
Action-sparsity-seeking algorithms for active flow control
using deep reinforcement learning

Romain Paris⋆†, Samir Beneddine⋆ and Julien Dandois⋆
⋆ONERA

DAAA, ONERA, Université Paris Saclay, F-92190 Meudon - France
romain.paris@onera.fr
†Corresponding author

Abstract
This study addresses the issue of actuation sparsity for flow control, through reinforcement-learning-based
control laws. A generic actuator elimination method is proposed, starting from a fully active actuator
layout and sequentially disabling the least needed actuators. Three implementations of this method, us-
ing different actuator ranking metrics are implemented and tested on two test-cases, the one-dimensional
Kuramoto-Sivashinsky equation and a laminar bi-dimensional flow around an airfoil at Rec = 1000. Re-
sults show that these metrics solve a trade-off between accuracy and computational cost differently and
thus may be chosen with respect to the characteristics of the controlled environment.

1. Introduction

Flow control encompasses a spectrum of methods from passive control to closed-loop non-linear control, with a the
goal of improving aerodynamic qualities of vehicles or flows. Passive control has long been a go-to strategy thanks
to its simplicity and robustness (Bruneau & Mortazavi, 2008; Evans et al., 2018; Joubert et al., 2013; Seshagiri et al.,
2009), it is now challenged by active control, reaching overall better performances (Seifert et al., 1993; Seifert &
Pack, 1999), especially closed-loop control that enables precise and energy efficient control actions thanks to its error-
correcting feedback and is thereby a well-documented and studied domain. System dimensionality, non-linear response
and simulation cost being issues specific to fluid mechanics, a wide literature proposed adapted methods (Brunton &
Noack, 2015) to design closed-loop control laws tackling these challenges.

In the last few years, machine learning, and deep learning in particular, has demonstrated remarkable perfor-
mances in wide variety of fields. This progress is mainly due to the rise in accessible computing power, the use of
neural networks (NN) that act as quasi-universal function approximators and their straightforward optimization meth-
ods relying on gradient back-propagation (LeCun et al., 2015). Hence, a flourishing literature (Brunton et al., 2020;
Vinuesa & Brunton, 2021) investigating the potential of such techniques in fluid mechanics can be considered as a sign
of strong interest by the community. Flow control also follows this trend of increasing integration of advanced machine
learning methods, notably leveraging the paradigm of reinforcement learning (RL), based on the idea of trial-and-error.
RL consists in evaluating a given control law (also called policy) on a target system (referred to as the environment).
The evaluation data is then used to tweak the control law to maximize a given performance metric, with the underlying
idea of promoting actions or strategies that are beneficial with respect to the metric. In the case of deep reinforcement
learning (DRL), the policy is embodied by a neural network structure tasked with providing a control action given
observed measurement. The exploration of new control strategies plays a decisive role in the performance of such
methods.

Bucci et al. (2019) used Deep Deterministic Policy Gradient (DDPG) to steer the Kuramoto-Sivashinksy equation
to its fixed points and Shimomura et al. (2020) used Deep Q-Networks (DQN) to optimize the frequency of plasma
actuator bursts in order to control airfoil flow separation. Proximal Policy Optimisation (PPO) was used by Rabault
et al. (2019) to control a low Reynolds number cylinder wake using surface-mounted jets. Wang et al. (2022) also
resorted to PPO to control a low-Reynolds confined bi-dimensional airfoil flow using three suction-side synthetic jets
in order to reduce drag. In the context of flow control, with the specificities mentioned earlier, the issue of sensor
and actuator location or selection becomes critical. Having an efficient and parsimonious control setup motivates the
emergence of all the following methods.

Multiple studies (Li & Zhang, 2022; Natarajan et al., 2016) rely on adjoint sensitivity analysis (Chomaz, 2005)
and on the "wavemaker", the overlap between the direct and adjoint sensitivity modes, introduced by Giannetti &

Copyright© 2022 by R. Paris, S. Beneddine & J. Dandois. Published by the EUCASS association with permission.

DOI: 10.13009/EUCASS2022-7350

9ᵀᴴ EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS)

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

Luchini (2007) to derive appropriate sensor and actuator placement. Sashittal & Bodony (2021) applied a related
method on a data-driven, linearised model of their systems to position their sensors. Modelling the control system as
a linear plant is also used by Bhattacharjee et al. (2018) who take advantage of the eigensystem realisation algorithm
(ERA) to compare the controllability (in a H2 framework) of multiple jet actuators laid on the suction of an airfoil to
select the best one depending on the performance criterion (lift or angle of attack upon flow separation).

