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Abstract
This paper introduces an optimization tool that provides with the preliminary trajectory to deliver multiple
payloads into differentiated orbits to keep up with the increasing number of programmed launches. This
instrument is a two-level optimization algorithm which solves the sequential problem via a Population-
Based Ant Colony Optimization strategy, and the transfer problem through a Multi-Objective Particle
Swarm Optimization algorithm. The goal is to achieve a set of trajectories that minimize both the fuel
consumption and the total mission time. The algorithm is tested with two different case scenarios showing
its performance and flexibility to accommodate different kinds of injection missions.

1. Introduction

More and more, human lives depend on spaceborne systems which provide a means for communication and access to
information, in addition to a source of science opportunities. This has been translated into an increasing number of
satellites orbiting our Earth; a fact observable also in the increase in the volume of yearly launches, beyond the current
capabilities of space transport systems. Indeed, it is predicted that the growth in the number of planned small satellite
launches this decade will increase at a rate four times that of the previous one [1]. The growing interest in constellation
missions, such as StarLink or OneWeb [2], as well as the higher accessibility of space for smaller users, is heading
the space infrastructure into an unsustainable situation both in logistic and ecological terms. This situation demands of
innovative and efficient ways to deliver spacecraft into their operating orbits.

Current strategies of delivery for multiple satellites involve piggybacking secondary payloads to a primary de-
livery, limiting the flexibility in terms of scheduling and orbit injection. This practice might discourage new projects,
especially those from the private sector, and prevent the expansion of this developing market. A new strategy to access
space is necessary, focusing in the efficient injection of multiple payloads into multiple dedicated orbits. This concept
has been already tested by the use of vehicles or tugs which are launched and then used as intermediaries to deliver
smaller satellites, staring from the orbit of a primary payload. Some examples of this type of mission are the Small
Launch Orbital Maneuvering Vehicle [3], or the Sherpa-NG project of Spaceflight Inc. [4]. Therefore, it has been
shown that a multiple-payload multiple-orbit delivery mission is feasible, and it could revolutionize the way in which
launches are scheduled and performed.

The design of the trajectory for the multi-payload multi-injection mission requires the definition of the visitation
sequence, but also the individual transfers in-between consecutive orbits. This multi-rendezvous problem has been
studied before, mainly for activities related to Active Debris Removal (ADR) and On-Orbit Servicing (OOS), providing
with different solutions. In fact, the combinatorial nature of the orbit visitation has been previously associated to
the Traveling Salesman Problem (TSP) [5], which has led to the proposal of extensive search strategies such as in
Chen et al. [6]. Daneshjou et al. [7] follow a similar approach in their work after a preliminary selection based on
feasibility comparisons. However, although being able to provide with a global optimum, computing all combinatorial
possibilities demands of high computational efforts, becoming unfeasible after a certain number of orbits. Alternatively,
other tree-search algorithms have been studied in which different sequences are extended or cut according to different
criteria. For instance, Barbee et al. [8] use a Series Method approach to construct the sequence based on the minimum
necessary ∆V between two consecutive orbits, similar to a Greedy Algorithm. Nevertheless, most analyses using these
strategies implement versions of the Branch-and-Bound method [9, 10, 11, 12]. However, similar to the extensive
search approach, with medium to high number of orbits, the quality of the solution decreases considerably, and the
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computational times can become prohibitively expensive. As a counterpart, heuristic algorithms which provide a sub-
optimal solution at remarkably lower computational times have been proposed. Among these, one of the most often
used is the Ant Colony Optimization (ACO) due to its natural resemblance to the tree-search structure [13, 14]. A
hybrid of an ACO with added elitism is proposed in Li et al. [15] to improve accuracy and diversity of the solution.
Evolutionary algorithms, such as the Genetic Algorithm (GA), have also been used, which allow to encase the different
orbit sequences as chromosomes, allowing for simple integer programming [9, 16]. Simulated annealing can also
be found in some works, although they do not seem to provide any additional advantage with respect to the other
algorithms [17, 18].

Nevertheless, the multi-rendezvous problem requires that the individual transfers, given a certain sequence, are
also estimated. Typically, the cost of these transfers is defined by means of a pre-computed matrix which the com-
binatorial solver can access. This matrix is often simplified to be time-independent [19, 11] in a way that Hohmann
transfers are assumed for all of the displacements between two orbits. However, the true time-dependency of the trans-
fers can be accounted for by establishing a time grid and calculating all the possible costs between two orbits and two
points in time, generally by means of impulsive Lambert targeting manoeuvres [10, 18, 12]. This process speeds up
the optimization process, but requires of large data storage. A more efficient approach is found in Bang et al. [20], for
which all pre-computed costs are compared looking for local minima in each transfer between two orbits, reducing the
search space size. In none of these approaches the transfers are considered for optimization, usually providing with
solutions of less quality in terms of minimization of objective values, such as the total ∆V . Nevertheless, some studies
have already shown that by introducing them into the optimization, better solutions can be achieved. This optimiza-
tion is usually done by means of heuristic algorithms such as GAs [9] or evolutionary algorithms [17, 16]. However,
algorithms that can exploit the continuous nature of the search space are preferred, in particular the Particle Swarm
Optimization strategy (PSO). This algorithm is found to be used in papers [21, 7, 6], providing with accurate results.
Moreover, it has been noted that all these optimization strategies rely on individually optimizing the subsequent trans-
fers to build-up the sequence total cost, instead of computing the complete trajectory optimization. This could lead to
solutions of lower quality, as all transfers are subjected to the decisions and values of previous manoeuvres, limiting
the search space.

