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Abstract 
Minimum-fuel orbit transfers can include an unspecified number of coast arcs and maximum-thrust 

phases, whose sequence and timing are unknown a priori. The indirect heuristic method is proposed as 

the numerical solution approach, and applied to an illustrative example already addressed in previous 

research. The minimum-fuel transfer found in this study outperforms that reported in the scientific 

literature. Moreover, this research proves that additional locally optimal solutions exist to the same 

minimum-fuel problem. With different propulsion parameters, the number of coast and thrust arcs 

changes, and this testifies to the existence of a variety of structures for minimum-fuel orbit transfers. 

1. Introduction

Orbit maneuvering represents a crucial task for spacecraft orbiting the Earth or dedicated to the planetary exploration. 

As the vehicle weight is a crucial issue for space missions, minimization of the propellant consumption required for 

transferring a spacecraft between two specified orbits is desirable. Minimum-fuel paths have been investigated using 

a variety of analytical and numerical approaches. Early studies date back to the 1920s with the pioneering work by 

Hohmann [1], and continued in the subsequent decades. Significant advances are dated back to the 1950s, when also 

the modern optimal control theory began developing, by gradually assuming its current form, due to the researches of 

some eminent scientists, such as Bliss [2], Leitmann [3], Cicala [4], Belmann [5], Miele [6], Pontryagin [7], Bryson 

[8], and Vinh [9]. In the same period Lawden introduced the primer vector theory [10], which is concerned with the 

application of the first–order necessary conditions for optimality, arising from the calculus of variations. The impulsive 

thrust assumption [11] represents an excellent approximation for spacecraft that employ chemical propulsion for short 

durations. However, in the presence of moderate or low thrust levels, the general properties of minimum-fuel finite-

thrust paths can no longer be inferred from an impulsive solution [12], and optimal space trajectories must be found as 

the solutions of a continuous-time optimal control problem. These are not amenable to closed-form or analytical 

solutions, therefore numerical approaches are mandatory. With this regard, Betts [13] and Conway [14] offer excellent 

overviews of the available methods in spacecraft trajectory optimization. 

The indirect heuristic method (IHM) [15,16] has recently emerged as a hybrid methodology that avoids some major 

shortcomings of classical numerical optimization methods, such as the need of an appropriate first-attempt approximate 

solution or the use of a large number of parameters to discretize the problem. IHM is based on the joint use of the 

analytical conditions for optimality and a heuristic algorithm. The control variables, i.e. thrust magnitude and direction, 

are expressed in terms of the costate conjugate to the spacecraft equations of motion. This leads to defining a two-point 

boundary-value problem, which includes a reduced number of unknown parameters, i.e. the time of flight and the 

unknown initial values of the costate variables. However, usually these are challenging to find, and this task is thus 

demanded to a heuristic technique, which does not require any starting guess solution. Genetic algorithms (GA), 

Particle Swarm Optimization (PSO), and Differential Evolution (DE) [17] represent well established heuristic 
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approaches. In most cases, these methodologies are inspired by natural behaviors or phenomena and aim at 

implementing the biological principle of survival of the fittest.  

As a further complicacy, minimum-fuel paths using finite thrust are associated with a set of necessary conditions 

that admit coast arcs and powered phases [18]. This consolidated property was proven in the 60s [10] and since then a 

vast amount of literature was dedicated to investigating minimum-fuel space trajectories. A very interesting recent 

contribution is due to Taheri and Junkins [12], who analyzed the relations between impulsive transfers and finite-thrust 

paths using optimal control theory. They point out the existence of optimal trajectories with a variety of structures (i.e. 

different numbers and timing of powered phases and thrust arcs). In this context, the switching function, which depends 

on the state and the costate variables, plays a major role. Recently, Pan et al. [19] and Pontani [18] provided the closed-

form costate along optimal coast arcs employing spherical coordinates and modified equinoctial elements, respectively.  

The work that follows is focused on the numerical detection of minimum-fuel orbit transfers, using modified 

equinoctial elements (MEE) for orbit dynamics and IHM as the numerical solution technique. The choice of MEE is 

related to three remarkable properties. First, virtually all types of trajectories can be described MEE, unlike what occurs 

if the classical orbit elements are employed. Second, 5 out of 6 equinoctial elements remain constant (while the sixth 

is integrable) along coast arcs, in the presence of a single attracting body. Third, in the numerical solution of low-thrust 

path optimization problems, the use of equinoctial elements was proven to mitigate the hypersensitivity issues 

encountered with spherical coordinates [20,21]. This work considers a specific three-dimensional orbit transfer, already 

addressed in the scientific literature [11], as a representative example. The main objectives of the present research are 

thus (i) the implementation and use of IHM for the numerical solution of minimum-fuel orbit transfer problems, (ii) 

ascertaining the existence of multiple locally optimal solutions, with the consequent identification of the globally 

optimal transfer, and (iii) investigating the different performance and structures associated with the optimal transfers 

obtained with different propulsion parameters. 

