑎𝑐|𝑀=0.87,𝑀𝐹𝐶𝑅=0.7

1
2
𝜌∞𝑉∞

2𝐴ℎ𝑖

 (6) 

 

𝐶𝐷−𝐸𝑜𝐶 =
𝐷𝑛𝑎𝑐|𝑀=0.85,𝑀𝐹𝐶𝑅=0.65

1
2
𝜌∞𝑉∞

2𝐴ℎ𝑖

 (7) 

 

The optimisation provides a trade-off between the different objective functions in the format of a Pareto front. A Pareto 

front is a n-dimensional representation of the non-dominated designs in the space of the n objective functions. The 

concept of non-domination between two designs A and B stands while no design is better than the other for every 

objective function. From the Pareto front a traded design can be down selected based on a weighted criterion of the 

different objective functions. In the present work, the design with lowest cruise drag from all of those designs with a 

ratio 𝐶𝐷−𝛥𝑀 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒⁄  and 𝐶𝐷−𝐸𝑜𝐶 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒⁄  lower than prescribed factors (K1, K2) depending on the application (Eq. 

8). 

 

min 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: [
𝐶𝐷−𝛥𝑀 < K1 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒

𝐶𝐷−𝐸𝑜𝐶 < K2 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒
(8) 

 

A CFD-in-the-loop optimisation approach is applied in this work (Figure 3). As such, every design assessed throughout 

the optimisation process is evaluated with CFD at every operating condition. The optimisation starts with a DoE based 

on the Latin Hypercube Sampling (LHS) technique to provide an initial seed for the optimisation. The population level 

of the design space in this first generation of the optimisation can have a substantial impact on the scatter in the Pareto 

and on the convergence rate of the optimisation. Based on the work of Robinson et al. [34] for nacelle optimisations, 

a ratio of number of samples in the DoE to the number of design variables (NDoE/NDOFs) of 100 has been used. 

Subsequent generations are assessed until the optimisation reaches convergence. Based on previous experience [34], a 

sample size NS to number of degrees of freedom (NS/NDOFs) of 12.5 has been used for each of these generations. The 
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optimisation convergence is evaluated through the Hypervolume index (HV). This metric quantifies the n-dimensional 

space that is covered by a solution set after a generation relative to an arbitrary point used as a global reference [34]. 

The convergence criterion is specified as a percentage change in the HV lower than 1% in the last 3 generations which 

is a common practice for this optimisation problem [16]. Throughout the optimisation, geometric constraints are 

applied to avoid inflexion on the geometry of the nacelle. Flow constraints on the peak Mach number are also applied 

to ensure aerodynamic robustness of the designs within the optimal Pareto front. The optimisation is led by an 

evolutionary algorithm which proposes a new set of possible optimal designs after every generation.  

 

 
Figure 3: CFD-in-the-loop optimisation approach. 

 

In the present study two GA and one PSO algorithms are compared in terms of the robustness of the convergence to 

the optimal design space. An assessment of the convergence rate for this particular application is also carried out. 

Based on the best performing algorithms previously found for aerodynamic nacelle optimisations by Cheval [35], the 

non-dominated sorting genetic algorithm II (NSGA-II) [36] and the indicator-based evolutionary algorithm (IBEA) 

[37] are selected as GA and the Reyes-Coello multi-objective particle swarm optimiser (OMOPSO) is the PSO 

optimiser considered [38]. The set-up of each optimiser used in this work has been verified against a set of optimisation 

benchmark problems. Zitzler-Deb-Thiele’s test function 1 and test function 2 were used for this purpose [39].   