The current paper focuses on the solution of a time and fuel mass constrained multi-payload multi-orbit injection
mission, assuming impulsive transfers, whose aim is to visit all orbits and minimize both the consumed fuel and the
time of flight. For this purpose, an optimization tool has been created structured in two levels: an outer level in which
a Population-based ACO is used to solve the sequential part of the problem; and an inner level which uses a Multi-
Objective PSO to solve the complete set of transfers. The mission description, as well as the mathematical formulation
of the problem, are described in Section 2. Then, Section 3 shows the approach used in developing the optimization
tool, as well as its structure. Finally, two specific case scenarios are solved in Section 4 to show the performance of the
developed algorithm, followed by the main conclusions in Section 5.

2. Problem Statement

2.1 Mission Definition

The multi-payload multi-orbit delivery capability proposes an interesting problem scenario of multi-rendezvous in
which both the sequence of visitation and the individual transfer legs need to be computed and decided upon. Such a
mathematical problem is, in fact, not straightforward to solve due to its complexity.

Consider an upper stage, or "vehicle", which is used to deliver a set of N satellites, or payloads, into N distinct
positions in space, whether these are differentiated orbits or specific locations within a same orbit, or a mixture of both.
These orbits or positions within the orbit, as well as the masses of the payloads, are specified before-hand based on
the necessities and requirements of the satellites to be delivered within the same launching. In the present study it is
assumed that the trajectory starts at a specific initial orbit, which is considered to be one of the orbits of the payloads
to be injected, after payload delivery. However, the cost of launching into that specific orbit is not included in the
optimization of the trajectory. The decision of which orbit to start from is to be decided by the optimization process
itself, assuming that the cost to reach any of these from the launching site will be relatively similar. In addition, the
vehicle is to finish its trajectory at a pre-defined disposal orbit that complies with the mitigation guidelines on space
debris. As the optimization of such an orbit itself (related to the parameters ensuring a certain orbital decay, security,
etc.) is not within the scope of this work, a certain orbit will be arbitrarily picked that fulfils the requirements while
being "close" to the target orbits.

In this way, the full mission can be summarized as follows: the vehicle deploys the first satellite and moves to the
next orbit, in which it injects the following payload. It then waits in this second orbit until the next manoeuvre towards
the next orbit is to be performed, ensuring that this time is at least the necessary one to perform the injection correctly.
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Figure 1: Schematic of the time-dependent TSP

This process is repeated until all satellites have been deployed, after which the vehicle manoeuvres itself towards the
predefined disposal orbit, at which point the mission is considered to be finished. It must be noted that, in general,
since the target is a specific orbit and the exact location within this orbit is not crucial (unless when dealing with
constellations), the vehicle will consider all points within the orbit to be equally interesting for the transfer manoeuvre.

When dealing with a launching problem, and from the point of view of the end-users or satellite owners, the
deployments are desired to be as fast and as cheap as possible, within a certain maximum value for both. It must
be ensured, then, that the complete mission is fulfilled both within the specified maximum time and within the fuel
mass budget given to the vehicle, while still looking for the minimal value for both. In addition, since generally upper
stages are provided with high thrust propulsion systems, all firings of the main engine are approximated as impulsive
manoeuvres.

2.2 Mathematical Formulation

The generation of an optimal sequence of visitation falls into the category of problems related to the Traveling Salesman
Problem (TSP) [5]. This one is defined by a certain salesman or vehicle that needs to visit a set of cities (or nodes)
only once, while minimizing the total cost of visitation (whether this is distance, time, fuel, etc.). Thus, the problem
under consideration can be described as the graph problem G = (V,A), in which V = {1, ...,N} is the set of vertices
(or orbits), andA = {(i, j) : i, j ∈ V, i , j} is the set of arcs connecting those vertices, which in this case are the orbital
transfers. Nevertheless, the TSP in space has significant differences with respect to the standard problem, among which
the two most remarkable are: 1) the problem is time-dependent in a way that the instant in which the manoeuvre starts
and ends will affect the cost associated to the arc, as well as being dominated by nonlinear dynamics; and 2) the
problem is open-route, such that the start and end points differ.