 

2. Orbit dynamics 

This research considers a space vehicle that orbits a single celestial body, in the dynamical framework of the restricted 

problem of two bodies. The spacecraft of interest is modeled as a point mass. In this research, orbit dynamics is 

described using MEE.  

In general, orbital motion can be described using either Cartesian coordinates, spherical variables, or osculating 

orbit elements, i.e. semimajor axis a, eccentricity e, inclination i, right ascension of the ascending node (RAAN) Ω, 

argument of periapsis ω, and true anomaly 𝜃∗. However, the Gauss equations, which govern the time evolution of the 

orbit elements, become singular in the presence of a circular or equatorial orbit (and also when an elliptic orbit 

transitions to a hyperbola). For these reasons, MEE [22] are selected in this work as the variables that identify the 

dynamical state of the space vehicle. These elements are defined as [22] 

 

 ( )2
1  1x a e= −                                                  (1) 

                                                 (2)                                                                       

 

It is straightforward to recognize that 𝑥1 represents the orbit semilatus rectum. Unlike the classical orbit elements, 

MEE are never singular, with the only exception of i = 𝜋 (condition that is unlikely to encounter, because equatorial 

retrograde orbits are rather impractical). If 𝜂 ∶= 1 + 𝑥2 cos 𝑥6 + 𝑥3 sin 𝑥6, the instantaneous radius is 𝑟 = 𝑥1/𝜂. The 

classical orbit elements can be retrieved by inverting Eqs. (1)-(2). The spacecraft position can be written in terms of a, 

e, i, Ω, ω, 𝜃∗ or can be computed directly from the equinoctial elements. 

The dynamical evolution of the MEE is governed by the respective Gauss equations [22], which can be rewritten 

in matrix form [23]. Letting 6x q  and  1 2 3 4 5:
T

x x x x x=z   
T

p l m n s , the equations for the MEE 

are 

 

 ( )6, x= Gz z a                                                                  (3)    

 2 4 6 5 61

6 ,3

1

sin cos
T h

x x x xx
x a

x




 

−
= +  (4)                                                                       

( )2 cosx e = + ( )3 sinx e = +

4 tan  cos
2

i
x =  5 tan  sin

2

i
x =  6 *x  =+ +
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where , , ,:
T

T r T T ha a a =  a  is the non-Keplerian acceleration in the local vertical local horizontal (LVLH) frame 

aligned with {�̂�, �̂�, ℎ̂}, where unit vector  �̂� is directed toward the instantaneous position vector 𝒓 (taken from the center 

of the attracting body), whereas ℎ̂ is aligned with the spacecraft angular momentum. Moreover, 
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zG                                               (5) 

 

where 𝜇 is the gravitational parameter of the attracting body. MEE allow identifying the instantaneous position and 

velocity of the spacecraft. This is controlled using the thrust supplied by the propulsion system. Let 𝑇𝑚𝑎𝑥  and 𝑚0 

represent the maximum available thrust magnitude and the initial mass of the space vehicle. If 𝑥7 denotes the mass 

ratio (𝑚/𝑚0) and 𝑇 the thrust magnitude, for 𝑥7 the following equation can be obtained: 

 

.

7
0

:    Tum
x

m c
=− = −     with     

( ) ( )

0 0

0   : ,     :  
max max max

T TT T

TT
u u u u

m m

 
  = = 

 
                        (6) 

 

where 𝑐 represents the (constant) effective exhaust velocity of the propulsion system, whereas 𝑚 is the instantaneous 

mass. The magnitude of the instantaneous thrust acceleration is 𝑎𝑇 = 𝑢𝑇𝑚/𝑚0 = 𝑢𝑇/𝑥7 and is constrained to the 

interval 0 ≤ 𝑎𝑇 ≤  𝑎𝑇
(𝑚𝑎𝑥)

 , where 𝑎𝑇
(𝑚𝑎𝑥)

= 𝑢𝑇
(𝑚𝑎𝑥)

