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Abstract
This paper is concerned with the temperature-dependent calibration of
MEMS inertial measurement units (IMU). The IMU output errors de-
pend on the angular rates, the linear accelerations, and the temperature
inputs to the device. Previous works emphasized the development of es-
timators for given inputs, from least-squares batch estimators to Kalman
filters or artificial neural networks. Our work focus on optimizing these
inputs, either their time profiles or their probability distributions. Sev-
eral maximization problems of the observability Gramian determinant
or trace are proposed with constraints that are derived from operational
limitations. Three approaches are deterministic. The first two are para-
metric where the input profiles are low-order time polynomials, or step
and ramp functions with optimized switching times. A third approach
is nonparametric and relies on time discretization of the input functions.
A fourth approach is probabilistic and seeks the best joint distributions
of the temperature and rates. The design approaches are first verified
on a single gyro model before being applied to the three-axes gyroscope
case. The design model includes biases, scale factors non-linearity of or-
der 4 in the angular rate, and misalignment parameters. All parameters
are expressed as third-order temperature polynomials. Profiles of the
input temperature and of the angular rates are obtained by merging the
randomized and the deterministic nonparametric approach. The sensi-
tivity of the optimized cost is investigated by changing key parameters:
the total calibration time, the initial temperature, the sequence of the
angular rates, and the time spent at each rate. The method is veri-
fied via a simulated calibration with the “best” profiles of the rate and
temperature. The method is then validated via an experimental calibra-
tion using approximations of the “best” profiles. For the calibration of
the accelerometers the input temperature profile is identical to that of
the gyroscopes. The performances are compared with calibration results
based on “best-practice” profiles of the angular rates and temperature.
The proposed approach outperforms the standard one by up to one order
of magnitude in the gyroscopes angular rate prediction error. The resid-
ual errors are not temperature dependent. A breakdown of the error
shows that biases, scale factors, and misalignment contribute evenly.
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I. General Problem Formulation

A generic temperature-dependent model of the gyroscope measurement is described
as follows:

ωm = H(ω, T )x+ ϵ (1)

where
ωm: 3× 1 measured angular velocity vector
ω: 3× 1 true angular velocity vector
T : temperature
x: n× 1 vector of constant parameters
ϵ: 3× 1 measurement error vector
The components of the vector x are constant sensitivity parameters. The definition of
x stems from the assumptions on the types of errors and the temperature dependency.
Calibration being the estimation of the components of x, given a sequence of rates mea-
surements acquired during a temperature controlled experiment, our objective is to design
that experiment in order to enhance the calibration performances. In other words, we seek
the time profiles of the rate vector ω(t) and of the temperature T (t) that will maximize
some measure of the calibration performances. Assuming that calibration is performed
by a batch Weighted Least-Squares estimator (WLS), natural cost indices are the trace
and the determinant of the Observability Gramian, denoted by M(0, t), and defined as
follows:

M(0, t; ω, T ) =

∫ t

0

HT (ω, T )W (τ)H(ω, T ) dτ (2)

where W (τ) and H(ω, T ) denote the weighting matrix and the measurement matrix
at time τ , respectively. In the following, for simplicity, the results are limited to the
measurement of a scalar rate, ω, involving scale-factor (S/F), bias, and white noise
errors, denoted by β, b, and ϵ, respectively. The measurement design model is thus as
follows:

ωm = β(T )ω + b(T ) + ϵ (3)

Henceforth, one seeks to maximize either the trace or the determinant of M(0, t) with
respect to ω and T , subject to Eq. (3) and to a set of constraints due to experimental
limitations:

ωm ≤ ω ≤ ωM (4)
Tm ≤ T ≤ TM (5)

Ṫm ≤ dT

dt
≤ ṪM (6)

where ωm ≤ 0, ωM ≥ 0, Tm ≤ 0, TM ≥ 0, Ṫm ≤ 0, ṪM ≥ 0. Typically, ωm = −ωM =
−400[deg/sec], Tm = −30[oC], TM = +60[oC], Ṫm = −2[oC/mn], ṪM = +5[oC/mn]. As
is usually done, the noise is assumed to be independently identically distributed, which
justifies choosing a scalar matrix for the weight W . Henceforth the unweighted Gramian
will be used. Furthermore, the white noise element will be omitted in the subsequent
measurement models for simplicity, without loss of generality.
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II. Parametric Design 1

In this section we consider profiles of ω and T that are polynomials in time. The
polynomials coefficients are decision variables in the optimization problem at hand.

A. b is a linear function of T

In the following the bias depends linearly on T and the scale-factor remains temperature-
invariant.

ωm = β ω0 + b

= β ω + b0 + b1T

=
[
ω 1 T

]βb0
b1


= H(ω, T )x (7)

The calibration parameters are β, b0, b1 and the Gramian dimension is 3× 3.

Example P3: ω = ω0 and T = ητ
With the above assumptions on ω and T the measurement matrix has the following
expression

H =
[
ω0 1 ητ

]
(8)

and for the Gramian:

M(ω0 , η) =

ω2
0
t ω0t

1
2
ω0ηt

2

∗ t 1
2
ηt2

∗ ∗ 1
3
η2t3

 (9)

In this case, the trace and determinant of M are as follows:

trM(ω0 , η) = t

(
ω2

0
+
t2

3
η2 + 1

)
(10)

detM(ω0 , η) = 0 (11)

The invariance of ω hampers observability yet, again, maximizing the trace subject to
the constraints provides some insight. The equivalent optimization problem is formulated
as follows:

max
ω0,η

ω2
0
+
t2

3
η2 (12)

subject to

ωm ≤ ω0 ≤ ωM (13)
Tm ≤ ητ ≤ TM (14)

Ṫm ≤ η ≤ ṪM (15)
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where the numerical values for the bounds are given as follows:

ωm = −ωM = −200[deg/sec] (16)
Tm = −TM = −60[oC] (17)

Ṫm = −ṪM = −0.08[oC/sec] (18)
t = 100[sec] (19)

Analytical solution:
Following [22, Ch.3], let L(ω0, η) denote the objective function:

L(ω0, η) = ω2
0
+
t2

3
η2 (20)

The constraints (13) are rewritten as follows:

f1(ω0, η) = ω0 − ωM ≤ 0 (21)
f2(ω0, η) = −ω0 + ωm ≤ 0 (22)