2.4.1 NSGA-II 

NSGA-II [36] is perhaps the most popular GA for multi-objective optimisations due to an improvement on the spread 

of the solution and on the convergence near the optimal Pareto front relative to other GAs. This optimiser technique is 

based on elite-preservation and diversity-preservation. For this purpose, the individuals of a population are sorted based 

on their elitism rank and on the crowding distance between each other. While the elitism rank keeps the best performing 

individuals the crowding distance sorting method helps to spread the population on the design space to mitigate local 

optima. Individuals are selected based on a tournament selection to generate an offspring population. Out of the parent 

population, two individuals are randomly chosen and compared based on the elitism rank. The individual with highest 

rank is used to reproduce. In case of both individuals having the same rank, the crowding distance factor is used to 

select Parent 1. This is repeated to find Parent 2. Subsequently, crossover and mutation techniques are applied to 

generate an offspring individual. The crossover operator randomly chooses certain genes from each parent and 

combines them (Figure 4). The mutation operator applies a random change to a gene that is randomly selected out of 

all of genes (Figure 4). This is repeated iteratively in each generation until having an offspring population of the same 

size as the parent population. In this work a Gaussian mutation operator defined by a standard deviation size of 0.005 

and a mutation rate of 0.2 are used [16,34]. A blended (BLX) crossover technique is used to enlarge the range of 

variability of a certain gene further from the interval defined by both parents (M) which helps to maintain a genetic 

diversity in the offspring (Figure 5) [40]. For this work, α = 0.5 is considered for the BLX crossover which allows the 

selection of parameters to generate the offspring up to 0.5M on either side of each parent parameter (Figure 5). 

2.4.2 IBEA 

In contrast to previous population-based GA, IBEA [37] adapts the search by using the HV index in the selection 

process. Based on an initial population, the fitness value 𝐹(𝑥𝑖) of each individual is calculated. Among many options, 

one possibility is to sum up the HV values of an individual with respect to the rest of the population (Eq. 9) where P 

represent the Pareto data set. As for NSGA-II, a tournament selection is carried out for the parent population members 

based on a ranking of the corresponding fitness values (𝐹(𝑥𝑖)). An offspring is generated from the mating selection 

through a crossover operator that randomly combine certain genes from each parent and through mutation which 

randomly picks a gene and modifies it (Figure 4). This is repeated iteratively until the convergence of the optimisation 

is reached. In the present study, uniform mutation and binary crossover operators are used. 
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𝐹(𝑥𝑖) = ∑ 𝐻𝑉({𝑥𝑗}, {𝑥𝑖})

𝑥𝑗𝜖𝑃\{𝑥𝑖}

(9)
 

 

 

 
Figure 4: Randomness in crossover and mutation operators. 

 

 

 
Figure 5: Blended BLX-α crossover operator. 

 

2.4.3 OMOPSO 

A PSO method is based on the ability of semi-autonomous particles to communicate with each other and to update 

their status. In this method the particles are able to sense their surroundings in the design space. This particular 

searching approach is modelled by the individual position (Eq. 10) and velocity (Eq. 11) vectors which are updated in 

each generation. The position vector shows the particle position in the design space. The velocity vector indicates the 

direction and intensity of the movement of that particle in the landscape. Three components constitute the velocity 

vector. The first term 𝑤 𝑉𝑖
𝑡⃗⃗⃗⃗  is the inertial one which essentially maintain the current direction of the movement of the 

particle. The second term of the velocity vector 𝑐1𝑟1 (𝑃𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) is the individual or cognitive component which 

considers the personal best position of the particle (𝑃𝑖
𝑡⃗⃗⃗⃗ ). The last term 𝑐2𝑟2 (𝐺𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) is the social term that takes into 

account the global best position achieved within the whole population (𝐺𝑡⃗⃗⃗⃗ ). 𝑤, 𝑐1 and 𝑐2 are weighting factors to tune 

the balance between the exploration and exploitation in the searching process. While high values of 𝑤 and 𝑐2 = 0 

maximise the exploration, low values of 𝑤 and 𝑐1 = 0 maximise exploitation. A high exploration ability is interesting 

for the initial generations of the optimisation. Exploitation is preferred when the optimisation is close to reach 

convergence. 𝑟1 and 𝑟2 are random values bounded from 0 to 1 that are applied to the learning terms.  