/𝑥7. The thrust acceleration is assumed to be the only non-

Keplerian contribution in Eqs. (3)-(5), thus 𝒂𝑻 = 𝑻/𝑚 = 𝑻/(𝑚0𝑥7) = 𝒖𝑻/𝑥7. The thrust direction is identified by 

means of the two thrust angles 𝛼 (−𝜋 ≤ 𝛼 ≤ 𝜋) and 𝛽 (−𝜋/2 ≤ 𝛽 ≤ 𝜋/2), 

  

 
7

      sin cos   cos cos   sin
T TT

r h

u
a a a

x
     = =  Ta                                           (7) 

 

In the end, the spacecraft dynamics is described using the state vector 𝒙 and the control vector 𝒖 defined as 

 

1 2 3 4 5 6 7:                  
T

x x x x x x x=   x  and   :      
T

Tu  =u                                                  (8) 

 

In light of Eq. (8), Eqs. (3)-(5) can be written in compact form as 

 

( ),  , t=x f x u                                                                               (9) 

 

3. Minimum-fuel orbit transfers 

In most mission scenarios of practical interest, spacecraft are equipped with a finite thrust propulsion system. In these 

dynamical contexts, the crucial objective consists in minimizing propellant consumption. Previous (and rather 

extensive) works proved that minimum-fuel trajectories include relatively short finite-thrust arcs and long-duration 

coast intervals [10,24]. This section considers the problem of minimizing the propellant consumption for performing 

an orbit transfer between two specified (initial and final) orbits, while using MEE to describe the spacecraft dynamics. 
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3.1 Statement of the problem 

The spacecraft of interest is governed by the state equations (9) and is subject to some (problem-dependent) boundary 

conditions of the form 𝝍(𝒙𝟎, 𝒙𝒇, 𝑡0, 𝑡𝑓) = 𝟎. These conditions usually include the relations that define the initial and 

final orbits. The initial time 𝑡0 is assumed specified and is set to 0. The objective function 𝐽 to minimize is the propellant 

mass, and this is equivalent to maximizing the final mass ratio 𝑥7,𝑓. Thus, for the problem at hand the objective is 

 

7, 
ˆ

J fJ k x= −                                                                              (10) 

 

where 𝑘𝐽 > 0 is a positive, arbitrary constant. Therefore, the problem consists in finding the optimal control 𝒖 that 

minimizes the objective function (10), while holding the state equations (9) and the boundary conditions 𝝍 = 𝟎. 

3.2 Necessary conditions for optimality 

In order to derive the necessary conditions for optimality, a Hamiltonian function 𝐻 and a function Φ are defined as 

 

( ): ,  , H t= T
λ f x u                                          (11) 

 

where 𝝀 is the adjoint vector associated with the state equations, 𝝂 is the vector of the (time-independent) adjoint 

variables conjugate to the boundary conditions. The following necessary conditions for optimality are obtained from 

the first differential of the extended objective function [25]: 

            

0 0
0 0

Φ
0      

T T
   

+ = → = −   
    

ψ
λ λ ν

x x
                                                         (12) 

Φ
0     

T T
   

− = → =   
       

f f

f f

ψ
λ λ ν

x x
                                                          (13) 

Φ
0     

T

f f
f f

H H
t t

 
+ = → =− 

   

ψ
ν                                                           (14) 

T
H 

= −  
 

λ
x

                                                                               (15) 

                                                                  * arg min H=
u

u                                                                          (16) 

 

The last condition represents the Pontryagin minimum principle [26], with subscript * denoting the optimal value of 

the corresponding variable. Equation (15) is the adjoint equation for the costate vector, accompanied by the related 

boundary conditions (12) and (13). Because 𝝍 appears in Eqs. (12) and (13), their explicit form is problem-dependent. 

Furthermore, Eq. (14) holds for the final value of the Hamiltonian function.  

Using Eqs. (3)-(5) and (11), 𝐻 can be rewritten as 

 

( ) ( ) ( ) ( )7

7 0

7

, cos cos , cos sin , sin ,T

r h

xu
H H H H H

x c
     

 
= + + − + 

 
y λ y λ y λ y λ                (17) 

 

where y collects components 𝑥1 through 𝑥6 of the state, i.e. 𝒚 ≔ [𝑥1  𝑥2  𝑥3  𝑥4  𝑥5  𝑥6]𝑇. Due to Eq. (15), the adjoint 

equation for 𝜆7 is 

 

( ) ( ) ( )
7 2

7 7

, cos cos , cos sin , sinr hH H HH

x x

    


+ +
= − =



y λ y λ y λ
                           (18) 