Among non-linear actuator methods, one may cite the study of Rogers (2000) who derived a set of actuator
layouts on a stealth bomber to satisfy manoeuvrability goals using a genetic algorithm. Paris et al. (2021) proposed
a sensor selection algorithm using stochastic gates and leveraging the RL paradigm to filter out sensor measurement
while preserving performance as much as possible.

In the current study we aim at introducing a reinforcement-learning-based method, re-using some ideas previ-
ously introduced in Paris et al. (2021) but this time to select actuators instead of sensors and compare and discuss
multiple candidate metrics for actuator selection. The reinforcement learning algorithm along with both test cases is
introduced in section 2. Section 3 then focuses on the proposed actuator elimination method before describing the three
metrics discussed in the study. At last, the results of these metrics applied on both test cases are discussed in part 4.

2. Test-cases and base RL algorithm

2.1 Proximal Policy Optimisation with Covariance Matrix Adaptation

This study is based on RL-trained (closed-loop) control laws. As shown by figure 1 (left), the environment (the system
to control) provides partial state observations st and a reward rt, quantifying the instantaneous fitness of the current
state with respect to a predefined performance metric. The environment receives forcing actions at altering its dynamics
when stepping forward in time: st+1 ∼ T (·|st, at), T being the (stochastic) dynamics of state s. An agent is built in a
closed-loop fashion in order to provide control action at based on observations following its policy π: at ∼ π(·, st),
embodying the control law. It is also tasked with implementing the training algorithm, that uses the collected data
samples (st, at, rt) to tune the parameters of policy π in order to maximise the expected return Rt = Est∼T,at∼π

[∑∞
t=0 γ

trt

]
,

γ ∈ [0, 1] being an actualisation scalar parameter.

Environment

Agent

Observation
st

Reward
rt

Action
at

Environment

Actor πN (µ, σ)

Critic V

Observation
st

Reward
rt

µ
σ

Action
at

Optimisation

Figure 1: (left) The reinforcement learning feedback loop. (right) PPO-CMA agent structure: compared to PPO, the
actor has one extra output σ which allows for a dynamic adaptation of the exploration.

Proximal Policy Optimization with Covariance Matrix Adaptation (Hämäläinen et al., 2020) (PPO-CMA) is the
training algorithm used here. It is a derivative version of the well-known Proximal Policy Optimization (Schulman
et al., 2017) (PPO). As summarized by figure 1 (right), it relies on a bicephalous neural-network structure, an actor (the
policy π) and a critic (V). The critic is trained to output an estimate Vϕ(st) of the value Vπ(st) of the currently observed
partial state, where ϕ are the parameters of the critic neural network. This value is computed as the expected return
Rt = Esτ∼T,aτ∼π

[∑∞
τ=t γ

τrτ
]

previously introduced, the expected actualized sum of the reward under the current policy π.

2.2 The 1D Kuramoto-Sivashinsky equation

The first test case considered is the control of the one-dimensional Kuramoto-Sivashinsky (KS) equation. This case
is interesting because it is computationally inexpensive, allowing to perform a brute-force search of the optimal ac-
tuator layouts, yet complex when analyzing the obtained optimal layouts. The KS equation is a well-studied fourth-
order partial differential equation exhibiting a chaotic behavior and describing the unstable evolution of flame fronts

2

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

(Sivashinsky, 1980). On a periodic domain of length L = 22, the KS equation reads:

∂u
∂t
+ u
∂u
∂x
+
∂2u
∂x2 +

∂4u
∂x4 = a, (1)

∀ t : u(0, t) = u(L, t),

where a is the control action forcing later described. For L = 22, the KS equation exhibits three fixed points (named
E1, E2 and E3) and low-dimensional instabilities similarly to some low-Reynolds number Navier-Stokes flows, as
illustrated by figure 2.

Figure 2: (left) Spatio-temporal representation of the dynamics of the KS equation on 500 non-dimensional time units,
corresponding to 2000 control steps. (right) Shape of the three fixed points of the KS equation.