The constraints (15) are rewritten next:

f3(ω0, η) = η − ηM ≤ 0 (23)
f4(ω0, η) = −η + ηm ≤ 0 (24)

where ηm, ηM denote the bounds on η, and the constraints (14) yield a set of constraints
rewritten as follows:

f5(ω0, η) = η − TM/τ ≤ 0 (25)
f6(ω0, η) = −η + Tm/τ ≤ 0 (26)

where 0 < τ ≤ 100. For the given numerical values, the intersection of the feasible
domains of constraints (23) to (26) can be expressed with only two constraints, which
yields the following formulation:

max
ω0,η

ω2
0
+
t2

3
η2 (27)

s.t. fi(ω0, η) ≤ 0 i = 1, 2, 3, 4

Let H(ω0, η, λ), λ ∈ R4, denote the Lagrangian:

H(ω0, η, λ) = ω2
0
+
t2

3
η2 + λ1(ω0 − ωM) + λ2(−ω0 + ωm) + λ3(η − ηM) + λ4(−η + ηm)

(28)
λ

i
≤ 0 if fi = 0 (29)

λ
i
= 0 if fi < 0 (30)

The necessary conditions for maximum are:

∂H
∂ ω0

= 2ω0 + λ1 − λ2 = 0 (31)

∂H
∂η

=
2t2

3
η + λ3 − λ4 = 0 (32)

A simple examination of the constraints and of the contours of constant L yields the
following observations:
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• If a single constraint is effective at the stationary point it is not a maximum.

• Two constraints at most can be simultaneously effective; namely (f1, f3), (f1, f4),
(f2, f3), or (f2, f4).

• There exist four points where two constraints can be simultaneously effective.

Henceforth the following discussion for each of the four cases, denoted Case 13, Case 14,
Case 23, Case 24, respectively.

Case 13:
In this case, constraints (21) and (23) are effective, i.e.

ω0 = ωM (33)
η = ηM (34)

Using (33),(34) into (31),(32) yields

λ1 = −2ωM ≤ 0 (35)

λ3 = −2t2

3
ηM ≤ 0 (36)

and the optimal cost function L13 is:

L13 = ω2
M +

t2

3
η2M (37)

Note that the simultaneous effective constraints completely define the stationary point.
The sufficient conditions for maximum can not be applied since there is no possible
variations of L about the stationary point while keeping both constraints effective. The
other three cases can be similarly handled. For brevity the developments are omitted
and the results are summarized in Table II.A. The global maximum is thus obtained by

CASE 13 14 23 24
ω0 ωM ωM ωm ωm

η ηM ηm ηM ηm

λ1 −2ωM −2ωM 0 0

λ2 0 0 2ωm 2ωm

λ3 −2t2

3
ηM 0 −2t2

3
ηM 0

λ4 0 2t2

3
ηm 0 2t2

3
ηm

L ω2
M + t2

3
η2M ω2

M + t2

3
η2m ω2

m + t2

3
η2M ω2

m + t2

3
η2m

Table 1.

comparing the values of L at the various stationary points. Recalling the given numerical
values,

ωm = −200[deg/sec] (38)
ωM = 200[deg/sec] (39)
ηm = −0.08[oC/sec] (40)
ηM = 0.08[oC/sec] (41)
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it becomes clear that there are four points with the same maximum value of the cost.

Numerical solution: For the sake of verification of the analytical solution, a numerical
solution of (12) was sought. For that purpose a time discretization with step of one
second was applied to the constraints (23) to (26). All constraints were inserted in the
formulation and the solution was obtained using the Matlab fmincon Active Set algo-
rithm. Care was taken in choosing the initial guesses in order to obtain a complete view
of the convergence map. Table II.A provides samples of initial guesses along with the
solutions. Note that all four solutions of the analytical study were found and that the
origin is obviously a fixed point of the algorithm, allbeit as a minimum. Figures 1,2 depict
the cost, the contour lines of constant cost, the four optima, and one optimal solution
obtained from the initial guess ω0 = 0.1[deg/s], η = 0.05[o/s].

Concluding remark: in this example the angular rate should be maintained constant

Start End Start End Start End Start End
ω0[

deg
sec

] 0.1 200 −0.1 −200 0.1 200 −0.1 −200

η[
oC
sec

] 0.05 0.08 0.05 0.08 −0.05 −0.08 −0.05 −0.08

Table 2.

Figure 1. Example P3. The four optima appear as red spots. Contours of constant cost
appear almost horizontal due to the high eccentricity of the ellipses.

at one of its bounds, and the temperature should be increased or decreased using the
bounds on the temperature rate.

III. Non-parametric Design

In the non-parametric approach the time-varying functions ω and T are generic.
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Figure 2. Example P3. The optimal solution ω0 = 200[deg/s], η = 0.08[oC/s].

Example NP5: β = β0 + β1T + β2T
2 + β3T

3 and b = b0 + b1T + b2T
2 + b3T

3

In this example, the bias and the scale-factor are polynomials of order three in T , i.e.

ωm = β ω + b

= (β0 + β1T + β2T
2 + β3T

3)ω + (b0 + b1T + b2T
2 + b3T

3)

=
[
ω ωT ωT 2 ωT 3 1 T T 2 T 3

]


β0
β1
β2
β3
b0
b1
b2
b3


= H(ω, T )x (42)

As a result the expression for the Gramian is as follows:

M(ω, T ) = t



ω2 ω2T ω2T 2 ω2T 3 ω ωT ωT 2 ωT 3

∗ ω2T 2 ω2T 3 ω2T 4 ωT ωT 2 ωT 3 ωT 4

∗ ∗ ω2T 4 ω2T 5 ωT 2 ωT 3 ωT 4 ωT 5

∗ ∗ ∗ ω2T 6 ωT 3 ωT 4 ωT 5 ωT 6

∗ ∗ ∗ ∗ 1 T T 2 T 3

∗ ∗ ∗ ∗ ∗ T 2 T 3 T 4

∗ ∗ ∗ ∗ ∗ ∗ T 4 T 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ T 6


(43)
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The Gramian’s expression is simplified as follows:

M(ω, T ) = t



ω2 ω2T ω2T 2 ω2T 3 0 0 0 0

∗ ω2T 2 ω2T 3 ω2T 4 0 0 0 0

∗ ∗ ω2T 4 ω2T 5 0 0 0 0

∗ ∗ ∗ ω2T 6 0 0 0 0

∗ ∗ ∗ ∗ 1 T T 2 T 3

∗ ∗ ∗ ∗ ∗ T 2 T 3 T 4

∗ ∗ ∗ ∗ ∗ ∗ T 4 T 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ T 6



= t

[
ω2 0

∗ 1

]
⊗


1 T T 2 T 3

∗ T 2 T 3 T 4

∗ ∗ T 4 T 5

∗ ∗ ∗ T 6

 (44)

which lends itself to the following determinant expression:

detM(ω, T ) = t8 ω2

det


1 T T 2 T 3

∗ T 2 T 3 T 4

∗ ∗ T 4 T 5

∗ ∗ ∗ T 6


 (45)

Numerical solution: The functions ω and T are approximated by step functions over
a regular time partition of step ∆t. Let ω

k
and T

k
denote the sequences of the angular

rate and of the temperature values, respectively, for k = 1, . . . , N , where

N =
t

∆t
(46)

The optimization variables are the components of the 2N × 1 vector u:

u = (ω1, ω2, . . . , ωN , T1, T2, . . . , TN) (47)

The constraints over u are derived from (4), (5), (6) as follows. For the angular rate, (4)
yields

f1,k(u) = ωk − ωM ≤ 0 k = 1, . . . N (48)
f2,k(u) = −ωk + ωm ≤ 0 k = 1, . . . N (49)

For the temperature, (5) yields

f3,k(u) = Tk − TM ≤ 0 k = 1, . . . N (50)
f4,k(u) = −Tk + Tm ≤ 0 k = 1, . . . N (51)

and the constraint on the temperature gradient, (6), is discretized via the first-order
forward difference formula,

dT

dt
=
Tk+1 − Tk

∆t
(52)
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which yields the following additional set of constraints:

f5,k(u) = Tk+1 − Tk − ṪM ≤ 0 k = 1, . . . N (53)

f6,k(u) = Tk − Tk+1 + Ṫm ≤ 0 k = 1, . . . N (54)

In total, there are 6N − 2 constraints for 2N optimization variables. In general, a dis-
cussion on the minimal feasibility domain should be made, which depends on the values
of the bounds. The problem parameters shall admit the following values for the sake of
this example:

ωm = −ωM = −200[
deg

sec
] (55)

Tm = −TM = −60[oC] (56)

Ṫm = −ṪM = −5[
oC

mn
] (57)

t = 100[min] (58)

The results are summarized in Fig. 3. Each row of graphs illustrates the optimal
solution upon convergence from different initial guesses of ω and T . The first two initial
guesses were drawn at random from uniform distributions while the third initial guesses
were chosen as linear functions of time spanning the whole ranges of feasible values.
Concluding remark: The optimization algorithm converges to different profiles empha-

sizing the multiplicity of optimal solutions and the room for further constraints in shaping
the time profiles of ω and T . It is a remarkable result that a few values of ω and T are
featured in the optimal solutions without additional constraints. This is illustrated by the
plots of the sample joint distributions built from the optimal solutions. The three distri-
butions show eight peaks with very similar levels and at very close locations in the sample
space (ω, T ). Notice that these empirical distributions are nearly symmetrical around
the means of the marginal distributions. This result further motivates the formulation of
the optimization problem on probabilistic grounds.

IV. Parametric Design 2

The parametric approach using time polynomials is straightforward and provides some
insights on the optimization problem at hand. Yet it has two drawbacks: 1) it is imprac-
tical for high-order polynomials since following such profiles would be cumbersome from
the operator’s point of view. 2) the time-discretization yields a large amount of con-
straints, hindering analytical insights into the problem. The nonparametric approach is
more general and yields higher values for the cost. Yet the purely numerical approach
isn’t insightful and yields impractical profiles as-is. In this section we consider profiles of
piecewise-constant (PWC) functions of time for ω and PWC or piecewise-linear (PWL)
functions for T . That is indeed a standard approach of designing time profiles of ω and
T in a calibration experiment. Yet the steps levels and the time epochs of the switches
become in our approach decision variables for the optimization problem. Henceforth,
instead of apriori arbitrary discretized timeline and step-levels, the optimization solution
will provide sufficient ones. Further, the number of constraints is set upfront as it depends
on the number of levels in ω.

Example SP5: β = β0 + β1T + β2T
2 + β3T

3 and b = b0 + b1T + b2T
2 + b3T

3

Consider the same model as in Example NP5 where β and b are cubic functions of T .
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Figure 3. Example NP5. Optimal time profiles for ω and T . The joint sample distributions
depict eight similar peaks at the same locations.

Then the eight-dimensional Gramian has the expression in (43). Figure 4 shows the
optimal profiles for ω and T , and the associated sample joint distribution. The optimal
profile for ω features only two levels ±200deg

sec
of seven visible steps. The optimal profile

of T features four levels {±60oC,±27oC} distributed over nine steps. The sample joint
distribution of ω, T is identical to that of Example NP5. The cumulative time duration
at each ω and T -level are identical. Hence this example verifies the result from NP5.

V. Randomized Design

A. Problem Formulation

In the randomized design approach, the angular rate and the temperature are modeled as
random parameters rather than deterministic functions of time. The motivation for this
approach is twofold: 1) a fairly general idea is that randomization enlarges the search
space and might yield higher values of the cost index, 2) results from the nonparametric
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Figure 4. Example SP5. Optimal time profiles for ω and T . The joint distribution has
eight uniform peaks.

and step-parametric approaches highlight the particular statistical distributions of the ω-
samples and of the T -samples, 3) the order of the ωm measurements with respect to time
is irrelevant to the optimal value of the batch LS cost. Consider the results from Example
NP5 for instance, see Fig. 3. The graphs of ω suggest that the angular rate input to the
calibration should be set at ±200 [deg

sec
] with equal proportions in time, i.e. in the number

of measurement samples. Since the order of the measurement is irrelevant to the value
of the LS cost, we may consider ω as a random variable and seek its best distribution.
Indeed we consider ω, T as a random vector and seek its best joint distribution. The
general problem formulation needs therefore to be modified as explained next. Consider
the generic temperature-dependent model of the gyroscope measurement (1)

ωm = H(y)x+ ϵ (59)

where y = (ω, T ) denotes the vector of random design parameters, x ∈ Rn and ϵ is a
zero-mean white Gaussian noise with intensity R = σ2

ϵ . Let Ωy be the set of allowable
values, as given in (4) and (5):

ωm ≤ ω ≤ ωM (60)
Tm ≤ T ≤ TM (61)

The constraints on the temperature gradient is not taken into account as the model is
assumed to be independent of Ṫ , and T is not modeled as a random process. The set
Ωy is a closed and compact set. Let q denote a probability measure for all Borel sets
of Ωy, including single points, i.e. combinations of single values for ω and T within the
feasible set. Let M(y) denote the elementary Gramian corresponding to any single-point
realization y of y, i.e.