Based on these concepts, one can define the set of satellites to be delivered as S = {1, ...,N}, being the complete
set of vertices or nodes to be visited V = {0, 1, ...,N,N + 1}, where i = 0 has been included as the possibility of the
vehicle being at a given initial position different than any target orbit (like a ground station or a parking orbit) and
i = N + 1 represents the final disposal orbit. In addition, as stated before, the transfers is highly influenced by time,
not only involved in the dynamics of motion but also in the total duration of the mission, as a certain transfer in terms
of time will affect subsequent possible arc legs. Therefore, it is important to correctly compute the optimal transfers in
between orbits given a certain sequence to ensure that the correct associated costs are being evaluated. these transfers
are such that both the start and final position of the manoeuvre, as well as the time-of-flight (TOF), are variables to be
decided for each one, as faster motions will imply higher fuel consumption, generally, and a balance will need to be
found. The coupling of both problems becomes apparent in this way and highlights the complexity of the mathematical
problem. A schematic of this type of sequential problem is shown in Figure 1 in which the possible connections are
outlined, with the large range of possibilities for each one.

The discussed optimization problem can be then defined as the minimization of:

min

N+1∑
i=1

m f ,i, ttot

 (1)
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with m f ,i being the fuel mass consumed to reach orbit i, and ttot the total mission time. In addition, each transfer is
dominated by the following dynamic equations of motion [22] :

r̈ =
µ

r3 r +
T
M

eTδ + f dist (2)

Ṁ = −
T

Ispg0
δ (3)

where r is the radial position of the vehicle, µ is the gravitational parameter of the central body, T is the thrust mag-
nitude, eT is the thrust vector, M is the total mass, δ the relay on-off function of the engine (switch), Isp the specific
impulse of the engine, and g0 the gravitational acceleration at the surface of Earth. In addition f dist accounts to the ac-
celeration due to disturbance effects. For the purposes of this work, the transfers are defined to be specific manoeuvres
which allow for some simplification in the calculation of these transfers, in a way that the firing of the thruster can
be approximated by impulsive manoeuvres and the necessary ∆V is obtained through specific formulas. In particular,
three types of motion are envisaged: 1) a general Lambert targeting manoeuvre; 2) phasing with respect to a certain
orbit; and 3) exploiting the J2 effect of the spherical harmonics model of the Earth’s gravitational field. As an additional
simplification, no perturbances are considered except for the J2-effect for this last type of manoeuvre.

The presented problem is subject to the constraints:

N+1∑
i=0

si, j = 1;
N+1∑
j=0

si, j = 1 (4)

N+1∑
k=1

m f ,k ≤ m f ,max;
N+1∑
k=1

tk ≤ tmax (5)

Equations (4), which are related to the sequence generation part of the problem, ensure that each orbit is only
visited once, and that all orbits are in fact visited. On the other hand, Equations (5) ensure that the sum of the consumed
fuel and time of all the k transfers stay within the limited maximum amount for each.

The mathematical formulation of the problem enables a quick identification of two clearly differentiated parts.
On the one hand, on finds the combinatorial part of the problem related to the visiting sequence selection in a way
that all orbits are visited but just once (Equations (4)). This objective of finding the optimal sequence falls into the
category of integer programming. On the other hand, it is found the optimization of the transfers themselves (Equations
(2) and (3)), which falls into the category of nonlinear continuous programming. Since both are tightly coupled, the
problem to be dealt with is a mixed integer nonlinear programming (MINLP) problem. Solutions to this problem are
not straightforward and need of strategies that can solve simultaneously integer and continuous optimization problems,
despite their remarkably different nature.

3. Solution Approach: Bi-level Optimization

As stated previously, the problem falls into the category of MINLP optimization problems, which are of the NP-hard
type and thus cannot be solved deterministically without the need of computational times that grow in a factorial
number with the number of possible routing cities to be visited. As such, heuristic algorithms have been developed and
used to achieve a sufficiently good (but sub-optimal) solution within feasible times. Additionally, it has been proposed
to be solved by decomposing the problem into two sub-problems whose solutions can be used to achieve the optimal
trajectory.

Following this same line of thought, the study proposes a bi-level optimization solution in which the transfer and
the sequential problem are solved individually while keeping the inter-connections related to the problem’s nature. In
this way, the process is divided into: 1) an internal level optimizing the individual transfers between two consecutive or-
bits, assuming a certain order; and 2) an outer level dealing with the visitation sequence orbit, not explicitly accounting
for the individual transfers. These two are, however, tightly connected as they depend on each other to properly solve
the MINLP problem. On the one hand, the inner level requires a certain sequence of visitation forwarded by the outer
level to perform the transfers between the fixed order. On the other hand, the estimated cost for the whole trajectory
of transfers calculated by the inner level is used by the outer level as a measure of quality for a given sequence within
its own optimization process. In this manner, both levels are structured in a nested manner and constantly interact to
achieve the solution. A simple schematic of the bi-level optimization structure is shown in Fig 2.