 

𝑋𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋𝑖

𝑡⃗⃗⃗⃗ + 𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (10) 

 

𝑉𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤 𝑉𝑖

𝑡⃗⃗⃗⃗ + 𝑐1𝑟1 (𝑃𝑖
𝑡⃗⃗⃗⃗ − 𝑋𝑖

𝑡⃗⃗⃗⃗ ) + 𝑐2𝑟2 (𝐺𝑡⃗⃗⃗⃗ − 𝑋𝑖
𝑡⃗⃗⃗⃗ ) (11) 

 
The OMOPSO [38] algorithm applies bounded random values to the weighting coefficients of the particle velocity 

vector. In particular, 𝑤 is randomly set from 0.1 to 0.5 and 𝑐1 and 𝑐2 vary from 1.5 to 2.  For a multi-objective 

optimisation the leader selection becomes challenging. For this purpose, OMOPSO applies the Pareto dominance 

criteria and a crowding distance factor [36] to the set of possible leaders. The algorithm divides the swarm in three 

equal groups applying three different mutation approaches to the velocity vector update of each group: no-mutation, 

uniform mutation, non-uniform mutation. A mutation probability factor of 0.1 is used in the present work [41].  
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3. Results and discussion 

The configurations previously shown for NSGA-II, IBEA and OMOPSO (Section 2.4) have been applied for RANS 

CFD-based optimisations for a compact nacelle configuration. Each algorithm has been used to drive 16 different 

optimisations. This enables a statistical comparison of the optimal design space reached by every optimiser and also 

an analysis of the variability of each algorithm to converge to a certain solution. To purely focus on the impact of the 

optimiser, every optimisation starts from the same DoE. This removes the effect of randomness in the population of 

the design space in the first generation through the LHS sampling technique. 

 

The Pareto data set obtained from the optimisation constitute a three-dimensional surface of the non-dominated designs 

(Section 2.4). In this work it is presented as a two-dimensional projection on the plane defined by CD-cruise - CD-ΔM 

(Figure 6). Every data point is coloured by CD-EoC. In a typical Pareto front for this optimisation problem, as CD-ΔM 

decreases there is a penalty in CD-EoC which highlights the compromise between these two performance metrics (Figure 

6a). For cruise drag the Pareto is divided into two branches. While in the upper branch a CD-cruise reduction implies a 

penalty in CD-EoC, a reduction in CD-cruise
 in the lower branch increases CD-ΔM (Figure 6a). However, this layout of the 

Pareto front changes substantially for some of the optimisations driven by NSGA-II. For example, optimisations 2, 3 

and 4 result in different Pareto families with different sensitivities in the trade-off between the objective functions 

(Figure 6a). IBEA and OMOPSO show less variability in the Pareto front with convergence to the same expected 

Pareto front family composed of two branches (Figure 6b, Figure 6c). A statistical comparison has been carried out 

using the designs with minimum drag value for each objective function which provides a sample size of 16 for each 

operating condition. This is quantified relative to the NSGA-II results using the mean value ratio (μ/μNSGA-II), standard 

deviation ratio (σ/σNSGA-II) and amplitude range ratio (Δ/ΔNSGA-II) where Δ is defined by the difference between the 

maximum and the minimum value (Table 1). Using the standard deviation ratio σ/σNSGA-II as a measure of the variability 

of each optimiser to converge to a solution, IBEA and OMOPSO reduce the variability at cruise to 15% and 24% of 

σNSGA-II (Table 1). Improvements of the same order of magnitude are obtained for the increased Mach number and end-

of-cruise conditions for which OMOPSO outperforms IBEA (Table 1).  Additionally, a comparison of the mean value 

ratio μ/μNSGA-II and the amplitude range Δ/ΔNSGA-II indicate a high similarity based on drag performances in the optimal 

design space reached by IBEA and OMOPSO. However, a comparison with NSGA-II shows notable differences in the 

optimal design spaces. Although there is a slight difference between OMOPSO/IBEA and NSGA-II in μ/μNSGA-II of 

about ±1% which equates to a negligible change in ΔCD, the amplitude range Δ/ΔNSGA-II increases for NSGA-II between 