M(y) = [H(y)]TH(y) (62)

Let M(q) denote the expectation of M(y) for a given distribution q, i.e.

M(q) = E{M(y)} =

∫
y∈Ωy

M(y)q(dy) (63)
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We seek an optimal design q∗ that maximizes the determinant of the expected value of
M(q):

max
q

[detM(q)]

subject to
∫
Ωy

q(dy) = 1, 0 ≤ q(dy) ≤ 1 (64)

The set of all matrices M(q) is a closed and convex set in R
n(n+1)

2
+1. It is the convex

hull of elementary Gramians M(y), so that there exists a discrete probability distribution
that satisfies the following equality:

M(q) =
k∑

i=1

qiM(yi), 0 ≤ qi ≤ 1,
k∑

i=1

qi = 1 (65)

where k ≤ n(n+1)
2

+ 1. The following theorem summarizes key properties of the optimal
design q∗, which are used in the numerical iterative algorithm that follows.
Theorem:
Any optimal design q∗ satisfies the three following equivalent properties

1. q∗ maximizes detM(q)

2. q∗ minimizes maxy∈Ωy tr [M−1(q)M(y)]

3. maxy∈Ωy tr [M−1(q∗)M(y)] = n

All designs that satisfy the above properties share the same expected Gramian M(q), as
do their convex combinations.
Algorithm:

1. Start with an initial guess q0 such that M(q0) is nonsingular.

2. At every iteration j: find the maximum of tr [M−1(qj)M(y)] for all y ∈ Ωy and its
maximizer yj

3. If tr [M−1(qj)M(yj)] = n stop, otherwise set

qj+1 = (1− αj)q
j + αjq(yj) (66)

and choose 0 ≤ αj ≤ 1 by solving

max
αj

detM [qj+1] (67)

The result is a discrete probability distribution q∗ with support of at most n(n+1)
2

+1
realizations in the sample space of (ω, T ). In practice this number is even less as
will be shown in the following examples.

Example R3: β = β0 + β1T + β2T
2 + β3T

3 and b = b0 + b1T + b2T
2 + b3T

3

Consider the same measurement model as in Example NP5. Both the scale factor and
the bias are cubic functions of the temperature T . The associated measurement matrix
is therefore identical and rewritten here for convenience:

H(ω, T ) =
[
ω ωT ωT 2 ωT 3 1 T T 2 T 3

]
(68)

DOI: 10.13009/EUCASS2022-7272



The expression of the Gramian for any probability distribution q of (ω, T ), is as follows

M(q) =



ω̂2 ω̂2T ω̂2T 2 ω̂2T 3 ω̂ ω̂T ω̂T 2 ω̂T 3

∗ ω̂2T 2 ω̂2T 3 ω̂2T 4 ω̂T ω̂T 2 ω̂T 3 ω̂T 4

∗ ∗ ω̂2T 4 ω̂2T 5 ω̂T 2 ω̂T 3 ω̂T 4 ω̂T 5

∗ ∗ ∗ ω̂2T 6 ω̂T 3 ω̂T 4 ω̂T 5 ω̂T 6

∗ ∗ ∗ ∗ 1 T̂ T̂ 2 T̂ 3

∗ ∗ ∗ ∗ ∗ T̂ 2 T̂ 3 T̂ 4

∗ ∗ ∗ ∗ ∗ ∗ T̂ 4 T̂ 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ T̂ 6


(69)

where f̂ denote the expectation of f according to q. The values of the bounds of ω
and T are provided in Table V.A. Concluding remark: the optimization algorithm and

ωm ωM Tm TM

−400 [deg
sec

] 400 [deg
sec

] −60 [oC] 60 [oC]

Table 3. Example R3. Bounds parameters.

the related theory are verified in this example. The convergence transient phase lasts
about 50 iteration. Starting with different initial guesses still yield the same eight-points
uniform discrete distribution. This provides a probabilistic ground to the findings of
Example NP5.

Figure 5. Example R3. Initial guess and optimal solution. The optimal distribution is a
uniform eight-points distribution.

B. Concluding remarks

The above results converge in showing a consistent picture of the joint distributions of
the angular rates and temperatures. The measurement scheduling is still a missing part
of the probabilistic design. The final manuscript will provide feasible time profiles of
the gyro rates and temperatures based on the optimization approaches and calibration
results from simulated and experimental data. The approach will be extended to a full
Inertial Measurement Unit.
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ω [deg
sec

] T [oC] mass probabilities qi
−400 −60 1/8

−400 −30 1/8

−400 30 1/8

−400 60 1/8

400 −60 1/8

400 −30 1/8

400 30 1/8

400 60 1/8

Table 4. Example R3. Optimal distribution.

Figure 6. Example R3. Monotonous variations of the cost index and of the optimality
index along the iterative process.

