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Abstract

Space debris overpopulation and the increased number of uncontrolled atmospheric re-entry is fostering
the agencies and the operational centres to investigate modern techniques to deal with uncertainties and
providing more reliable predictions and services. This paper presents a Machine Learning approach to
characterize the re-entry of space objects, identifying similar conditions in the historical data and provide
re-entry windows up to 45 days in advance. First, a statistically relevant database is collected throughout
publicly available sources. Data are pre-processed and then provided to several architectures and configu-
rations for validation and test. The final results are finally compared with current scenarios that are handled
with conventional techniques by the Italian SST Operations Centre (ISOC).

1. Introduction

Over the decades, Space Situational Awareness (SSA) has been growing in importance and public attention as thou-
sands of civil and military assets populate the orbits around the Earth. Their survivability depends primarily on the
capacity of detecting, identifying and handling potential risks or threats'! The prediction of the re-entry window is
still an open issue since current algorithms have limited accuracy for long period estimations, especially for the objects
poorly characterized and/or moving on highly elliptical orbits. The main approaches to deal with this problem are based
on numerical propagation and conventional statistical regression. The numerical propagation includes all the relevant
perturbations: zonal and tesseral harmonics of the geo-potential, third body attraction of the moon and the sun, solar
radiation pressure, aerodynamic drag and solar activity.>* The ideal conditions to effectively propagate the object and
estimate the re-entry window is to have a deep understanding of its physical properties and to collect several observa-
tions to determine the evolution of the orbital parameters over time. Within these conditions, the final window can be
found with high accuracy, having slight variations of the epoch only during the last days and a progressive reduction of
the uncertainty.” Space debris and objects orbiting in highly elliptical orbits may not meet these requirements. Indeed,
the characterization of the former depends on the specific genesis, but some features like size, shape, mass and the
value of the exposed area of debris are usually unknown and might be estimated with regression techniques through a
dedicated observation campaign/®/) However, limited measurements related to any highly elliptical orbiting object are
typically acquired. This is especially true when their orbits show significant variations, which make medium-long term
predictions inaccurate and consequently the re-entry window usually converges a few orbits before the actual re-entry
epoch.

The description of the problem addressed by this paper is presented and discussed in Section [2] showing the current
state of the art and the potential applications. Since the solution proposed is based on a data driven approach, an
analysis of the modern architectures and solution is presented in Section 3]

Section [ presents the activities carried out to collect, filter and pre-process the datasets, the derivation of the input-
output couples, the analysis of the network architectures and the configuration parameters.

All the data used for this work were downloaded from publicly available sources and a conventional training-validation
dataset split was adopted to verify the goodness of the model obtained. The results obtained with the trained networks
are summarized in Section[5]and specific case scenarios are compared with official estimations carried out by the United
States Space Command (USSPACECOM) in the framework of the publicly available spacetrack.com service, showing

Copyright © 2022 by Alessandro Panico and Pierluigi Di Lizia. Published by the EUCASS association with permission.



DOI: 10.13009/EUCASS2022-6137

MACHINE LEARNING TECHNIQUES APPLIED TO SPACE OBJECTS UNCONTROLLED RE-ENTRY PREDICTIONS

a tendency to reduce the error in medium-long term prediction (i.e., from 15 to 45 days before the real re-entry epoch)
with a significant reduction in the computational time.

2. Problem Statement

As described in Section [I] the prediction of the re-entry was conventionally addressed as the time needed by the
space object to reach an altitude equal to 80 km, an experimental limit in which no space object can orbit around the
Earth. Dynamic Models can predict this event providing atmospheric and orbital parameters, such as the mean motion,
the ballistic coefficient, the air density, the space activity and propagate the orbit until the threshold is reached >
Typical statistical approach consists in the determination of the ballistic coefficient by processing a series of Two Line
Elements (TLE) as observations. Then, using the latest TLE available and the optimized parameters, orbit propagation
is performed until an altitude of 80 km is reached®” The position vector r is computed by integrating the following
equation of motion:

i‘:—%r+aE+aD+as+aM+aSRp (1)
r

where u is the gravitational parameter, ag is the disturbance due to the Earth gravitational model, ap is the atmospheric
drag, ag is the third body gravitational force (luni-solar attraction), ayy is the magnetic force and aggp is the solar
pressure.