80% and 85% depending on the condition. This indicates a potential low reliability on NSGA-II for this optimisation 

problem. An assessment of the population level of the Pareto shows an averaged reduction of 64% and 34% for 

OMOPSO and IBEA relative to NSGA-II. However, the variability in the population size reached by IBEA is higher 

than OMOPSO by a factor of 2.5. Moreover, OMOPSO shows a good sample resolution in the Pareto front which is 

the region of interest when down selecting a design (Figure 6c). 

 

 
a) NSGAII 
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b) IBEA 

 
c) OMOPSO 

Figure 6: Pareto fronts for the different optimiser. The blue dot is the down selected design (Eq. 8). 

 

 

Table 1: Statistical comparison between IBEA and OMOPSO relative to NSGA-II for the designs with minimum 

drag at each operating condition. 

  IBEA OMOPSO 

Min 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒  

designs 

μ/μNSGA-II 0.99 0.99  

σ/σNSGA-II 0.15 0.24 

Δ/ΔNSGA-II 0.14 0.22 

Min 𝐶𝐷−𝛥𝑀  

designs 

μ/μNSGA-II 1.01  1.01  

σ/σNSGA-II 0.22 0.14 

Δ/ΔNSGA-II 0.20 0.14 

Min 𝐶𝐷−𝐸𝑜𝐶   

designs 

μ/μNSGA-II 1.01  1.01  

σ/σNSGA-II 0.22 0.19 

Δ/ΔNSGA-II 0.21 0.16 

Population 

μ/μNSGA-II 0.66  0.33  

σ/σNSGA-II 0.85 0.34 

Δ/ΔNSGA-II 0.73 0.28 

 

A similar comparison of the optimal design space can be made based on the design variables (fmax, rmax, rif, βnac, Figure 

1) of the designs contained in the Pareto data set. This data is presented in the format of a box plot for each parameter 

of each optimisation which compares how the data is distributed in the design space. The box plot extends from the 

minimum to the maximum value (Figure 7). Within this range, the median (or second quartile) divides the dataset into 
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two halves. Additional split between the median and the ends are shown by the first quartile (Q1) and the third quartile 

(Q3) (Figure 7). The range between these first and third quartile is called interquartile range (IQR). This is a key 

parameter to identify outliers. A datapoint is an outlier if it is either below (Q1-1.5IQR) or above (Q3+1.5Q3).  

 

A comparison of the optimal design space for each algorithm shows a high similarity for every design variable between 

IBEA and OMOPSO which is in line with the conclusion drawn based on the drag performance (Figure 8, Figure 6). 

Conversely, NSGA-II converges to a different optimal design space specially for fmax and βnac with differences up to 

0.03Lnac and 1.5° respectively (Figure 8). As was observed in the Pareto plots, the optimisations with NSGA-II have a 

high variability in the optimal design space whereas OMOPSO and IBEA are very consistent in the solution reached 

(Figure 8). This has been quantified based on a down selected design for each optimisation. The down selection of a 

design from a Pareto dataset is the final outcome from a multi-point optimisation problem. In this work, from all the 

possible optimal designs in the Pareto that meet 𝐶𝐷−𝛥𝑀 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒⁄  < K1 and 𝐶𝐷−𝐸𝑜𝐶 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒⁄  < K2, the design with 

the minimum cruise drag is selected (Section 2.4, Eq. 8). This provides a population of 16 for each algorithm to 

statistically compare the variability based on drag performances and design variables using the standard deviation ratio 

σ/σNSGA-II. For the drag at cruise and increased Mach number condition, IBEA and OMOPSO reduce the variability 

relative to NSGA-II to below 0.26σNSGA-II and 0.17σNSGA-II respectively (Table 2). At end-of-cruise condition, the 

reduction in variability is around 0.52σNSGA-II for IBEA and 0.63σNSGA-II for OMOPSO (Table 2). Substantial 

improvement for IBEA and OMOPSO are observed in terms of geometry parameters as well. While the reduction in 

σ/σNSGA-II shown by IBEA is between 0.41 for fmax and 0.22 for rif, OMOPSO further reduces the variability to 0.30 for 

fmax and 0.13 for rif (Table 3). 