The numerical setup is based on the work of Bucci et al. (2019) and a code from pyKS with a time-step of 0.05.
The control term is also designed to mimic spatially localized Gaussian forcing actions:

a(x, t) =
n−1∑
i=0

ai(t)
1
√

2πσ
exp
− (x − xact

i)2

2σ2

,
where n is the number of control actions, xact

i i ∈ {0, ..., n − 1} the locations of the centers of Gaussian kernels and
ai the amplitude of each forcing implemented around xi. The forcing action has 8 forcing components implemented
at locations (xact

i ∈ {0, 1, ..., 7}L/8), ai ∈ [−0.5, 0.5] and σ = 0.4. The partial state observations are provided by
measurements of u interspersed between control action locations so that xobs

i ∈ {1, 3, 5, 7, 9, 11, 13, 15}L/16. A control
step is made of an update of at, then 5 time-steps and the measurement of the observations and reward. A run of the
KS equation lasts for 500 control steps. The reset state is seeded using a Gaussian noise and ran for a random number
of control steps without control action, so that control starts on a fully developed instability. The aim of the control is
to stabilize u around the fixed point E1, and therefore the reward rt is defined as:

MS Et = ||u(·, t) − uE1||2 =

√
1
L

∫ L

0
(u(x, t) − uE1)2 dx,

rt =
MS Et − MS Ere f

|MS Ere f |
− 0.1||at ||

2

where uE1 describes the fixed point E1 (refer to figure 2 (right)), MS Ere f is the time-averaged reference mean squared
error of the uncontrolled state and at is the control action at time t. This way rt ranges over] −∞, 1].

2.3 2D flow around a stall NACA airfoil

The second considered test case is a bi-dimensional flow around a stalled NACA 0012 at a chord-wise Reynolds number
Rec = 1000. Airfoil flow separation control (Wu et al., 1998) has been a matter of interest for a long time, with studies
using a wide variety of control methods at various flow and stall regimes (Amitay & Glezer, 2002; Seifert et al., 1996;
Shimomura et al., 2017; Yeh & Taira, 2019).

As illustrated by figure 3, the computational domain is "C-shaped" and built in the reference frame of the airfoil,
meaning that the angle of attack (α) is imposed by the upstream flow conditions. The free-stream flow is uniform at
M∞ = 0.1. In the following, all quantities are made non-dimensional by the characteristic length C, the inflow density
ρ∞, the velocity U∞ and the static temperature T∞. The flow solution is computed via direct numerical solving using

3

DOI: 10.13009/EUCASS2022-7350

https://github.com/jswhit/pyks/blob/master/KS.py

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

C = 1

20C

x

y

Far field
boundary
condition

α

xc/C
0.02 0.25

Wall
(no slip, adiabatic)

Control actions
(Mass flow injection/suction)

Airfoil

0 1 2 3 4 5 6 7 8 9

Figure 3: (left) Flow domain geometry, not at true scale. α denotes the angle of attack and C is the (unitary) chord
length. (right) Boundary conditions on the airfoil, with nact = 10. Blue numbered boxes symbolize actuators, number
0 being the upstream-most actuator, number 9 being the downstream-most one.

ONERA’s FastS finite volume method solver (Dandois et al., 2018), with a second-order-accurate AUSM+(P) scheme
(Edwards & Liou, 1998) and a second-order implicit Euler time scheme (dt = 1.3 × 10−3). The structured mesh is
made of 120, 000 nodes and refined in the vicinity of the airfoil and in its wake are properly resolved.

Figure 4: Instantaneous Y velocity flow field, with an arbitrary control action (here with nact = 20), in the free-stream
reference frame. White dots represent the sensor locations. The colored triangles nearby the airfoil depict the action,
their heights and colors representing each action amplitude. The dashed diamond shapes mark off maximum actions
(both positive and negative). The strong variations in velocity in the vicinity of the actuators are due to the presence of
interspersed wall boundary conditions in-between actuators.

The control step (∆t = 58 dt = 7.9 × 10−2 time units ≈ 1/50 vortex shedding period) is chosen to both discretize
the observation signal properly (avoiding aliasing) and to keep the "impact horizon" of a given action within a relatively
short-term future for the agent (generally < 100 control steps). Control action is performed on the airfoil suction side
through a series of nact independent jet inlets (refer to figure 3 (right)). Negative control actions correspond to suction
and positive to blowing at an angle of −80◦ with respect to the local wall normal. The control action command ranges
[−2, 2]nact and a 52-iteration interpolation ramp between previous and current action is used in order to avoid abrupt
changes that may not be handled by the numerical solver, in a similar fashion as Paris et al. (2021) and Rabault et al.
(2019) did. Figure 4 illustrates a standard setup for this case. Both drag and lift coefficients (Cd and Cl) are computed
by integration around the airfoil on a closed circulation, in the presence of actuators.