Despite the model complexity, the final orbits can be significantly affected by the satellite rotational dynamics, inac-
curate orbital parameters, variability in the atmospheric parameters, variability in the atmospheric density and in the
magnetic field, especially in high solar activity conditions.

The main idea behind a data driven approach is that similar behaviours can be found in several objects, especially when
they have similar features, such as rocket bodies or high elliptical objects. Fig. [T| shows the comparison between a
classical and a data driven approach to this problem.
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Figure 1: Classical vs Data Driven Approach®

A possible strategy to handle the uncertainty of re-entries is given by the Recurrent Neural Network (RNN)® The idea
behind this approach is to consider the history of the TLE of a specific object and train the neural network consequently,
with an approach called Sequential to Sequential (Seq2Seq), in which an input time-series is transformed into an output
sequence. The results shown in this study are remarkable, with high confidence in the re-entry window assessment.
However, the study is limited to nearly circular orbits and it is mainly focused on the final re-entry predictions, with a
mean altitude ranging from 130 to 160 km and a residual lifetime that is typically below 24 hours.

The approach investigated in this study in mainly based on medium-term predictions and takes advantage of a larger
and more general dataset. The main goal is to span the entire catalogue and to consider the last available TLE in order
to rapidly identify the objects that should be included in the 30 days list, requiring specific sensor tasking campaign
since the re-entry epoch is rapidly approaching. So that, instead of using a RNN, a conventional Artificial Neural
Network (ANN) is considered, providing a [n x 1] array with all the relevant pieces of information available at the TLE
epoch and obtaining the estimated residual lifetime as network output.
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Figure 2: ISOC architecture

2.1 Italian SST Operations Centre

Since 2014, the Italian Air Force (ItAF) has been involved in the Space Surveillance & Tracking (SST) domain,
providing the relative services in the framework of the European Union - Space Surveillance & Tracking (EU-SST), in
partnership with the Italian Space Agency (ASI) and the National Astrophysical Institute (INAF). It consisted in the
creation of a Command and Control (C2) system, the Italian SST Operations Centre (ISOC), that was made to plan
and operate a variety of national sensors (optical, radar, laser), to process incoming data (internal and external) and
providing the services required by the European Community:

e Re-entry: analysis of large uncontrolled objects atmospheric re-entry, in order to identify possible area of impact
and alert the population;

¢ Conjunction: identification of possible collisions, analysis of the probability and identification of the mitigation
strategies by proposing feasible manoeuvers to satellite operators.

e Fragmentation: parent identifications and data correlations, fragment clouds propagation for medium-long term
impact analysis.

Over the decades, the consciousness of the system has increased, as long as the collaborations with national industries
and academics entities. Originally, most of the tools were Commercial Off The Shelf (COTS) or based on commercially
available routines. Nowadays, ISOC is evolving towards a complete suite (whose high level architecture is depicted
in Fig. 2), a sophisticated environment in which COTS and proprietary algorithms live together due to the modern
micro-services architecture that was realized in collaboration the national partners involved. in the project. The next
objectives rely to the extension of the conventional SST applications to the entire space domain, to protect and support
the assets, improving the terrestrial applications, automatizing the operational and information distribution flows and
the international co-operations as well.

3. Overview of Machine Learning

The Machine Learning (ML) approach is considered a disruptive technology for several engineering branches. It is
essentially based on the key idea that computer algorithms can emulate human learning, by means of a process that
improves the performance of a very specific task with the experience.IEI However, the theoretical fundamentals were
originally defined in the late *408™ with the investigation of the possible similitude between human intelligence and
electronic computer and the evolution of more and more complex uses of the language by the computers. These
pioneer projects were too premature because there were not enough computational power to support them. Only
the tremendous technological innovation that came starting from the last decade of XX century gave the necessary
conditions for the development of ML applications for real life problems (virus-malware detection, fraud operations,
prediction of trends, autonomous navigation, decision making systems...jﬂ Most of the applications rely to the general
category of the regression/classification problems, resulting in a linear combination of non-linear basis functions ¢ ;(x):

M
Y& w) = A D wig(x) @

=1
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in which A(-) is either the identity function (regressions) or a non-linear function (classifications), e.g. logistic sigmoid,
hyperbolic tangent, softsign, rectified tanh, rectified linear, etc. The parameter w; represents the normalized weight
allocated to each of the M functions ¢ ;(x)-