VI. Three-axes gyroscopes calibration: simulation and experimentation

A. Best input design

1. Rate measurement design model

The design model for the angular rates measurement of the three-axes gyroscopes is
provided as follows:ωm

x

ωm
y

ωm
z

 =

bxby
bz

+

 βx ψxy ψxz

ψyx βy ψyz

ψzx ψzy βz


ωx

ωy

ωz

+

dxdy
dz

+

ϵxϵy
ϵz

 (70)

where
ωm
x , ω

m
y , ω

m
z : measured angular rates

ωx, ωy, ωz: true angular rates, equivalent to the table commanded angular rates
bx, by, bz: biases
βx, βy, βz: scale factors (SF) that are independent of ω
ψij: misalignment and nonorthogonality (MANO) parameters

DOI: 10.13009/EUCASS2022-7272



dx, dy, dz: scale factors nonlinearity (NL) up to ω4, i.e.

d = γ ω2 + δ ω3 + αω4 (71)

where the axis subscript were dropped for the sake of clarity.
ϵx, ϵy, ϵz: independent identically distributed noise terms, σϵ = 0.01 deg/sec.
All the parameters are assumed to vary with the temperature according to a third order
polynomial, as follows:

b = b0 + b1T + b2T
2 + b3T

3 (72)
β = β0 + β1T + β2T

2 + β3T
3 (73)

ψ = m0 +m1T +m2T
2 +m3T

3 (74)
γ = γ0 + γ1T + γ2T

2 + γ3T
3 (75)

δ = δ0 + δ1T + δ2T
2 + δ3T

3 (76)
α = α0 + α1T + α2T

2 + α3T
3 (77)

The 84× 1 vector of parameters is defined as follows:

x =
[
xx xy xz

]T
84×1

(78)

xx =
[
bx0 bx1 bx2 bx3βx0βx1βx2βx3 γx0 γx1 γx2 γx3 δx0 δx1 δx2 δx3αx0αx1αx2αx3mxy0mxy1mxy2mxy3mxz0mxz1mxz2mxz3

]T
28×1

xy =
[
by0 by1 by2 by3βy0βy1βy2βy3 γy0 γy1 γy2 γy3 δy0 δy1 δy2 δy3αy0αy1αy2αy3myx0myx1myx2myx3myz0myz1myz2myz3

]T
28×1

xz =
[
bz0 bz1 bz2 bz3βz0βz1βz2βz3 γz0 γz1 γz2 γz3 δz0 δz1 δz2 δz3αz0αz1αz2αz3mzx0mzx1mzx2mzx3mzy0mzy1mzy2mzy3

]T
28×1

Hence the measurement matrix is expressed as follows:

H(ωx, ωy, ωz, T ) =

 hx 01×28 01×28

01×28 hy 01×28

01×28 01×28 hz


3×84

(79)

where
hx =

[
1T T 2T 3ωxωxT ωxT

2ωxT
3ω2

xω
2
xT ω2

xT
2ω2

xT
3ω3

xω
3
xT ω3

xT
2ω3

xT
3 ω4

x ω
4
xT ω4

xT
2ω4

xT
3ωy ωyT ωyT

2ωyT
3ωz ωzT ωzT

2ωzT
3
]
1×28

hy=
[
1T T 2T 3ωy ωyT ωyT

2ωyT
3ω2

y ω
2
yT ω2

yT
2ω2

yT
3ω3

y ω
3
yT ω3

yT
2ω3

yT
3 ω4

y ω
4
yT ω4

yT
2ω4

yT
3ωxωxT ωxT

2ωxT
3ωz ωzT ωzT

2ωzT
3
]
1×28

hz=
[
1T T 2T 3ωz ωzT ωzT

2ωzT
3ω2

z ω
2
zT ω2

zT
2ω2

zT
3ω3

z ω
3
zT ω3

zT
2ω3

zT
3 ω4

z ω
4
zT ω4

zT
2ω4

zT
3ωxωxT ωxT

2ωxT
3ωy ωyT ωyT

2ωyT
3
]
1×28

There are 28 parameters per axis, hence 84 parameters for the three axes. The
measurement sampling time and the final time are as follows:

∆t = 1 sec, tf = 4 h = 240 mn (80)

2. Best temperature and rates profiles

The randomized approach was first implemented. The problem of maximizing the deter-
minant of the expected value of the observability Gramian was solved subject to:

− 400
deg

sec
≤ ω ≤ 400

deg

sec
(81)

− 60 oC ≤ T ≤ 60 oC (82)
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where ω denotes ωx, ωy, and ωz. There are additional constraints on the rates in the
three dimensional case. Given that the calibration table rotates around a single axis at
a given time, only a single component of the angular velocity vector can be non-zero at
that same time. This mutually exclusive condition is inserted in the probability density
function (PDF) seeking algorithm. The results are shown in Fig. 7 in terms of the two-
dimensional PDF in ω and T , one per axis.

Figure 7. Probability density functions in ω and T .

Figure 8. Algorithem results: iteration 1,25,200 and 500.

These PDFs are obtained by simply integrating the four-dimensional PDF along the
appropriate dimensions. Notice the larger peaks about the zero value for the rates. That
is a direct consequence of the mutually exclusive constraints explained above. Except for
the zero rates, the optimized distributions are concentrated at sixteen discrete locations,
where T and ω take on the values described in Table VI.A.2. This profile indicates
the best values at which the angular rate should be measured and the best levels of
temperatures at which the rates should be samples. Yet this solution is not practical
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per se since it would require instantaneous “jumps" from one temperature to another.
A second step in the design consists in implementing the deterministic nonparametric
approach. The problem of maximizing the Gramian determinant was solved subject to
additional constraints on the temperature rate:

− 400
deg

sec
≤ ω ≤ 400

deg

sec
(83)

− 35 oC ≤ T ≤ 85 oC (84)

0.5
oC

mn
≤ dT

dt
≤ 2

oC

mn
, if τ ≤ 120mn (85)

− 0.5
oC

mn
≤ dT

dt
≤ −2

oC

mn
, if 120mn ≤ τ ≤ 240mn (86)

ω [deg
sec

] T [oC] mass probabilities qi
−400 −60 5/200

−400 −30 5/200

−400 30 5/200

−400 60 5/200

−240 −60 3/200

−240 −30 3/200

−240 30 3/200

−240 60 3/200

240 −60 3/200

240 −30 3/200

240 30 3/200

240 60 3/200

400 −60 5/200

400 −30 5/200

400 30 5/200

400 60 5/200

0 60 1/6

0 30 1/6

0 −30 1/6

0 −60 1/6

Table 5. Optimal sampling values for ω, T . per axis.

The sought profile of T is provided in Fig. 9. The nominal profile for T is the blue line.
The nominal profile for ω is provided in the right-hand-side of the Figure. Its pattern is
empirical, yet it stems from the operational constraints. The profile of T is intuitive and
shows the various “stations" at which the gyro measurement should be acquired.