Nevertheless, as stated before, the objectives of optimization are both the fuel mass consumed and the total
mission time. These two objectives are optimized in both levels, using the concept of Pareto dominance in a way that
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Figure 2: Schematic representation of the bi-level structure for solving the TSP in space

the output is always the set of points belonging to the Pareto front. A certain solution A1 is said to dominate a solution
A2 if all of the values of the objective functions of A1 are better performing than the ones of A2. The Pareto front is
composed of all non-dominated solutions. However, as the cost for a single sequence cannot be treated to be a complete
set of points, but a single pair of values (fuel mass and time of flight), a single solution of the inner level is outputted
for the outer level to be used as the quality reference.

3.1 Single transfer cost estimate

In this section, the methodology used to calculate the ∆V , fuel mass and TOF for the individual transfers is explained.
Indeed, three types of manoeuvres between orbits are considered: 1) Lambert targeting; 2) phasing; and 3) exploiting
the J2 effect of the Earth’s gravitational field to change the right-ascension of the ascending node (RAAN) of the orbit.
The decision on which manoeuvre to perform at any point, between two specific orbits, is decided by the comparison
of the Kepler elements defining them, as these are used as the main set of parameters defining a certain operational
orbit (as expressed in the design of missions). Within this study, the Kepler elements used are: the semi-major axis (a),
the eccentricity (e), the inclination (i), the RAAN (Ω), the argument of the periapsis (ω), and the true anomaly (θ).

Lambert targeting

In the most basic case of transfer, it is considered that it is done by means of an impulsive Lambert targeting strategy.
The principles of this boundary-value problem can be found in Ref. [23], but can be summarized as follows: given
a certain particle orbiting a central body, in a 2-body problem configuration, and given the initial and final positions
of the particle as well as the time-of-flight in between those two points, the objective is to find the needed velocity
at the start and end of the trajectory in a way that all conditions are met. Therefore, it is presented as one of the
classic boundary-value problems in space, and its solution has been extensively studied since its proposal, leading to
several different programmatic implementations that accurately solve it. Among these, one of the most famous ones is
that proposed by Gooding [24] which includes some changes to the one developed by Lancaster and Blanchard [25].
This solution provides with a robust method to solve for the initial and final ∆Vs to perform the desired manoeuvre.
However, a more efficient solution was proposed by D. Izzo [26] by which equally accurate solutions could be found
in much shorter times, at the cost of a slightly less robust algorithm. In order to deal with this issue, the used algorithm
tries to solve the Lambert problem by means of Izzo’s formulation and, if it is unable to converge towards a solution, it
calculates it using Gooding’s algorithm as a backup. In this manner, it is ensured that all Lambert computations reach a
solution, and the slower algorithm is only called when its higher robustness is required. This implementation has been
taken from the work of R. Oldenhuis [27].

Phasing manoeuvre

In the case of multiple injection within the same orbit (e.g. constellation missions), a phasing manoeuvre is considered.
It is performed by applying two consecutive impulsive firings: a first one to move into the phasing orbit within which
the spacecraft will wait until correct phasing is achieved; and a second one to re-insert itself in the original orbit once
the desired phase difference is reached. The first manoeuvre is performed at the perigee or apogee of the original orbit
to reach a phasing orbit with smaller or higher orbital period depending on whether the desired position is ahead or
behind, respectively, of the current position of the vehicle [28]. In the case of circular orbits, the initial position is
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an optimization variable, while in elliptical orbits the possible initial position is constrained to be either the apogee
or perigee to keep it as close to a Hohmann transfer as possible. The period of this intermediate of phasing orbit is
calculated as:

Tphasing = T1 −
tAB

Nrev
(6)

where T1 is the orbital period of the original orbit, tAB the time to close the gap between both positions, and Nrev the
number of revolutions performed in the phasing orbit. The calculated value allows to compute the semi-major axis
using:

aphasing =
3

√
µE

(
Tphasing/2π

)2
(7)

With this value, the rest of the orbital parameters can be obtained, allowing to calculate the necessary ∆V and
the total manoeuvreing time based on the number of revolutions needed.