In this study, the angle of attack α is set to 15 degrees. At Rec = 1000, the flow is unsteady and displays a

4

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

laminar vortex shedding (Wu et al., 1998). This instability causes both lift and drag coefficients to vary periodically,
yielding undesired alternated loads on the airfoil. For any angle of attack α, one can define the characteristic period
T = 1/S t(α) of the unstable phenomenon. This time unit is later used in the study to size the control step. The main
goal of the controller is to minimize lift fluctuations using as little control power as possible. Thus, the reward rt is
defined as:

rt = −S (Cl)2T − S (Cd)2T − 0.05
1

nact

nact−1∑
i=0

|⟨ai⟩2T |,

where S (Cl)2T and S (Cd)2T are the standard deviation of the lift and drag coefficients computed over two characteristic
periods and |⟨ai⟩2T | the absolute value of the averaged ith action component also over 2 periods.

3. Actuator ranking

As stated in the introduction we aim at tackling the specific issue of optimized actuator location. The approach used
here is to start from fully active actuator layouts (in the sense that all actuators are allowed to act) and to proceed
to a successive elimination of the least "useful" ones until a prescribed number of remaining ones is reached. The
previously introduced RL paradigm is well-suited for non-brute-force search of reduced actuator layouts, with the aim
of preserving the control performance as much as much possible. Hence, it allows to derive non-linear (and potentially
very efficient) control laws via a gradual optimization of the policy that takes advantage of the plasticity of neural
networks.

3.1 A generic gating mechanism and procedure

...
...

...
...

...

µd,1 µ̄1 µd,2 µ̄2 µd,3 µ̄3 µd,4 µ̄4

p1 p2 p3 p4

pi ∼ f(·, αi)

µs,i = piµd,i + (1− pi)µ̄i

µs,1 µs,2 µs,3 µs,4

Actor π

SGL

Figure 5: Structure of the Stochastic Gated Layer (SGL) used to filter the actor output. Here µd and µs respectively
stand for µdense and µsparse.

The proposed methods rely on a common masking mechanism clipping action components downstream the
policy. If adense ∼ πdense is the stochastic action provided by the actor, the aim is to learn a binary mask p ∈ {0, 1}nact

reducing the number of non-null actions components to a prescribed amount. As illustrated by figure 5, where the
gated (or clipped) action asparse can be defined as:

µ
sparse

= p ⊙ µ
dense
+ (1 − p) ⊙ µ̄

and asparse = N

(
µ

sparse
, σ
)
,

with ⊙ being the scalar dot product, and µ̄ being substitution values (in our case µ̄ is a null vector). This structure is
a simplified version of the Stochastic Gating Layer (SGL) by Louizos et al. (2018). p aims at being a deterministic,
binary-valued vector, yet during training, this vector is sampled so that:

pi = f (αi, ui) =

1, if ui ≥ αi

0, otherwise
(2)

5

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

where u ∈ [0, 1]nact is a random vector and α is a trainable vector that sets the probability for the gate to be open, as
shown in figure 5. The aim is then to derive a relevant loss LS GL, updating α by a gradient descent method in order to
reach the prescribed number of clipped action components. The considered loss aims at balancing two terms, the first
promoting the opening of the most "useful" gate components, the second encouraging gate closing:

LS GL = −

nact∑
i=1

Es∼T,a∼π [|∆i(s)|]αi + λ

nact∑
i=1

P(pi > 0)

= α ⊙

nact∑
i=1

(
−Es∼T,a∼π [|∆i(s)|] + λ

)
ei

where λ is a scalar weighting the penalization term, ei the ith standard unit vector of Rnact and Es∼T,a∼π [|∆i(s)|] is a
measure of the "usefulness" of the ith action component for control. Its definition is discussed in the following sections.
This way, λ is algorithmically scheduled to control the number of gates to close to reach a given user-prescribed number
of actuators ntarget. Indeed, the gradient of the loss with respect to each gate parameter αi reads:

∇αiLS GL = λ − Es∼T,a∼π [|∆i(s)|] .

Following a classical gradient minimization, αi grows if ∇αiLS GL is negative and decreases otherwise, consequently
opening or closing the corresponding gate.