ANN can be interpreted as a combination of several nested functions, that represent subsequent layers of the neural
network and have the general structure of Eq. [2]and may be represented visually as in Fig. 3]

hidden units

Z0

Figure 3: Feedforward Neural Network Diagram#

From a semantic point of view, each layer extracts specific features from data, with higher order information the deeper
the network. Different results can be obtained with alternative architectures, like changing the number of hidden
layers, the number of neurons ant their connections, the chosen activation functions. However, once the network
hyper-parameters are defined, the weights are computed by means of a training process, that consists of computing the
residual error with known input-output couples (supervised training). The typical cost function is the L? norm, defined
as follows:

1 N
EW) = 5 ) 1¥06, W) ~ 3)
n=1

with E(w) that is the resulting error in the regression/classification task, as obtained with the weight tentative combina-
tion (w). Intuitively, t, y and s are the vectors representing the truth, the actual output and the network input respectively.
Back-propagation is used to compute the error gradient by reversing the network,™ so that the weights can be tuned
with an optimization algorithm to minimize the cost function in Eq. [3| (gradient descend, stochastic gradient descend,
AdaGrad, RMSProp or ADAM) 1017

Among the numerous ML architectures, Convolutional Neural Network (CNN) are specifically designed to manage
data with a grid-topology, in which input data have an intrinsic connection and are not independent, like time se-
ries, images or multidimensional maps. These networks can handle huge amounts of data because they can simplify
the problem, by squeezing data, extracting the main features and therefore reducing the problem complexity.® This
approach reduces the computational power required to train the network due to the introduction of the "sparce" connec-
tivity, meaning that only adjacent pixels (or subsequent samples or frames for time series) have a statistical and physical
relationship. These kind of networks have shown tremendous results, especially in image classification problems 1%+
Another solution for topological related problems is provided by RNN, in which feedback connections throughout
the net are provided? Moreover, this architecture can even be used for self-feeding applications, like propagation
dynamics, 2 music generation and encoding,2*2 sentiment classification 2®

Various ML algorithms and tools have been developed and used in a wide variety of space applications, such as
automatic space objects characterization/222% planning and optimization of spacecraft trajectories2*3Y orbit determi-
nation*!*2 and spacecraft propagation 3337
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4. MACHINE LEARNING ARCHITECTURES TESTED
4.1 Database

The first step of the problem was gathering data and generating a suitable and representative database to train the
neural network. Data were collected in the framework 2010-2020, associating a unique ID, based on the NORAD
identification number, for each decayed object. A dedicated "Decayed Object" class has been programmed in order to
import and organize all the relevant data coming from different public sources. The process is summarized in Fig[4]

DecayList
! ! !
GetTIP GetSATCAT GetTLE

\ J
|

DISCOS — Decayed_ID

1

Space Weather

Figure 4: Dataset Collection

The class handles each space object separately, populating its tags with orbital data, Space Situational Awareness (SSA)
messages and object related features (e.g. shape, nationality, launching year..), as shown in the list below:

o the decay epochs

e the list of the TLE and the Tracking and Impact Prediction (TIP) messages published by the 18" Space Defence
Squadron (SDS) of the USSPACECOM on spacetrack.org up to 45 days before the declared re-entry epoch.

o the physical data that are disseminated on spacetrack.org and Database and Information System Characterising
Objects in Space (DISCOS) catalogues.

o the space weather data that are published on celestrak.com.

For completeness, Tab. [I] shows the extrapolated pieces of information from each data source. Most of them have a
number representation, but a few ones are categorical (e.g. nationality, shape...). So that, the correlation between the
spacecraft propagation and the launching state can be assessed and taken into account in the model, as well as the effect
of complex shapes or satellite typology on uncontrolled re-entry.