RAAN drift manoeuvre

Finally, when one of the parameters to be changed is the RAAN, one can exploit the J2 effect of the Earth’s spherical
harmonics gravitational model to avoid the high cost in terms of ∆V associated with such a manoeuvre if the engine
were to be used [29]. Instead, by considering the secular drifting effect on the RAAN of the J2 zonal harmonic, the
parameter can be changed without the need of thrusting force, saving fuel mass, but at the expense of much higher
mission times. This rate of change in RAAN is given by:

Ω̇ = −
3nR2

E J2 cos i
2a2(1 − e2)2 (8)

where n is the mean angular velocity of the orbit and RE is the radius of Earth. To reduce the drifting time, the spacecraft
can move towards an intermediate orbit where it can achieve the necessary RAAN change faster, at the cost of using
fuel mass to move to such orbital geometry. The selection of this orbit must be also considered in the optimization
problem in terms of semi-major axis and inclination. This drifting orbit is considered circular and with an argument of
perigee being half of the sum of those of the original and the final orbits, for simplification purposes. The total drifting
for a spacecraft in a drifting orbit (subscript d) to reach the RAAN of a final orbit (with subscript 2) is then obtained
as:

tdrift =
Ω2 −Ωd

Ω̇d − Ω̇2
(9)

It must be considered that the motion towards this intermediate orbit, and the transfer to the final desired orbit
are modeled also as Lambert targeting problems in which the initial and final position, as well as the TOF, are design
variables.

3.2 Outer Loop

As stated previously, a bi-level approach for the design of the optimization strategy is proposed, with an outer level
dealing with the combinatorial problem and an inner level solving the transfer problem. To solve the visiting sequence
problem, it was decided to use an heuristic that could exploit the tree-shaped structure which comes naturally with
the combinatorial essence. In this sense, ACO-related algorithms were investigated, leading to the decision to use a
Population-based ACO (P-ACO), as introduced in Ref. [30], and expanded towards multi-objective problems in Ref.
[31]. In addition, its usage in the work of L. Simões et al. [32] for a problem of similar nature (mainly the multiple
asteroid visiting of GTOC5 [33]) provides with a proof on its usefulness for the multi-rendezvous problem.

This type of algorithm follows the typical concept of ACO strategies that ants traveling a certain path (or se-
quence) leave a trail of pheromone concentration, denoted by τ. The higher the amount of concentration of pheromone
in a certain sequence, the more likely an ant will follow it. In addition, a problem-specific heuristic measure, denoted
by η, related to the problem is included as to give the ants an estimated measure of the possible cost from a certain node
to subsequent nodes. In the problem under consideration, this heuristic was estimated to be the remaining ∆V fraction
within the budget after performing the manoeuvres to individually change all the orbital parameters from one orbit to
another, using approximate analytic expressions [29]. Then, the probability for an ant at node i to move towards node
j, with j being part of the possible set of subsequent nodes S, is given by:

p(i, j) =
τ(i, j)αη(i, j)β∑

z∈S τ(i, z)αη(i, z)β
(10)
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in which α and β are design factors which determine the relative contribution of both measures of interest.

Algorithm 1 P-ACO [32]
1: Initialize colony parameters
2: Initialize pheromone matrix τ with τmin
3: for i=1:N_generations do
4: generation = [ ]
5: for j=1:N_ants do
6: if start_node != [ ] then
7: tour(1) = start_node
8: else
9: tour(1) = random

10: end if
11: stop = 0
12: while stop==0 do
13: ph← pheromone(tour)
14: heur← heuristic(tour)
15: p = ph **alpha ∗ heur ** beta
16: next_node← roulette_wheel(tour,p)
17: tour = [tour next_node]
18: if length(tour)==n_cities then
19: stop=1
20: end if
21: end while
22: cost← evaluate(tour)
23: generation(j) = [cost tour]
24: end for
25: elite← sort(elite,generation)
26: best = elite
27: elite_pheromone← pheromone_update(elite)
28: end for
29: OUTPUT : elite

Algorithm 2 MOPSO algorithm [34]
1: Initialize swarm parameters
2: Initialize swarm position, velocity, fitness
3: Establish first repository of leaders
4: for i=1:N_generations do
5: h← select_leader
6: VEL = w*VEL+c1*r1*(PBEST-POS)+
7: +c2*r2*(h-POS)
8: POS = POS + VEL
9: POS← mutation

10: POS_FIT← evaluate(POS)
11: REP← update_repository
12: PBEST← update personal best
13: end for
14: OUTPUT : BEST_POS

The particularity of the P-ACO is that the pheromones are only deposited by those ants belonging to the Pop-
ulation set, composed by the best ants of each generation, which allows for a faster convergence [30]. In this case,
as a multi-objective cost is being considered, a similar strategy to that proposed in Ref. [32] is used to generate the
Population. In this way, after each generation, this set, called the Elite is composed by all the non-dominated solutions
found until then, and then the pheromone matrix is re-calculated based on these possible solutions. However, there is
a limit k on the amount of members that can be included in the population, which is implemented in a FIFO-queue
fashion on each node independently. This queue is emptied at the end of each generation, to be then re-filled with the
new set of non-dominated solutions. The implementation of this algorithm has been based and modified from the open
source code developed by L. Simões et al. [32], with the pertinent changes. A pseudo-code is presented in Algorithm 1
as a summary of its principles. It must be noted that a number of internal functions are mentioned in the pseudo-code.
These include the pheromone function, which provides with the pheromone matrix based on the current trails; the
heuristic function, which provides the problem-specific heuristic value; the roulette_wheel function, which selects the
next node based on the Roulette Wheel principle for probability-based selection; the evaluate function, which gives the
cost associated to a certain tour; the sort function, which outputs the non-dominated tours based on Pareto dominance;
and the pheromone_update function, which generates the new pheromone deposit on trails based on the new Elite set.