( )7,  0 0Φ : ,  , , J f fk x t t= − + T
fν ψ x x
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Moreover, because the final mass is unspecified (and in fact is to be minimized), the boundary conditions are 

independent of 𝑥7,𝑓. As a result, Eq. (13) yields 

 

7, 0f Jk = −                                                                              (19) 

 

Arbitrariness of constant 𝑘𝐽 allows obtaining an inequality condition in place of an equality condition. Moreover, the 

minimum principle (16) allows expressing the optimal control in terms of the state and costate variables. With reference 

to Eq. (17), the first three terms in square parentheses can be regarded as a dot product. Thus, since 𝑢𝑇/𝑥7 > 0 , the 

thrust angles that minimize 𝐻 are given by 

 

( )
( )

( )
( )

 

1/2
2 2 2

1/2
2 2

1/2
2 2 2

1/2
2 2

sin
cos

   ,   ,   

cos
cos

r r h

r r

r h

r

H H H H
H H H

H H H H
H H H





 

 




  




−

−

−

−

 + +
 = − = − +


 −
 + +

= − = − +


                        (20)                      

( )
1/2

2 2 2sin  ,       ,
2 2

h r hH H H H

 
 

−  
= − + +  − 

 
                                             (21) 

Using these expressions for 𝐻 and 𝜆7

˙

, Eqs. (17) and (18) become 

 

( )
1/2

2 2 2 7

7

1
 T r hH H u H H H

x c


 
= − + + + 

 
                                                        (22) 

( )
. 1/2

2 2 2
7 2

7

    0T
r h

u
H H H

x
 =− + +                                                                (23) 

 

The latter relation, in conjunction with the final condition (19), implies that 𝜆7 cannot be positive at all times. Moreover, 

using the Pontryagin minimum principle and Eq. (22), the optimal value of 𝑢𝑇 is 

 

                                    

( ) 2 2 2

7

7

 if  0
     with   :

0        if  0

max

T r h

T

u S H H H
u S

x cS

   + +
= = +
 

                                      (24) 

 

This means that a minimum-fuel path includes powered phases (where the maximum available thrust is used) and coast 

arcs. In the previous relation, 𝑆 is referred to as the switching function, because it determines the switching times 

between the two arc types that compose the optimal trajectory. Equation (24) is obtained under the assumption of 

neglecting singular arcs, associated with the condition S ≡ 0 over a time interval of finite duration. The existence of 

similar arcs can be investigated using singular optimal control theory [27]. It is worth stressing that the existence of 

coast arcs and powered phases along minimum-fuel space trajectories was already proven using different 

representations for the dynamical state (e.g., Cartesian or spherical coordinates [18,19,28]). Therefore, the previous 

analytical developments, already reported in [18], represent an alternative derivation leading to an expected result.  

In the end, the necessary conditions for optimality, in conjunction with the state equations (9) and the boundary 

conditions, allow converting the original optimal control problem into a two-point boundary-value problem, where the 

unknowns are the state 𝒙 , the control 𝒖 , the final time 𝑡𝑓,  and the adjoint variables 𝝀 and 𝝂. 

 

4. Indirect heuristic method 

The Indirect Heuristic Method (IHM) is based on the joint use of the necessary conditions for optimality and a heuristic 

algorithm. The Pontryagin minimum principle allows expressing the control variables in terms of the state and the 

costate (cf. Eqs. (20) and (21)). As a result, the unknown parameters are the initial values of the adjoint variables, 

together with the final time and, possibly, some initial state conditions.  The heuristic algorithm (differential evolution 

in this research) uses a population of individuals; each of them corresponds to a particular selection of the unknown 

parameters. Then, the population is expected to evolve to include the fittest individual, which corresponds to the 

optimal solution to the problem of interest. 
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4.1 Algorithm structure 

The starting point of the method is the definition of the necessary conditions for optimality, illustrated in Section 3. 

All of these must be enforced, in particular the adjoints equations (15). Based on these and the equations of motion, 

two preliminary steps are completed: 

(a) define the known initial values of the state and costate using the boundary conditions (𝝍 = 𝟎) and the necessary  

condition (12); 

(b) with the use of Eq. (12), determine the existence of relations among the initial values of the state and the costate, 

and eliminate the corresponding components of the vector 𝝂 of time-independent multipliers. 