Table 1: Class Data

Data Source Extrapolated Data
spacetrack.org TLE Epoch, Mean Motion, Eccentricity, Inclination, Radius
of the Ascending Node, Argument of the Perigee, Mean
Anomaly, B* First Derivative of the Mean Motion,
Second Derivative of the Mean Motion, Semi-Major
Axis, Orbital Period, Apogee, Perigee
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Data Source Extrapolated Data
spacetrack.org Catalogue Decay Epoch, Object Nationality, Object Type,
Launching State, Launching year, Launching Piece,
RADAR Cross Section (RCS), Categorical RCS size

Space Weather Geomagnetic Data (Planetary Range Index Sum,
Average of the Planetary Equivalent Amplitude,
Planetary Daily Character Figure), International
Sun-Spots Number, Observed 10.7 cm Solar Radio Flux,
Centered and Shifted Solar Radio Flux Prediction

ESA DISCOS Minumum/Maximum/Average Cross Section, Object
Mass, Object Dimensions (Length, Height, Depth),
Categorical Object Type and Shape

A specific built-in function was then created to initialize the neural network training datasets. It consists of generating
the input-output couples that will populate the training and validation database. Essentially, the operational process that
is assumed for this application consists of verifying the re-entry epoch of a space object once a new TLE is received.
So that, the built-in function explores the class of the object ID, collecting all the relevant data available at the TLE
epoch. Three kinds of scenarios are considered, as shown in Tab. @

Table 2: Training Scenarios

Data Model A Model B Model C
spacetrack.org TLE X X X
spacetrack.org Catalogue X X X
Space Weather X X
ESA DISCOS X

In all cases, the output vector is a decimal number that represents the number of days up to the declared re-entry epoch.
This number is obtained by the difference between the declared re-entry and the TLE epoch. This computation gives
generality to the process that becomes independent from the time variable.

The dataset composition is described in Tab[3|

Table 3: Dataset Composition

TRAINING SET VALIDATION SET TOTAL DATASET
Dataset Objects Epochs Objects Epochs Objects Epochs
Rocket Bodies 279 19.203 110 7.374 389 26.577
Payload 366 18.524 178 8.972 544 27.496
Debris 599 18.575 244 8.121 843 26.696
High Eccentricity 90 5.113 33 1.567 123 6.680
Total 1.244 56.302 532 24.467 1.776 80.769

4.2 Architectures

The architecture network adopted consists of a feed-forward neural network able to generate the regression model that
identifies the re-entry epoch of a generic space object.

The number of inner layers as long as their depth are meta-parameters of the neural network. Usually, the deeper the
network, the higher the accuracy, but the longer the training time. However, a proper balancing is required in any
case, mainly to avoid local minima in the solution optimization process. Indeed, the back-propagation algorithm, that
consists in the derivation of the model weights variations to minimize the problem cost function, is carried out by
means of an optimization process and may stop prematurely because of a local minimum.

Since the scenarios indicated in Tab. 2] have different input size, i.e. the input vector has different number of elements
depending on the kind of data used for the regression, the architecture is defined in terms of multiple of the input vector.
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The "standard" model assumed as benchmark for this analysis has the structure shown in Tab. ] Throughout the fully
connected network, each node of the layer i has a specific connection to each node of the layer i + / that is activated
by means of a Rectified Linear unit (ReLu) or Leaky ReLu function. This choice has been driven by the computational
efficiency during the network training, that can be even six time faster with respect to conventionally used non-linear
functions (tanh, softmax...}® The Leaky ReLu have been tested to avoid the occurrence of the dead neurons. It consists
on introducing a slight inclination in the negative side of the curve to reduce the possibility of having 0 value as output.
In terms of computational efficiency, this approach takes advantage of the combination of linear curves, being faster
than conventional non-linear functions 2®

Table 4: Standard Architecture

Layer Model A Model B Model C
Input 20 26 35
Layer 1 20 26 35
Layer 2 20 26 35
Layer 3 40 52 70
Layer 4 40 52 70
Layer 5 80 104 140
Layer 6 80 104 140
Layer 7 40 52 70
Layer 8 40 52 70
Layer 9 20 26 35
Layer 10 20 26 35
Output 1 1 1

Further configurations have been tested, including an architecture with two separate networks to compute both the
prediction and the associated variance and additional preliminary tests in which the effect of depth and width variations
were verified.

The final activation function, that is basically aimed at providing the regression outcome, i.e. the re-entry prediction, has
been tested with either ReLu or a linear function, to consider positive only or positive and negative results respectively.
The training approach consisted of randomly dividing the dataset, so that 70% of data can be used to train the neural
network, whereas the other 30% can be used for the model validation. However, the division was carried out in terms
of space objects instead of epochs/TLE in order to make the datasets statistically independent. Otherwise, the same
object could have been used both for training and validation at different instants of time, making the neural network
over-fitted for the categorical data.