3.3 Inner Loop

At the moment of evaluating a certain tour cost, the inner loop of the optimization algorithm is called, which calculates
(given the node sequence) the optimal impulsive manoeuvres needed. Similarly to the combinatorial problem, an
heuristic algorithm was selected. In this case, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm
was used to exploit the continuous domain of the search space. This algorithm was proposed by C. Coello [34] and the
main difference with the classic PSO is that instead of a single leader, there exists a repository with all non-dominated
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Figure 3: Flow-diagram illustrating the objective function of the MOPSO

solutions found until a certain iteration. In this way, when a particle wants to move, it randomly chooses a member of
the repository as its leader. Such an algorithm was also chosen due to its proven usefulness in the multi-rendezvous
problem, as shown by Daneshjou et al. [7], and the used implementation was a modification of the open source code
developed by V. Martínez-Cagigal [35]. As for the previous algorithm, a pseudo-code is presented in Algorithm 2 as
a summary of its principles. It must be noted that the motion equations (for velocity and position) are included, for
which the following variables are used: w is the inertia of the particle, c1 and c2 are the factors providing importance
of self-knowledge and leader knowledge; and r1 and r2 are random numbers between 0 and 1.

However, before calling the MOPSO algorithm, the complete cost function must be constructed and, as several
types of manoeuvres are envisaged and depend on each pair of consecutive orbits, it must be generated once the tour
sequence is set. In this way, once a certain ant completes the tour and calls the evaluation function of the problem,
it triggers a process to define the full trajectory cost function before calling the optimization algorithm. This is done
by first including in the tour the final disposal orbit (if required) and then checking for each transfer expected which
kind of manoeuvre will be performed. In the general case, a Lambert targeting one will be selected with 3 variables
for optimization: the initial true anomaly, the final true anomaly and the TOF. If the two orbits are the same, and
only phasing must be corrected, a phasing manoeuvre is selected with 2 optimization variables: the location of the
manoeuvre (in terms of true anomaly) and the number of revolutions. Finally, if the RAAN between the two orbits is
different (and it is explicitly defined that the J2 effect is to be exploited), a drifting strategy is picked, with 6 variables
for optimization: the semi-major axis and inclination of the drifting orbit, the final position and TOF of the first Lambert
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Figure 4: Flow-diagram illustrating the cost calculation for a given tour

towards the drifting orbit, and the initial position and TOF of the second Lambert towards the final orbit. The initial
position at the first orbit and the final position at the final orbit are pre-selected to be the perigee and apogee respectively,
as to simplify the problem and make it as close as possible to a Hohmann transfer. A maximum and minimum values
are given to all these variables as to confine the search space of the MOPSO algorithm. All these variables and types
of transfers are stacked in a decision-array that will be fed to the objective function.

Once the previous process is finished, the objective function is constructed based on the previously defined
sequence of manoeuvres. The generation of this objective function is summarized in Figure 3. For every transfer, the
required manoeuvre is calculated according to the expressions shown before, providing with a ∆V and a TOF for each
leg. For the case of Lambert targeting, two additional checks are included: 1) the manoeuvre involves an elliptical
transfer orbit (checked by ensuring that the TOF is greater than Barker’s time [36]); and 2) the transfer arc does not
go below a certain threshold that could endanger the upper stage. The time to wait from the arrival to an orbit to its
next manoeuvre is included in the TOF, and the fuel mass used in the manoeuvre (accounting for the discrete release of
satellites) is updated. After all the trasnfers are computed, a total ∆V , fuel mass and TOF are calculated. At this point,
the constraints of Equation (5) are enforced by beans of a penalty function. Assuming an objective f and a maximum
allowed value L, the penalty is included in the following fashion:

λ( f , L) = (max (0, f − L))2; f = f + F × λ( f , L) (11)

where F is the scalar penalty factor, used to scale all objectives to an comparable quantity. The output of the objective
function is then the cost in terms of TOF and fuel mass, with the added penalty.