The action-sparsity-seeking algorithm training phases unwind as follows:

1. A first standard training phase where the policy is trained with all its action components (SGL gates are kept
"open" during this phase), until a steady (maximum) performance is reached.

2. A second phase where all metrics Es∼T,a∼π [|∆i(s)|] (whatever their definition) are learned or estimated. SGL
gates are still being kept frozen in this phase.

3. A third phase where, roll-outs are only performed to update the SGL αi values using LS GL computed thanks
to frozen values of Es∼T,a∼π [|∆i(s)|]. π and V are trained alongside α in order to adapt the policy and its value
estimation to the effective modification of α.

4. Restart to step 1 until the prescribed number of actuators is reached.

Figure 6: Example of the one-by-one elimination strategy drawn from a Kuramoto-Savishinsky test case (section 2.2).
The performance curve (red line) has been smoothed using rolling average of length 20 for the sake of readability.
Shaded areas in the background illustrate learning phases. Black dots represent the evaluation runs and the checkpoint
back-ups of the agent performed during training.

Figure 6 provides an illustrative example of the elimination process. One can first notice that phases 1, 2 and
3 are of varying lengths (in number of training epochs) depending on the current number of action components (as
called complexity). This is due to the fact that once the ith component is eliminated, Es∼T,a∼π [|∆i(s)|] no longer needed
to be computed. In order to spare useless training roll-outs, the corresponding training epochs are skipped and the
corresponding gradient component is set to a value guaranteeing that the component is always selected among the
eliminated set of components forever-after. A second factor comes from the fact that switches from phase 1 to 2 and
2 to 3 are conditioned to the stability of the performance. If this criterion is not met, training remains in the current
phase. This action-sparsity-seeking variant of PPO-CMA is denoted AS-PPO-CMA thereafter.

6

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

3.2 Choosing the ranking metric

Defining the ranking metric Es∼T,a∼π [|∆i(s)|] is the last task at hand. The impact on performance of eliminating a given
action component is hard to evaluate for multiple reasons. A control action has an effect on the next state transition
but also on the following ones. Strictly speaking, the dynamics T of our system satisfies the Markov property (i.e
the Markov decision process is memoryless: T (st+1|st, at) = T (st+1|st, at, st−1, at−1, . . .)), this means the long-term
impact should be entirely "encoded" in the next transition only. Yet, this impact may be hard to quantify, all the
more that we resort to estimators trained in noisy data. Second, the elimination of an actuator puts the agent off-
balance, and it "recovers" again by converging to a new extremum, by adapting its policy. It is only after this policy
adaptation that the complete impact of eliminating an action component can be measured. Lastly, the order in which
components are removed yields a potentially important impact on the final solution since, some actuators may have a
different "importance" depending on the gating state of other ones and especially neighbors that might substitute for
their removal or not. As we chose to proceed to a sequential elimination, this last issue cannot be solved satisfactorily
and results must be considered with that in mind.

Thus we derive the following criteria, that an ideal metric would comply with:

1. Stable & reproducible: The metric must find the right balance between rapid adaptation to a significant evo-
lution of the policy π but also enable a consistent and stable ranking of actuators once the control performance
plateaus.

2. Computationally cheap: The computation overhead of the metric should be as limited as possible, both in terms
of extra training epochs to run and of structures/estimators to compute.

3. Far-sighted: The long-term effects (on a run) of clipping an action component should be taken into account by
the metric.

4. One-move-ahead: The metric should be able to consider the policy adaptation resulting of the elimination of an
action component.

5. Context-decoupled: The metric should be able to accurately estimate the value of any combination of remain-
ing action components at any time in the process. This last one is obviously not realizable with the current
hypotheses.

All the candidate metrics are described in the following sections. Their compliance to these criteria and their
performance on the two test-cases is compared and discussed later on.

3.3 Value function analysis

Environment

Actor π

SGL

N (µ, σ)

Ai

×

Clipping
(1− δij) Critic V

Critic V i

−

Ai

Reward
rtObservation

st

σ

µdµs

Action
at

Optimisation

Optimisation

Figure 7: AS-PPO-CMA agent structure with value func-
tion estimation. The second training phase see the alter-
nation of policy π and main critic V training with specific
training for each critic V i. The third phase focuses on tun-
ing the SGL gate opening probability on the eliminated
action component.