3. Parameters variation

The proposed profile is suboptimal. This requires verifying the potential loss of perfor-
mances if some parameters vary. Key parameters in this short study consists of the total
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Figure 9. Best profiles of ω and T under constraints.

duration of the calibration, tf , the number of rounds performed by the table when spin-
ning at the high rate, Nsp, the initial temperature, T (0), and the sequence of rates. The
decrease in tf shows that the T-profile shrinks and becomes a simple “tooth” below 120
mn. Increasing the number of rounds spent in a single spin by the table increases the cost

Figure 10. Impact of decreasing the time duration tf .

function, i.e. the determinant of the Gramian, within a certain range. Figure 11 shows
how the cost varies as a function of both tf and Nsp. It appears that increasing tf be-
yond 160 minutes and Nsp beyond 20 rounds presents no cost improvement. For obvious
reasons starting with the initial temperature at room temperature, i.e. T (0) = 25oC, is
advantageous. Various cases were tested by varying the initial temperature. The results
are shown in Fig. 12. Three temperature profiles are depicted. The same three cases
yield the plots in the second graph. It appears that the performances are invariant under
changes of initial phase. To conclude one can simply follow the red plot for the T-profile,
which starts at the room temperature 25oC, without impacting the performances.
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Figure 11. Impact of changing tf and Nsp.

Figure 12. Impact of changing T (0) and Nsp.

B. Simulated calibration

1. Rate measurement truth model

The truth model and the design model are identical except for the scale factors nonlin-
earity:

d =
4∑
1

Ci(T ) cos

(
iK

ω

ωFR

)
+ Si sin

(
iK

ω

ωFR

)
(87)
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where

ωFR = 400 deg/sec (88)
C1(T ) = C10 + C11(T − T0) (89)
C2(T ) = C20 (90)
C3(T ) = C30 (91)
C4(T ) = C40 (92)
S1(T ) = S10 + S11(T − T0) + S12(T − T0)

2 (93)
S2(T ) = S20 (94)
S3(T ) = S30 (95)
S4(T ) = S40 (96)

The value of the parameters are provided in the Appendix.

2. Calibration methodology

The best input profiles of ω and T are used to produce the measurement matrix for a batch
of N = 14400 samples per axis, that is 240 minutes at a sampling rate of 1 Hz. The truth
model is used to simulate the rate measurements. The proposed measurement profiles
for ω and T are depicted in Fig. 15. Notice that the plots of ω include the measurement

Figure 13. Novel measurement profiles for T and ω.

errors. This batch of rate measurements is used in a Least-Squares estimator to calculate
the estimate of the 84 × 1 vector of parameters x̂. The estimate x̂ is used in order to
calculate the predicted rate measurements for any sample of the batch. Let Z̃ denote the
N × 1 vector of the measurement residuals, we define the following performance index
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per batch:

J =
∥Z̃∥√
N

(97)

and the following index for NMC batches:

JMC =
1

NMC

NMC∑
i=1

Ji (98)

where Ji denotes the cost for a single batch. The difference between the batches consists
of the sequence of white noise that is generated at random for each batch. When the
calculation of the measurement residuals is done over the batch of measurements that is
used for the calibration the results are labeled “same set”. When a different set of mea-
surements is used, the results are labeled “reference set”. We used four different batches of
reference measurements in the performance analysis. The reference measurements were
generated using particular profiles for ω and T , different from the best profiles. For the
sake of comparison with, the calibration process is duplicated using standard profiles of
ω and T , labeled “old system”. The profiles of the “old system” are depicted next. Figure
20 shows the profile of ω for the reference set 1.

Figure 14. Monte-Carlo simulation flow chart.

3. Results

The results are summarized in Tables VI.B.3 and IX. The expected least-squares costs
from Monte-Carlo simulations are significantly lower in the “novel” approach when com-
pared to the “standard” approach, see Table VI.B.3. Notice that the differences appear
when testing the calibration with the reference profiles, while the results are very close
when testing on the calibration profiles. Additional insights rose by examining the esti-
mation error covariance matrices. Breaking down the error sources as biases, scale-factors
(SF), their nonlinearities (NL), and misalignament/nonorthogonality (MANO), one can
check the variances of each estimation error, see TableIX. All estimation errors are lower
with the novel approach when compared to the standard approach, except for the bias
term that is temperature independent. For further comparison the estimation error vari-
ances produced by the optimal profiles from the randomized approach have been calcu-
lated, too. The novel approach appear to be suboptimal of course and one can evaluate
what might still be gained by refining the input profiles.
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Figure 15. Standard measurement profiles for T and ω.

Figure 16. Reference set 1. ω and T profiles.

JMC [deg
sec

] standard system novel system improvement [%]
same set 0.0100 0.0100 −
reference set 1 0.0112 0.0101 92

reference set 2 0.0116 0.0101 94

reference set 3 0.0114 0.0101 93

Table 6. Simulated calibration results. NMC = 200.
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explanation to the novel better results:
As can be seen in the following figures, both histograms of the calibration sets, both

the standard and novel, are presented. It’s pretty obvious that the novel calibration set
has much similar distribution, like the one from the optimal calibration

the variance was calculated as follow:

σωm =
√
HPx̃HT +R (99)

The following plot described the standard deviation for the x axis, in the case both
ωy = ωz = 0, which represent only the bias, SF and NL variance.

Figure 17. Measurement std analysis in both the novel and a comparison

In order to exam the results, a Monte-Carlo simulation, using the Truth model, was
preformed in order to recrate the following surface.

σωm =
√

(ztruth −Hx̂)2 (100)

Notice, the white noise term was subtract from the calculation in order to emphasis
the results. Both surface seems the same as the ones calculates from the deterministic
case,using the covariance, and the residual error from the novel method is still better
than the standard.

also, it is possible to try and separate the influence of the error source,using sum
matrix that relevent to the error.

σωm =
√
hpx̃h (101)

where h and p are sub matrices of H and P respectively.For example, in the SF case
in x axis, p is a 4x4 matrix include the SF variance and correlation,and h is as follow:

h=
[
ωx ωxT ωxT

2 ωxT
3
]
1×4
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Figure 18. Measurement std in Monte-Carlo simulation. novel(left) and standard(right)
NMC = 200

Figure 19. std comparison for SF (left) and NL (right)

the following figures present the results:
As can be seen, the results for the novel calibration outperform the standard calibra-

tion except from the bias, which which depended on the temperature we are comparing
at.