The previously defined objective function can then be used to call the MOPSO algorithm, whose output is the
Pareto front of all the non-dominated solutions for the optimal trajectory given a certain sequence. However, the
complete set of solutions cannot be attributed to a single ant route, as a two-valued cost is expected. Therefore, a single
point of the front is to be picked and attributed to the given tour in a certain ant and generation. The decision on which
cost is associated to the tour is based on a weighted function such that the constraint violation in terms of maximum
fuel and maximum TOF are minimized, as introduced by L. Simões et al. [32]. The way in which this function is
defined is by first calculating the fraction of fuel mass and time remaining at the end of the tour with respect to the
maximum values:

m =
mf,max − mf

mf,max
; t =

tmax − t
tmax

(12)

which are then used to generate the weighting reference (ranging from 0 to 2):

mtsum = m + t (13)
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The weights can now be calculated in a way that the more an objective value complies with the requirements, the
less importance is given to it. In such a way, closeness to not fulfilling constraints is punished, which also ensures the
look of solutions which leave some time and fuel mass margin. The weights are then:

wM = 1 − m/mtsum; wT = 1 − t/mtsum (14)

and finally the weighted function is defined as:

A = wM × m + wT × T (15)

The cost attributed to a certain ant (or tour) is the one maximizing the value of A, thus linking a single bi-valued
cost of the MOPSO’s Pareto front instead of the complete set. This value is the one being returned to the outer-level
part of the optimization structure, and is the one used to be used for the selection of the new generation elite population.
A schematic of the complete inner loop construction is given in Figure 4.

4. Analysis of a Case Scenarios

In order to demonstrate the validity of the developed optimization tool, two different cases will be solved, as to show
the flexibility of the instrument. The first one is a constellation mission, while the second one is a group of independent
missions "sharing the ride". In both cases, an upper stage of 1000 kg of dry mass with a maximum fuel mass of 1500
kg is considered. Chemical thrust is the propelling strategy of the main engine, as the satellites are desired to be on
orbit and operational as soon as possible. Thus, a specific impulse of 450 seconds is assumed.

Case 1: Constellation mission

As a first case scenario for multi-payload multi-orbit injection, a constellation mission is proposed in which 6 satellites
are to be delivered at two different altitudes. Consider, for instance, a hypothetical Earth observation mission which
requires of a set of six different micro-satellites (50 kg) divided in two groups of 3 at two altitudes of 600 km and 800
km, equidistant within the orbit (with a phase difference of 120º). The observation conditions require both orbits to
be Sun-synchronous (thus both orbits will be at different inclinations) and the spacecraft to be disposed at an orbit of
300 km altitude. The parameters of the orbits are summarized in Table 1, where the disposal orbit is identified with
[D]. The mission is considered to start after the deployment of the first satellite, assuming that direct injection from the
ground launch can be achieved, in a way that the subsequent transfers are optimized. However, the decision on which
orbit should be first is still up for decision for the optimizer.

The output of the optimization tool is the Pareto front shown in Figure 5. In the plot, two types of solutions are
differentiated: 1) P-T-P solutions, in which the spacecraft performs the delivery of all the satellites at a given height by
phasing (P), then transfers to the other orbit (T), and delivers the remaining ones by phasing manoeuvres again, before
disposing itself; and 2) Intermittent P-T solutions, in which the spacecraft phases and/or transfers without deploying
all the satellites on one operational orbit first. As expected, it is observed that in the case in which the satellites of the
two altitudes are released sequentially (one orbit and then the other) the cost in fuel mass required is lower, as the more
expensive manoeuvre (the Lambert targeting) is done only once within the release sequence. However, this comes at
the cost of longer times, as complete revolutions have to be completed to perform up to 4 phasing manoeuvres. On
the other hand, performing the P-T intermittent release sequence allows for shorter deployment times, as there is no
need to wait full orbital periods’ orders of time to inject the payload. Instead, by performing a sequence of Lambert
targettings it manages to jump from orbit to orbit as needed. This comes, of course, with the subsequent increase in
the cost in terms of fuel mass due to the higher number of more expensive manoeuvres (which in addition include
inclination changes). Nevertheless, it is observed how the algorithm can provide an optimal result which follows the
logic of what one could expect the delivery sequence to be, providing a high-level proof of its correct performance.

Case 2: Differentiated orbits mission

After this first case, we analyze the possibility of a set of different individual missions which use the upper-stage under
consideration as a ride-share but require to be deployed into their differentiated orbits. As such, the Kepler elements
and satellite sizes differ among each other, giving a slightly more complex problem for the optimizer. As the previous
case, the system is assumed to have deployed the first satellite and needs to be manoeuvred into a final disposal orbit
at 300 km. A summary of the orbits to be visited is given in Table 2, where again the disposal orbit is identified as [D].