Environment

Actor π

SGL

N (µ, σ)

Polyak avg. Critic V

I(∆s, ai)

Reward
rtObservation

st

σ

µdµs

Action
at

Optimisation

Optimisation

Figure 8: AS-PPO-CMA agent structure with mutual in-
formation estimation. In that case, both first and second
training phases are performed simultaneously since mu-
tual information estimation can be performed "on-the-fly"
without any extra data collection roll-out.

7

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

This first of the candidate metrics relies on a "what-if" analysis performed on the value function. A Polyak
averaged estimation of Es∼T,a∼π [|∆i(s)|] is considered and ∆i(s) is defined as:

∆i(s) = Vπ(s) − Vπ
i
(s)

where Vπ estimates the expected return under policy π with the current gating mask and is already estimated by the
standard PPO-CMA training process. Vπ

i
estimates the projected value function under the clipped policy πi = (1−δi j)π,

where the ith action component is clipped systematically. The proposed method is rather straightforward as Vπ
i

is
directly estimated using observed return values Rt of roll-outs (whose data is stored in buffer Bi) performed using πi

as policy, thanks to a simple action-clipping mechanism downstream of the actor. Thus, in addition to the previously
introduced neural structures, n extra neural networks V i are built and tasked with providing accurate values for Vπ

i
for

each i ∈ {0, ..., n − 1} as illustrated by figure 7. The training loss for each action component i is defined as:

LV i =
1
|Bi|

∑
(st ,Rt)∈Bi

(
Rt − V i(st)

)2
.

3.4 Mutual information analysis

The second metric is also deeply rooted into reinforcement learning hypotheses, and more precisely to the Markov
Decision Process underlying the control problem. This metric proposes to rank actuators by the mutual information
I(∆s, ai) computed between their action signal at,i and the partial state transition ∆st = st+1 − st. Mutual information
measures the dependence between two random variables, by giving the amount of information the observation of one
variable gives about the other. I is 0 if both variables are independent. Given X and Y two random variables, one can
write their mutual information as:

I(X,Y) = H(X) − H(X|Y) = H(Y) − H(Y |X)

with H being the entropy of the random variable. This way, using I(∆s, ai) as an indicator of the actuator “importance"
relies on the hypothesis that the flow partial dynamics st+1 ∼ T (·|st, at) complies well enough to the Markov property
so that st+1 contains all the relevant information about the forcing effect of at,i. The heuristic is that, if a given action
component is “useless", it won’t notably influence the state dynamics, contrary to an “important" action component
that will “drive" the dynamics. In the latter case, the knowledge of such an action will reduce the uncertainty (H) about
the state transition far more than in the first case.

Both entropy measures cannot be directly computed using the collected data. However, expressed as a Kullback-
Leibler divergence I(X,Y) = DKL(P(X,Y)||P(X) ⊗ P(Y)), the Donsker-Varadhan variational formulation (Donsker &
Varadhan, 1975) enables to compute a neural-network estimator of I:

I(∆s, ai) = sup
ϕ∈Mb(Ω)

(
EP(∆s,ai)

[
ϕ
]
− EP(∆s)⊗P(ai)

[
eϕ
])
,

where Ω is the sample space of (∆s, ai),Mb(Ω) the set of all bounded measurable functions of Ω. Thus the function
ϕ can be embodied by a neural-network and be trained to maximize the argument of the supremum. This method has
been successfully used by Belghazi et al. (2018), Hjelm et al. (2018) and numerous other studies in the domain of
image classification. As illustrated by figure 8, each mutual information I(∆s, ai) is estimated by a neural network (one
per action component) and a Polyak average is run on these quantities to ensure stability throughout training. In that
case, the maximum gate opening probability is not set to 1 but to 0.95 for reasons that are discussed later in part 4.6.

3.5 Norm-based

This last candidate metrics is based on the assumption that injected energy by the forcing is somehow proportionally
linked to its impact on the flow. Thus, quantifying by a norm the forcing action appears relevant as ranking indicator.
For a given actuation component i, one can estimate the expectation of ai L2-norm Ni on a control run:

Ni = Es∼T,a∼π [||ai||2] .

Here the choice of an L2-norm is rather arbitrary and can be discussed. This metric can simply be computed on the
roll-out data, using a Polyak averaging to ensure an increased stability of the measurement.