C. Experimental calibration

An experiment was conducted on a calibration table using an IMU with Silicon Sensing
MEMS vibrating ring gyros of CRM100 type. The experiment lasted 2.5 hours. Due
to operational limitations, the temperature profile could not follow the desired piecewise
linear profile or span the desired range. The sampled values of the angular rates were
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Figure 20. std comparison for MANO (left) and bias (right)

±150,±240,±300,±400, [deg/sec]. The input profiles of ω and T are depicted in Fig-
ure 21. Half of the measurements was used for the calibration. The calibration set is
shown in Figure 22. It includes the angular rates ±400,±240[deg/sec]. The other half of
the measurements was used for the validation. It includes the rates ±150,±300[deg/sec].
Figure 23 depicts the performances in the angular rates estimation for each level and for
various values of the temperature. The circles show the values of the root of squares of
the errors in the three axes, while the bars depict the spans of the errors for all three axes.
The errors are shown in ppm: for instance the novel method produces an error of 100 ppm
versus 700 ppm for the standard calibration, at T = 7oC for a rate of 300 [deg/sec]. At
ω = ±300[deg/sec], the novel method produces estimation errors that oscillate between
50 and 150 ppm, with very narrow spans, while the standard method’s errors are up to
650 ppm. The difference is narrower at ω = ±150[deg/sec] with gaps of 50 ppm between
both methods. Nevertheless, the difference is consistently to the advantage of the novel
method, except for a narrow range of high temperatures at ω = ±100[deg/sec] where
their results are comparable. The spans also show that the novel method is producing er-
rors with smaller deviations. A remarkable result from the novel method is that the errors
and the spans are not very sensitive to the temperature. On the other hand the standard
method shows a very clear trend where the errors and their spans grow as the temper-
ature decreases. The largest gaps among both methods appear around T = 7oC, 10oC.
Whether this trend would reverse as T becomes negative and decreases to its lower bound
remains to be tested in a subsequent experiment, but the current results already illustrate
how the novel method outperforms a standard calibration. Another maybe more conve-
nient way to display the performances is to consider the breakdown of the angular rate
estimation error per biases, scale-factors and their nonlinearities (SF/NL), and misalign-
ment nonorthogonality (MANO). This is shown in Table VI.C. All values are in deg/sec
and depict the square-root second-order moments of the associated errors produced from
the experimental sample. The novel method displays biases that are three-fold lower,
MANO errors that are lower by at least one order of magnitude, and SF/NL compound
errors that are mostly smaller compared with the standard method. Notice that these
performances are calculated over the range of temperatures and angular rates variations.
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Error term parameter standard system novel system optimal result
Bias bx0

deg
sec

2.251e− 04 2.416e− 04 4.073e− 04

bx1
deg

sec◦C
2.191e− 06 1.969e− 06 2.359e− 07

bx2
deg

sec◦C2 4.362e− 10 3.253e− 10 2.823e− 10

bx3
deg

sec◦C3 6.630e− 14 4.831e− 14 4.094e− 14

SF βx0 2.365e− 06 3.837e− 07 7.659e− 08

βx1
1

◦C
3.329e− 09 3.455e− 10 4.299e− 11

βx2
1

◦C2 1.400e− 11 5.554e− 13 5.193e− 14

βx3
1

◦C3 1.198e− 15 8.393e− 17 7.573e− 18

NL γx0
sec
deg

7.356e− 11 6.557e− 12 1.519e− 12

γx1
sec

deg◦C
4.860e− 14 5.954e− 15 8.566e− 16

γx2
sec

deg◦C2 3.356e− 16 9.498e− 18 1.033e− 18

γx3
sec

deg◦C3 3.276e− 20 1.437e− 21 1.505e− 22

δx0
sec2

deg2
8.425e− 17 2.061e− 17 3.886e− 18

δx1
sec2

deg2◦C
5.332e− 19 1.715e− 20 2.181e− 21

δx2
sec2

deg2◦C2 3.039e− 22 2.937e− 23 2.630e− 24

δx3
sec2

deg2◦C3 3.452e− 26 4.400e− 27 3.849e− 28

αx0
sec3

deg3
1.761e− 21 2.889e− 22 6.084e− 23

αx1
sec3

deg3◦C
9.002e− 24 2.534e− 25 3.424e− 26

αx2
sec3

deg3◦C2 7.321e− 27 4.158e− 28 4.131e− 29

αx3
sec3

deg3◦C3 5.999e− 31 6.264e− 32 6.027e− 33

MA mxy0 1.814e− 07 4.253e− 08 1.814e− 09

mxy1
1

◦C
1.385e− 10 3.490e− 11 1.385e− 12

mxy2
1

◦C2 2.809e− 13 5.748e− 14 2.809e− 15

mxy3
1

◦C3 6.160e− 17 8.361e− 18 6.160e− 19

mxz0 1.857e− 07 3.899e− 08 1.857e− 09

mxz1
1

◦C
1.257e− 10 3.615e− 11 1.257e− 12

mxz2
1

◦C2 3.211e− 13 4.862e− 14 3.211e− 15

mxz3
1

◦C3 6.160e− 17 7.080e− 18 6.160e− 19

Table 7. Simulated calibration results. Estimation error variances.

Term standard system novel system
Bias 13.24 28.26

SF 5.54e− 05 0.0138

NL 1.08e− 20 2.638e− 10

MA 2.495e− 11 1.892e− 06

Table 8. Det results, all the values are in percentage reletive to the optimal result.
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Figure 21. Experience. Input profiles for T and ω.

Figure 22. Experience. Calibration set for T and ω.
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Figure 23. Experience. Validation using ω = ±150,±300[deg/sec].