Then, for each individual the numerical solution process involves the following steps: 

(c) identify the unknown initial values of the costate, and select a value for each of them; 

(d) select a value of the final time 𝑡𝑓; 

(e) as long as the current time 𝑡 < 𝑡𝑓, identify the type of trajectory arc (either powered or ballistic), using Eq. (24), 

and integrate the equations of motion (9) and the adjoints equations (15) until the switching function changes 

its sign or 𝑡 = 𝑡𝑓; 

(f) if 𝑡 < 𝑡𝑓, repeat step (e); 

(g) evaluate the boundary conditions violations at 
ft  and the necessary conditions (13) and (14) on the final state, 

costate, and Hamiltonian, and evaluate the auxiliary objective function 
modJ  (cf. Section 5); if inequality (19) 

is violated, then set 
modJ  to a predefined, very large value; 

When the value of 
modJ  of the best individual does not exceed a prescribed tolerance, then convergence is declared, 

and the algorithm stops, otherwise a new generation is created (cf. Section 4.2) and steps (c) through (g) are repeated 

for each individual. 

A major difficulty is the identification of the switching times, which determine the thrust sequence.  High numerical 

accuracy is needed for the identification of these times, and numerical integration must stop and restart at every sign 

change of the switching function. In this work, the MATLAB function ODE Event Location was used, and the sign 

changes of 𝑆 are detected with a precision set to 10−15 during the numerical integration.  

It is worth remarking that the scalability property of multipliers [20] allows defining their search space as 

[𝜆𝑚𝑖𝑛 ,   𝜆𝑚𝑎𝑥] , with 𝜆𝑚𝑖𝑛 < 0  and 𝜆𝑚𝑎𝑥 > 0.  

4.2 Differential evolution  

The algorithm termed Differential Evolution (DE) is used as the heuristic approach. It was introduced by Storn and 

Price [17,29] in 1995. It belongs to the class of evolutionary algorithms and is based on the creation of a population of 

individuals that is randomly initialized in the first iteration of the method. From this first population the next ones are 

generated by the algorithm. 

A population is composed of 𝑁 individuals, while the vector size of the unknown parameters is 𝑛. A typical choice 

that usually ensures convergence is 𝑁 ≥ 10𝑛. Each individual represents a possible solution to the problem and is used 

to evaluate the auxiliary objective function modJ . At the end of the iterative process, the individual associated with the 

minimum value of the objective function is declared as the solution. The generation of a population of individuals 

occurs by "perturbing" the individuals of the previous population. The vector of unknown parameters is defined as 

 

1 ,  , 
T

n =   χ                                                                         (25) 

 

The evolution of the dynamic system depends on these parameters.  Each element of the vector 𝝌  has its specific 

search space, i.e. 

 

( )    1, , k k ka b k n  =                                                               (26) 

 

If a parameter exceeds the lower or upper bound of the search space, it is set to the limiting value (either its upper 

bound or its lower bound). Each individual corresponds to a vector 𝝌(𝑖) = [𝜒1(𝑖),  … ,  𝜒𝑛(𝑖)]𝑇 with 𝑖 = 1, … , 𝑁, and 

is associated with a value of the objective function. The initial population is defined randomly by introducing 𝑁 

individuals, with parameters generated stochastically and uniformly distributed in their search space given by Eq. (26).  

The DE algorithm consists of four steps, to be performed at each iteration 𝑗. All details can be found in the references 

[17,29]. In each iteration j, for the generic individual i (i = 1,…,N), the following steps are completed: 
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1. Evaluate the objective function 
( )

,

j

mod iJ  associated with parameter vector ( )iχ  (termed target vector).  

2. Mutation phase. With the exception of the best individual (not subject to mutation), select 2 random integers 

, [1,..., ]q r N , with ,q r i , then generate a mutant parameter vector ( ) ( ) ( )( )1 :=   
T

ni i i   ψ , 

 

( ) ( ) ( )( )( )  opti i F q r= + −ψ χ χ χ                                                 (27) 

 

where ( )optiχ  is the current best individual. The mutant parameter vector ( )iψ  is generated by adding the weighted 

difference between two parameter vectors (indices q and r) to the base parameter vector .  0,  2F   is a 

real valued constant referred to as differential weight, which controls the amplification of the differential term. 

3. Crossover phase. Select a random integer  1,  n  . Initialize ( ) ( )i i=Y χ , k =  and 1L = . While            

rand(0,1) < CR  and L n  

 

( ) ( )

( )

(a) 

(b) if    then   else 

(c) 1

k kY i i

L n k L k L n

L L



  

=

+  = + = + −

= +

  

   0,1CR   is the crossover constant, whereas rand(0,1) is an independent random variable, with uniform 

distribution in [0,1].  