The solution provided by the optimization for this second case is the Pareto front shown in Figure 6. It is
observed how 5 different combinations are found to be optimal. The least fuel-consuming strategy is such that it tries
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Table 1: Orbits of the constellation mission (case 1)

Orbit h e i Ω ω ∆θ
ID [km] [-] [deg] [deg] [deg] [deg]
[1] 600 0 97.79 54 - 120
[2] 800 0 98.60 54 - 120
[D]] 300 0 98 54 - -

Table 2: Orbits of the differentiated orbits mission (case 2)

Orbit h e i Ω ω msat
ID [km] [-] [deg] [deg] [deg] [kg]
[1] 750 0 90.0 54 - 50
[2] 650 0 88.5 54 - 60
[3] 680 0 89.2 54 - 80
[4] 720 0 90.6 54 - 70
[5] 600 0 90.1 54 - 80
[6] 700 0 91.5 54 - 50
[D] 300 0 90 54 - -
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Figure 5: Pareto front of solutions for Case 1
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to follow the inclination change (while deploying first one of the bigger payloads), in a way that it first deploys the
two satellites with inclinations below 90º and then those above that value. In addition, it shows how the sequence
followed from orbit 1 up to the deployment is of reducing altitudes progressively, as to finish as close as possible to the
disposal altitude. On the other hand, the fastest strategy follows the logic of deploying higher satellites first and then
continue decreasing the height until disposal, with the only exception of starting the trajectory at orbit 5, as to get rid
of a heavy satellite first. Similarly to the previous sequence, this one deploys the satellites with inclinations above 90º
first, and then those with inclinations below that value. Among the intermediate-valued cases, some remarks are also to
be made. There’s two cases which are identical except for a swap of orbits 4 and 6 at the start. The solution starting at
orbit 6 follows a similar strategy to the minimum-time one, in which the deployment is tried to be made in decreasing
altitudes, starting from orbit 1, however it does not follow the previous trend in terms of inclinations, following a steady
decreasing order except for orbit 5. Finally, the last case does not follow the same trend in terms of altitude, but does
deliver the satellites according to the above-below 90º inclination trend. However, it is observed how it delivers faster
the two heavier payloads in order to decrease the overall weight and decrease the fuel consumption. However this is
proven to perform relatively worse than selecting a strategy in terms of the actual manoeuvres. It can be concluded,
therefore, that while the weight of the payloads to be delivered affects the logic of delivery sequence selection, it is
not as important as the geometric orbit parameters which drive the cost of the manoeuvres in terms of ∆V . However,
it is possible that such small effect is due to the small differences in satellite masses, and could be aggravated if they
become larger.

5. Conclusions

This paper proposes an optimization tool which allows to decide on the sequence and transfers between orbits to deliver
multiple payloads into specific differentiated orbits minimizing both the fuel consumption and the total mission time.
Such a tool is constructed in a bi-level manner, in a way that the integer and the nonlinear programming problems are
separated for a simpler solution implementation. For the outer loop, a multi-objective P-ACO algorithm is used, which
exploits both the tree-shape structure inherent to the sequential problem and the advantages in terms of computational
time of heuristics. This algorithm uses as cost function the output of the inner loop, which in its turn uses a MOPSO
algorithm to optimize the transfers given a sequence determined by the P-ACO. This inner loop also uses an heuristic
algorithm, but this time one that can exploit the continuous nature of the transfer problem, the MOPSO. The proposed
solution approach is such that the complete set of transfers are optimized at the same time, instead of one by one, to
reduce the effect a certain manoeuvre will have on the subsequent ones in terms of optimization variables. In addition,
three types of possible manoeuvres are envisaged, namely Lambert targeting, phasing and RAAN change through the
J2 secular effect, which are used based on the Kepler elements of two consecutive orbits. Both of these conditions
require the in-loop construction of the sequence in order to be able to properly generate the cost function, which also
increases the flexibility of possible missions as the algorithm needs no previous knowledge of their structure. Being the
inner loop also a bi-objective optimization strategy, a decision function was proposed in a way that each ant presents a
unique cost in terms of fuel mass and total mission time.

Two distinct case scenarios were then solved to show the performance of the tool. Firstly, a constellation mission
of 6 satellites in two Sun-synchronous orbits at different heights was studied. This analysis showed how the algorithm
does not necessarily propose to deliver those of one orbit and then those of the other one. Indeed, while this type of
mission sequence does provide with lower fuel consumption solutions, shorter times can be attained if the upper stage
moves in between those two orbits more than once. Secondly, a mission with satellites of different masses and orbits
was studied, in a case were all orbits were circular and shared the same RAAN value. It was shown how the tool tends
to look for trends in the injection of the satellites either in terms of altitude or inclination in order to reduce the fuel
consumption by moving progressively. It was also noted how the mass of the payloads to be delivered influenced in
the selection of the first orbit or, in one case, of the complete sequence. However, the effect on the trajectory calculated
of the payload masses was small compared to that of the orbit geometries. Nevertheless, by solving both types of
missions, the performance of the optimization algorithm was proven, as well as its flexibility to solve different types of
mission.
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