 

 
Figure 7: Definition of the box plot used to represent the optimal design space for an optimisation using the 

designs contained in the Pareto data set. Example for fmax and NSGA-II. 

 

 
Figure 8: Optimal design space for every optimisation showed by box plots of the designs in the Pareto front. 
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Table 2: Statistical comparison between IBEA and OMOPSO relative to NSGA-II for the variability of the drag 

performances of the down selected designs. 

 σ/σNSGA-II 

 𝐶𝐷−𝑐𝑟𝑢𝑖𝑠𝑒 𝐶𝐷−𝛥𝑀 𝐶𝐷−𝐸𝑜𝐶  

IBEA 0.21 0.26 0.52 

OMOPSO 0.17 0.17 0.63 

 

 

Table 3: Statistical comparison between IBEA and OMOPSO relative to NSGA-II for the variability of the design 

variables of the down selected designs. 

 σ/σNSGA-II 

 𝑓𝑚𝑎𝑥 𝑟𝑚𝑎𝑥/𝑟ℎ𝑖  𝑟𝑖𝑓/𝑟ℎ𝑖 𝛽𝑛𝑎𝑐 

IBEA 0.41 0.23 0.22 0.25 

OMOPSO 0.30 0.20 0.13 0.16 

 

 

The convergence rate for each optimiser has been assessed based on the HV index (Section 2.4) and the associated 

number of generations of constant number of samples required to achieve convergence. Considering the criteria of a 

change in the HV index lower than 1% in the last 3 generations, NSGA-II turns out to be the fastest algorithm. The 

optimisations led by NSGA-II converge in average 4 and 6 generations earlier than OMOPSO and IBEA (Figure 9). It 

can be inferred that OMOPSO requires 2 generations less than IBEA to meet the convergence criteria (Figure 9) which 

provides a 6% reduction in the computation effort. 

 

Overall, NSGA-II is discarded for this non-linear aerodynamic optimisation problem due to its high variability in the 

convergence to a solution compared to OMOPSO and IBEA. OMOPSO is selected as the most suitable algorithm for 

this application due to: (a) the overall lower variability in the convergence to the optimal design space and a down 

selected design and (b) a reduction of 6% in the computational overhead compared to IBEA. 

 

 
Figure 9: Comparative quantification of the convergence rate for each optimiser to meet the convergence criteria. 

4. Conclusions 

This paper presents a comparative assessment between two genetic algorithms (NSGA-II and IBEA) and a particle 

swarm optimizer (OMOPSO) for the aerodynamic shape optimisation of compact nacelles for ultra-high bypass ratio 

aero-engines. This problem is used due to the non-linearity that govern the aerodynamics of the nacelle. The focus of 

the study is on the variability of each algorithm to reach a solution and the comparison of the optimal design space 

obtained with the different optimisers. To conduct a statistical assessment, 16 separate optimisations have been carried 

out with each optimisation algorithm. A high variability in the optimal design space with different Pareto front families 

has been found for NSGA-II. In this respect, both IBEA and OMOPSO outperform NSGA-II. In terms of down selected 

designs, IBEA and OMOPSO reduce the variability relative to NSGA-II by a factor of up to about 8 and 9 respectively. 

Overall, OMOPSO shows the lowest variability to find the optimal design space and a down selected design with a 

reduction in the computation effort of 6% relative to IBEA to meet the optimisation convergence criteria. It is 

concluded that OMOPSO is the most suitable optimisation algorithm for this application. 
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