4. Selection phase. Evaluate the objective function 
( )

, ,

j

T mod iJ   associated with the trial parameter vector ( )iY . Select 

the parameter vector ( )( 1)j i+
χ  using 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, , ,1

, , ,

  if    

  if     

j j

mod i T mod i

j j

mod i T mod i

i J J
i

i J J

+
 

= 
 

j
χ

χ

Y

                                            (28) 

 

At each iteration, index 𝑖 of the individual that corresponds to the minimum value of the objective function among 

those obtained by the entire population is set aside and, at the end of the search, the best individual is the one that 

corresponds to the global minimum of the objective function . The process ends when either the maximum number 

of generations 𝑁𝑖𝑡𝑒𝑟  is reached, or  is less than a specified threshold value, or the phenomenon of stagnation 

occurs. Several versions of the algorithm exist. The one used in this work is the 𝐷𝐸 /𝑏𝑒𝑠𝑡/1/𝑒𝑥𝑝, which is the default 

version for the DE implementation in MATLAB, programmed by Buehren [30].  
DE can be also used as the initial numerical method for finding an approximate solution to the problem of interest. 

Further search can be carried out with local optimizers, such as 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ in MATLAB, which can be used for final 

refinement of the solution. In this research, DE was used both as a standalone method and as a preprocessing technique. 

In the latter case, DE was stopped when 310modJ − . As a rule of thumb, however, the maximum number of iterations 

must be a priori set to a large value, in all runs of DE. Table 1 reports the parameters used for implementing and 

running DE. 

 

 

Table 1: DE settings 

𝑁 100 

𝐹 0.8 

𝐶𝑅 0.7 

( )optiχ

modJ

modJ
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5. Test case: three-dimensional Earth orbit transfer 

The problem of determining the minimum-fuel path between two specific Earth orbits is considered as an illustrative 

example, taken from the scientific literature [19]. The initial and final orbit elements are reported in Table 2. The true 

anomaly is unspecified along both the initial and the final orbit. As a result, the vector related to the final conditions is 

 

 

( )

( )

( )

( )

1,

2,

3,

4,

5,

cos

sin

tan 2 cos

tan 2 sin

f d

f d d d

f d d d

f d d

f d d

x p

x e

x e

x i

x i





− 
 

−  +
 
 −  +=
 

−  
 −  

ψ  (29) 

where ( )21d d dp a e= − . Trajectory optimization was performed several times, with the intent of retrieving the solution 

reported in the literature, but also for the purpose of ascertaining the existence of alternate locally optimal transfers. 

The necessary conditions for optimality yield 
6, 0 and 0f fH = = , because   is independent of 

6, fx  and 
ft . 

Canonical units are used in the numerical solution process. The distance unit (DU) equals the Earth radius (1 DU =
𝑅𝐸 = 6378.136 km) whereas the time unit (TU) is such that the Earth gravitational parameter 𝜇 = 1 DU3/𝑇𝑈2; this 

leads to 1 TU = 806.8 s. The orbit elements of the initial and final orbit are reported in Table 2. Because the initial and 

final values of 
6x  are unspecified, from Eqs. (12) one obtains 6,0 6, 0f = = . Hence, for the problem at hand the 

parameter set is given by . In all cases, a reasonable choice was 

found to be the interval  10,10−  for 𝜆7,0 and  1,1−  for the remaining adjoint variables. The search space for the initial 

state variable 
6,0x  is  , − , whereas 

ft  was sought in different intervals, depending on each specific case (cf. Sections 

5.1 through 5.3). 

 

Table 2: Initial and final orbit elements 

 Initial Final 

da  [km] 6571.004  10 000  

de  0.01 0 

di  [deg] 1 65 

d  [deg] 10 / 

d  [deg] 30 30 

 

5.1 Reference solution from previous research 

Using the data reported in [19], fundamental spacecraft parameters are  

 

 ( ) 1 2 2

0 03922.6 m / s;      1000 N;      3000 kg;     3.331  0  m / s 3.391  0  
max

Tc T m u g− −= = = = =                (30) 

where 
0m  denotes the initial mass, T the maximum thrust, whereas 

0g  is the gravitational acceleration at sea level. The 

search space for the time of flight is set to [10000, 25000] sec. For the problem at hand, the auxiliary objective function  

𝐽𝑚𝑜𝑑  is defined as 

 

1,0 2,0 3,0 4,0 5,0 7,0 6,0

T

fx t      =  χ
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6,

1, 2, 3, 4, 5, 6,, , , , ,

f

mod

f

f f f f f f

J

H

std



     

 
 
 
 
 

=
 
 
 
 
  

ψ

 (31) 

The last line reports the standard deviation on the final values of the adjoint variables, and is aimed at preventing 
fH  

from vanishing due to modest values of all these final values. The maximum number of iterations 𝑁𝑖𝑡𝑒𝑟  was set to 

3000, and the process was stopped after 1745 iterations, at the first occurrence of the condition 310modJ − . 