VII. Accelerometers calibration: simulation and experiment

A. Measurement model

The truth and design measurement models for the accelerometers are identical. Formally
they are similar to the gyro rate measurement model, albeit with different assumptions.amxamy

amz

 =

bxby
bz

+

 βx ψxy ψxz

ψyx βy ψyz

ψzx ψzy βz


axay
az

+

ϵxϵy
ϵz

 (102)

where
amx , a

m
y , a

m
z : measured accelerations

ax, ay, az: true acceleration, known through the table commanded position
bx, by, bz: biases
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component axis standard novel
Bias x 0.0335 0.0188

y 0.0465 0.0197

z 0.0752 0.0209

SF/NL x 0.0233 0.0149

y 0.0859 0.0170

z 0.0076 0.0167

MANO x 0.1950 0.0023

y 0.3245 0.0193

z 0.3310 0.0077

Table 9. Experiment. Angular rate error breakdown. Square-root of the second-order
moments from the experimental samples. All values in [deg/sec]

βx, βy, βz: scale factors that are independent of a
ϵx, ϵy, ϵz: independent identically distributed noise terms.
Each of the biases and SF parameters allocated to each axis is assumed to vary with the
temperature according to a third order polynomial, as follows:

b = b0 + b1T + b2T
2 + b4T

3 (103)
β = β0 + β1T + β2T

2 + β3T
3 (104)

and the MA parameters are assumed to be constant. There are 10 parameters per axis,
hence 30 parameters for the three axes. Notice the similarity of the accelerometer equation
with that of the rate gyroscope. Given that the constraints are similar as well, we expect
that the design optimization will yield similar results, which is indeed the case. For the
sake of brevity we do not provide more development in this report. As a result, we simply
opt to use the design of the temperature obtained in the previous section. The sampling
design problem of the accelerations levels is following a standard approach that consists of
building a sequence that periodically aligns all accelerometer axes with the local vertical,
as shown in Fig. 24.

B. Methodology

The calibration process consists of a least-squares batch estimator. Two performance
indices are defined, one related to the estimation errors, the other with respect to the
measurement residuals, as follows:

Jp =

√√√√ 30∑
i=1

(
i

xi

)2

(105)

where i denotes the estimation error in the ith parameter. Another cost index is defined
from the residuals themselves:

Jz =
∥Z∥√
N

(106)
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Figure 24. Accelerations profile.

where Z is an N×1 vector of acceleration measurements. As done in the gyro case, these
indices will be calculated using either the same data or reference data. Also, Monte-Carlo
averages of the costs will be calculated by running NMC sequences of noises. Figure 25
depicts a particular set of reference data.

Figure 25. Reference accelerations and temperature profiles.
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C. Results

An experiment was performed on a set of three SAFRAN MS9000 MEMS capacitive
accelerometers. The simulated and experimental calibration results are summarized in
Table VII.C.

Novel set Standard set
JP
MC 0.3155 0.3202

JZ
MC - same set 0.01 0.01

JZ
MC - reference set 1 0.01 0.01

JZ
MC - reference set 2 0.01 0.01

JZ
MC - reference set 3 0.01 0.01

Table 10. Accelerometers. Simulated and experimental calibration results. N = 54,000
samples. NMC = 100runs.

D. Concluding remarks

The calibration of the accelerometers shows that the proposed temperature profile along
with a standard sequence for the accelerations measurements yields better performances
in the estimation errors. On the other hand the residuals Monte-Carlo averages remain
identical among all the test cases. This is indeed expected since the unweighted least-
squares cost is not sensitive to the measurement schedule when both design and truth
models are identical.

VIII. Conclusion

An optimization-based approach for IMU calibration is proposed in this work. The
efficiency of the proposed methodology was illustrated via a proof-of-concept verification
and validation test case. In particular, errors in the gyroscopes measurement output
can be improved several-folds up to one order of magnitude. Yet the theory also carries
limitations: if the design and the truth models are identical the least-squares cost be-
comes insensitive to the input profiles. The widespread case of model mismatch, however,
ensures that the proposed optimization should find useful applications.

IX. Appendix

The values of the Truth model for the three-axes gyroscope are and three-axes ac-
celerometer are given below.
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Error term parameter x y z
Bias b0

deg
sec

0.020 −0.159 0.0197

b1
deg

sec◦C
2.130e− 03 1.490e− 03 2.940e− 03

b2
deg

sec◦C2 −2.480e− 04 1.430e− 04 −1.770e− 04

b3
deg

sec◦C3 4.050e− 07 −1.520e− 07 1.160e− 07

SF β0 0.975 0.965 0.985

β1
1

◦C
−1.080e− 03 9.420e− 04 −1.990e− 03

β2
1

◦C2 8.120e− 06 1.340e− 05 7.550e− 06

β3
1

◦C3 4.440e− 06 −4.413e− 07 −7.350e− 07

NL K 0.56 0.58 0.54
S10

deg
sec

−21.060 −20.060 −22.050

S11
deg

sec◦C
1.000e− 04 0.960e− 04 1.100e− 04

S12
deg

sec◦C2 2.000e− 06 2.200e− 06 1.900e− 06

S20
deg
sec

−0.932 −0.964 −0.912

S30
deg
sec

0.112 0.108 0.124

S40
deg
sec

0.027 0.031 0.023

C10
deg
sec

−2.500 −2.550 −2.450

C11
deg

sec◦C
5.000e− 05 4.500e− 05 5.200e− 05

C20
deg
sec

−0.240 −0.270 −0.250

C30
deg
sec

0.227 0.212 236

C40
deg
sec

−0.045 −0.040 −0.042

MA mij0 0.012 −0.011 −0.013

mij1
1

◦C
1.385e− 04 3.490e− 04 1.385e− 04

mij2
1

◦C2 2.809e− 06 5.748e− 06 2.809e− 06

mij3
1

◦C3 6.160e− 08 8.361e− 08 6.160e− 08

mik0 0.010 0.015 0.014

mik1
1

◦C
1.257e− 04 3.615e− 04 1.257e− 04

mik2
1

◦C2 3.211e− 06 4.862e− 06 3.211e− 06

mik3
1

◦C3 6.160e− 08 7.080e− 08 6.160e− 08

Table 11. Truth Model Parameters for the three axes gyroscope simulated calibration.
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Error term parameter units x y
z

Bias b0
deg
sec

0.0827 −0.112 0.0486

b1
deg

sec◦C
5.1233e− 04 −8.809e− 05 0.0013

b2
deg

sec◦C2 −1.2132e− 05 6.997e− 06 −7, 982e− 06

b3
deg

sec◦C3 −1.1771e− 08 1.505e− 08 1.8386e− 09

SF β0 0.9993 0.9992 0.9992

β1
1

◦C
−1.012e− 04 −1.188e− 04 −8.421e− 05

β2
1

◦C2 8.472e− 07 3.975e− 07 3.063e− 07

β3
1

◦C3 −4.41663e− 09 1.517e− 09 1.447e− 09

MA mij0 −0.0139 0.005 −0.0112

mik0 0.0133 0.001 0.0086

Table 12. Truth Model Parameters for the three axes accelerometer simulated calibration.
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