In terms of pre-processing, the database was filtered to remove some errors in data. Specifically:

e some objects had TLE epoch after the declared time of re-entry, causing negative predictions in the algorithm.
Sometimes the declared decay was clearly wrong (one year before/after the last available TLE) .

e some objects were declared re-entered even with very high orbits. All the objects with a perigee above an
arbitrary limit of 250 km in the 45 days before the declared decay were not taken into account in this study.

Moreover, input vectors passed through a Gaussian Transformation (Quantile Transformer) to get rid of outliers and
consider the 90" percentile only. On the contrary, the output vector was normalized with a Min-Max Scaler between 0
and 45. This solution was preferred with respect to the conventional 0 — 1 range to immediately visualize the error in
terms of days.

The proposed approach can be improved with the quantification of the prediction uncertainty, such as modelling a
mean-variance estimator*® To achieve this goal, the training dataset shall be divided in two equal parts, so that the
former is used to train a neural network to estimate the decay epoch (mean estimator), whereas the latter can be devoted
to forecast the solution uncertainty (variance estimator). The training dataset split was necessary to have stochastically
independent trainings of the networks, keeping the validation dataset intact for the final testing phase. Once the mean
network is fully trained, it is applied on the second training dataset to predict the decay epoch of the input objects. This
operation in functional for the identification of the second training truth: the squared deviation becomes the target for
the variance estimator. The specific cost function is hence modified as follows:

1 & 1 &
E(WZ) - 5 ; |Y2(Xn, W2) - éilz = E ; |YZ(XI1’ WZ) - |Y(Xn, W) - tn|2|2 (4)

being equal to the application of the L2 norm to the predicted squared error & .
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5. Training Results

Training operations were carried out on a dual GPU workstation (NVIDIA RTX A5000) using the open source Deep
Learning backend Tensorflow (version 2.4.0) and its high-level Python interface Keras (version 2.4.3).

The configuration adopted to initialize the networks, propagate and compute the errors, and finally derive the inner
weights is showed in Tab[5] The loss function used for this study is the Mean Squared Error presented in Eq. [3]
However, for validation purposes and to better visualize results, Mean Absolute Error was considered as well. Despite
the maximum number of epochs was assumed equal to 100, trainings used to stop between 20 and 50 epochs because
no relevant improvements were found during the network tests with the validation dataset (Early Stopping Strategy).
The number of input elements randomly selected within the dataset to test the network and update the weight, i.e. the
batch size, was set to 100, but it depends on the available memory and the system computational power. The higher the
value the faster the training convergence in terms of number of epochs required to find the best solution. Finally, the
optimization function was the Adaptive Moment Estimation (ADAM) with standard configuration values'® as shown
in Tab[3l

Figures [5}{6] show the results of the Mean Absolute Error computed at each training epoch and the 5-95th percentile
range of the propagation error with respect to the TLE epoch obtained by the analysis of the statistics computed with
the global validation dataset. In Figures[7{I0|the same neural network architecture was trained with specific clusters of
data (debris, rocket bodies, payload, HEO), showing no relevant improvements.

In terms of input data, it seems that the prediction accuracy does not improve significantly by considering space weather
(Model B) and DISCOS categorical data (Model C) and the range 5-95th percentile becomes slightly noisier as can be
observed by the graphs. All the analysis show that the mean error is usually in the order of 2-4 days for 20-30 days
propagations. On the contrary, longer propagations tend to underestimate the decay epoch. The noisy 5-95th percentile
range for High Elliptical Orbits (HEO) objects is justified by the poor dataset available for training and especially for
validation (only 33 objects).