Table 3 reports some fundamental quantities related to the numerical results. The transfer trajectory, the switching 

function and the optimal thrust angles are shown in Figs. 1-4. In all the figures the red color denotes powered phases, 

while the blue color corresponds to coast arcs.  

 
 

        Figure 1: transfer trajectory (reference solution)  

 

Figure 2: switching function (reference solution) 
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              Figure 3: thrust angle 𝛼  (reference solution)                       Figure 4: thrust angle 𝛽 (reference solution) 

 

Table 3: Summary of main numerical results (reference solution) 

𝑡𝑓 [s] 20 294 

𝑥7,𝑓  0.159 

𝐻𝑓 o(10-11) 

 

5.2 Globally optimal solution 

The same data (i.e. propulsion parameters and initial and final orbit elements) were used again, while adopting the 

definition of the modified objective function 𝐽𝑚𝑜𝑑 reported in Eq. (31). On the other hand, the search interval of the 

transfer time was changed to [20000, 40000] s. The parameter 𝑁𝑖𝑡𝑒𝑟  was set to 3000 again, and the process was stopped 

after 1672 iterations, at the first occurrence of the condition 310modJ − . 

The main results are reported in Table 4. The transfer trajectory, the switching function and the optimal thrust 

angles are shown in Figs. 5-8.  

 

 

 

                Figure 5: Globally optimal transfer trajectory                    
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 Figure 6: switching function (globally optimal solution) 

 

 

     Figure 7: thrust angle 𝛼 (globally optimal solution)                Figure 8: thrust angle 𝛽 (globally optimal solution) 

 

Table 4: Summary of main numerical results (globally optimal solution) 

𝑡𝑓 [s] 29 729 

𝑥7,𝑓  0.179 

𝐻𝑓 o(10-11) 

 

 

It is interesting to compare the trajectory shown in Figure 5 with the impulsive solution reported in [19]. It is evident 

the similarity between the structures of the two trajectories. However, it is worth noting that the finite-thrust solution 

involves an additional orbit around the Earth, and the optimal path shown in Figure 5 is a three-elliptic orbit transfer 

as a result. This solution is associated with higher final mass ratio and therefore lower propellant consumption than the 

solution shown in section 5.1 and reported in scientific literature [19].  

The solution found in this research can be considered globally optimal with an upper bound on the time of flight 

set to 40000 sec, and corresponds to 𝑥7,𝑓 = 0.179 and 𝑡𝑓 = 29729 s. For comparison, the impulsive solution [19] 

yields  𝑥7,𝑓 = 0.194 and  𝑡𝑓 = 28540 𝑠. However, it is worth remarking that the theoretical, globally optimal impulsive 

transfer with orbit plane change is the biparabolic one. For the case at hand, the biparabolic transfer yields 𝑥7,𝑓 =

0.226, greater than that obtained in this work (and larger than that of the bielliptic transfer). In the biparabolic (limiting) 

case the plane change would take place at infinite distance, at no cost, and of course the time of flight would tend to 

infinity.  
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5.3 Locally optimal solutions 

During the search for the optimal solution to the problem addressed in [19], two locally optimal solutions were detected. 

These meet the necessary conditions but correspond to higher propellant consumptions. Although less interesting than 

the preceding solutions, they are remarkable in the fact that they confirm the existence of multiple solutions for 

minimum-fuel orbit transfers (with an upper bound on the time of flight). The main results are reported in Table 5. For 

the sake of brevity, only the trajectories are reported for these solutions (cf. Figs. 9-10). It is worth noting that these 

two locally optimal transfers have different structures, i.e. 6 powered arcs (transfer 3), and a single, continuous powered 

arc (transfer 4). As a further remark, the final mass ratio reaches modest values (especially for transfer 4), which make 

these transfers practically infeasible with the current technology.  

 

 
          

Figure 9: Trajectory, locally optimal solution (transfer 3) 

 

 
 

Figure 10: Trajectory, locally optimal solution (transfer 4) 
 

 

Table 5: Summary of main numerical results (locally optimal solutions) 

 Transfer 3 Transfer 4 

𝑡𝑓 [𝑠] 19838  10651 

𝑥7,𝑓 0.123 9.45 e-2 

𝐻𝑓 o(10-4) o(10-4) 
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5.4 Optimal transfers with different thrust magnitudes 

Minimum-fuel transfers between the same terminal orbits were found numerically using different thrust magnitudes, 

reported in Table 6. For cases 1 and 3,  is defined with only Hf as the last element (without introducing the 

denominator reported in the last element of Eq. (31)). Instead, for case 2, an amended definition of  was adopted, 

with last term given by 

 
100 𝐻𝑓

𝑠𝑡𝑑 [|𝜆1,𝑓|,|𝜆2,𝑓|,|𝜆3,𝑓|,|𝜆4,𝑓|,|𝜆5,𝑓|,|𝜆7,𝑓|]
𝑇                                                        (31) 

 

The main numerical results are listed in Table 6; 𝑁𝑖𝑡 denotes the number of iterations needed to reach the condition 
310modJ − . For the sake of brevity, only the trajectories are reported for these solutions (cf. Figs.11-13). It is worth 

noting that for cases 2 and 3 the final mass ratio approaches or is less than 0.1, which implies that the transfers at hand 

are practically infeasible with the current technological constraints. The final mass ratio increases as thrust magnitude 

increases, which is consistent with the classical theory of optimal finite-thrust and impulsive transfers [26]. Moreover, 

these 3 transfers have different structures, i.e. 5 powered arcs (case 1), 9 powered arcs (case 2), and a single, continuous 

powered arc (case 3). 

 

 
 

Figure 11: Trajectory, case 1 

 
Figure 12: Trajectory, case 2 

modJ

modJ
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Figure 13: Trajectory, case 3 

 

Table 6: Data and main numerical results for different thrust magnitudes 

 Case 1 Case 2 Case 3 

 𝑇 [N] 500 100 10 

𝑡𝑓 42890 s 1.71 days 12.71 days 

𝑥7,𝑓 0.168 0.101 6.66 e-2 

𝐻𝑓 o(10-4) o(10-5) o(10-4) 

𝑁𝑖𝑡 4143 2215 832 

 

6. Concluding remarks 

This research addresses the problem of determining three-dimensional minimum-fuel, finite-thrust orbit transfers, 

using the indirect heuristic method. This approach was previously introduced and successfully employed for the 

purpose of finding minimum-time space trajectories, even with eclipse constraints on the available thrust. In this work 

its use is extended to minimum-fuel orbit transfers. The technique at hand is based upon the joint use of the necessary 

conditions for optimality and a heuristic algorithm. More specifically, the necessary conditions are employed to express 

the control variables (i.e., the thrust magnitude and direction) as functions of the adjoint variables, which are subject 

to the Euler-Lagrange equations. As a result, a reduced parameter set – mainly composed of the unknown initial values 

of the adjoint variables – suffices to transcribe the optimal control problem into a parameter optimization problem. 

Furthermore, the optimal control variables are determined without any restriction, because no particular representation 

is assumed. Lastly, satisfaction of all the analytical conditions provides a clear indication on local optimality of the 

solution. The indirect heuristic technique is thus capable of circumventing the main shortcomings of using heuristic 

approaches, while retaining the main advantage, which is the absence of any starting guess. Minimum-fuel paths admit 

coast arcs and powered phases, whose sequence is unknown a priori and depends on the switching function. This 

circumstance adds further complexity to the study of minimum-fuel transfers compared to minimum-time trajectories. 

In this research, minimum-fuel orbit transfers are sought with the use of modified equinoctial elements. An illustrative 

example taken from the scientific literature is considered, and the known solution is first retrieved. Yet, this work 

proves the existence of an alternative solution that outperforms the preceding one, together with several further locally 

optimal solutions, with different sequences of thrust phases and coast arcs. Minimum-fuel orbit transfers are also 

identified for different values of the propulsion parameters. The numerical results point out the existence of a variety 
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of structures for the optimal transfer. In fact, different sequences of powered phases and coast arcs are proven to exist, 

and their number reduces as the thrust magnitude increases. All the optimal paths enjoy the analytical conditions to a 

great accuracy, and the numerical solution method did not encounter hypersensitivity issues. These circumstances 

unequivocally testify to the effectiveness and accuracy of the indirect heuristic methodology, with the use of modified 

equinoctial elements, in detecting minimum-fuel orbit transfers. 
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