Table 5: Training Configuration

Training Configuration
Loss Function
Validation Function

Setting
Mean Squared Error
Mean Absolute Error

Max Training Epochs 100
Early Stopping Strategy 10
Batch Size 150
Dropout 20%
Optimizer ADAM
Learning Rate 0.001
B (ADAM) 0.8
B1 (ADAM) 0.9
Training History Training History Training History
A w0
35 \‘\,_\ 35 AR 35 \\\
DN —_\\\—\ \—\/’—\
Model A Model B Model C

Figure 5: Global Dataset: Mean Absolute Error vs Epochs

Besides, considering the topic from an operational point of view, spacetrack.com TIP messages alert the space operators
community about imminent re-entry. These messages are usually disseminated about 4-5 days before the effective
decay epoch. However, despite the re-entry windows declared on spacetrack.com are very accurate, there are some
objects with premature alarms and large errors. Fig[IT[T2] show the results obtained by the application of the "Model
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Figure 9: Payloads: CE90 Estimation

C" architecture. The tracked objects are two rocket bodies, that usually receive particular attention before decay as
some components may pass through the atmosphere and impact the Earth surface. The x axis shows the real time
difference between the TLE epoch and the decay epoch, whereas on y axis the model prediction is reported with the
blue dots. Ideally, the dots should be aligned with the theoretical plain line. The further they are the higher the error.
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Figure 10: HEO: CE90 Estimation

The figures show also the TIP messages (orange dots), with very precise final predictions and some false alarms even
40 days before the actual object decay epoch. For these scenarios the models presented in this paper are more robust.
In particular, the images presented side by side show the results based on different training datasets, specifically the
global dataset and the rocket bodies cluster for Fig. [T1] and also HEO for Fig. [T2] Despite being very similar in
terms of performance, a model trained on a very specific dataset gives better results with the respective inputs. Indeed,
since the object 27412 have a starting eccentricity that is higher than 0.5 (value assumed as cut-off), the HEO model
was tested as well (see Fig[T2), being even more accurate then the other models for both short and medium-long term
propagations, confirming that specific datasets may lead to better results for confined data clusters. Nevertheless, the
application of the rocket body model on debris or payload input data might result in poor accuracy, as the model is too
specific. Same inaccuracies are expected for HEO model with circular and stable orbits.

Figure[T3]shows the orbital trend of the object 27412 and in particular the behaviour of the perigee history, that is quite
common for HEO objects. As the TLE is an orbit approximation that depends on the initialization point and HEO
orbit encounter very different disturbances from apogee to perigee, the real lowest altitude reached by object may be
different. This is the situation that reasonably happened for the object 27412 with the perigee that seems to decrease
fast at about 80 km about 35 days before decay and then peaking again above 100 km.
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Figure 11: NORAD ID: 41027 - CZ-4B Rocket Body

Besides, the application of the mean-variance architecture slightly decreases the performance for the pure estimation
of the decay epoch, since the training dataset is smaller and less general. However, this is largely compensated by the
possibility to provide both the prediction and the relevant confidence level, as depicted in Fig|[T4]

Finally, in terms of computational resources for operational use, these models offer significant improvements with
respect to conventional deterministic algorithms. The SW routine AGI STK High Precision Orbit Propagator (HPOP),
that can be considered a reference for re-entry assessments, takes 1-3 minutes for 20-40 days propagations on the same
dual GPU workstation used for training the networks. It is worth to point out that performance can change significantly
depending on the integration step and the propagation duration, but the order of magnitude is in terms of minutes. On
the contrary, the proposed ML approach reduces the computational time of 3-4 orders of magnitude as shown in Tabl6]
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Table 6: Model Computational Performance

Algorithm Step Performance
Initializing Functions 11.96 s
Downloading & Loading Data 7.86s
Inference 0.065 s
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6. Conclusions

The architectures tested in this research show that ML techniques can be applied to infer the decay epoch of re-entering
objects. The ANN is a powerful tool because it requires a limited number of data inputs (just one TLE along with
available information regarding space weather and general features of the space object) and can perform accurate
medium-long term predictions, whereas reducing the computational time of 3-4 orders of magnitude.

The mean-variance estimator can also provide the confidence window associated to the re-entry epoch, with the in-
trinsic assumption of Gaussian error distribution. Further research may include a quantile estimator as well as other
architectures that combine the confidence level directly in the outcome. Moreover, the ANN might be combined with
multi-temporal approaches, e.g. including CNN or RNN to provide more robust estimations, especially for the last
propagation hours.

The results obtained in this work suggest that the next-generation database scanning algorithms will likely take advan-
tage of these ML approaches to provide a first guess of the re-entry window and to trigger a data acquisition process in
order to refine the re-entry epoch and location predictions with the available deterministic and stochastic techniques.
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