8

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

4. Results and discussion

In this section, the results of the three metrics on both test-cases are described and discussed. The study on the KS
equation is performed using batches of respectively 200, 100 and 100 test-cases for the value function, the mutual
information and the action norm metrics. The low computational cost of this environment allows for large batch sizes
and thus quantitative and statistical analyses. A systematic study, where all 256 possible actuators layouts have been
trained has been performed to be used as reference point. On the other hand, the slow convergence and large computa-
tional cost of the NACA test-case does not allow a systematic study enables only qualitative analyses, illustrating the
potential of each method for flow control, batch sizes are respectively 5, 10 and 10 for the value function, the mutual
information and the action norm metrics.

4.1 Comparison between metrics

Figures 9 and 10 compares the performances of the three metrics on the test cases. One can first notice that the mutual
information performance for large numbers of actuators is significantly lower than the other performances on both test
cases. This is due to the maximum open gate probability value set to 0.95 instead of 1 for the other metrics. It has been
verified (refer to part 4.6) that with fully open gates, mutual information performs as well as the other methods. On
the case of the KS equation (figure 9), all methods seem to perform rather equivalently within each other and match
the performances of the systematic study (blue line), considered as almost topmost reachable performance. All the
three metrics seem to be performing slightly better than the systematic study for one actuator, which is likely due to
a different convergence (1000 training epochs for the systematic study versus around 2500 epochs from the start for
action-sparsified cases).

Figure 9: Average training performance with respect to the
number of active action components on the KS test-case.
The results of the proposed metrics (orange, green and red
lines) are compared with the ones of the systematic study
(blue line). Shaded areas illustrate ensemble standard de-
viations. Both maximum theoretical reward (dotted line)
and baseline (no control - dashed line) performances are
reported in black lines.

Figure 10: Average training performance with respect to
the number of active action components on the NACA
test-case. The solid lines indicate averages while, shaded
areas illustrate ensemble standard deviations. The reward
scaling is arbitrary since no re-attached base-flow has been
computed to estimate the maximum theoretical reward
value, but the average baseline reward computed is used
as reference.

On the case of the NACA, the action norm and the value function seem to peak in performance for 5 actua-
tors. This remains to be completely explained but one can hypothesize that it comes from the conjunction of reward
formulation promoting stability, and the exploration noise, added to each action, whose impact thus decreases with
the number of active components. This way, one can assume that a competition between these two factors reaches
an optimized trade-off with 5 actuators. On the other hand concerning the mutual information metric, the open gate
probability being less than one, this adds an extra source of action noise. This may be the reason of not having the
same peak in performance as the two others.

9

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

4.2 Statistical study of the results on the KS equation

A frequency analysis has been led to illustrate the different behaviors of the proposed metrics. Results are presented in
figure 11. First, the norm-based analysis appears to behave differently than the two others with much diverse elimina-
tions choices. The only major trend is the early removal of actuators #3 and #4. Both the value function and mutual
information metrics remove the same first actuator (#0) but they quickly diverge. Overall, the mutual information en-
courages more spread-out layouts (refer to ntarget = 4), with a evenly likely elimination of these remaining actuators
afterwards, while the value function analysis quickly removes actuators #3 and #4, consistently with the action-norm
metric, but afterwards proceeds more reproducibly and end-ups with most likely keeping actuator #7.

Figure 11: Frequency histograms of the obtained layouts (bar plots) for the value function (top, orange bars), the mutual
information (middle, green bars) and action-norm (bottom, red bars) metrics. These can be compared to the best layout
from the systematic study (blue numbered boxes). Fixed point E1 has been plotted in the background as a reference.

None of the proposed metrics match the optimal layout from the systematic study. This is to be considered with
both the fact that multiple layouts provide nearly optimal performances and the sequential aspect of the methods that,
for instance, prevents the transition from the optimal layout with 4 actuators to the one with 3.

Figure 12: Entropy of obtained layouts with respect to the number of active actuators. The systematic study displays
the maximum reachable entropy.

These trends are further confirmed by figure 12 showing the observed layout entropy with respect to the number
of actuators. The entropy H of the layouts is computed as follows:

H =
∑

l ∈ layouts

fl log (fl) ,

where fl is the observed frequency of a given actuator layout over the batch. The first deterministic choice of the mutual
information metric complies with its entropy value remaining null. The overall trend of the action-norm method to

10

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

produce a wider variety of layouts is confirmed by its entropy values, almost as high as the maximum value. The other
tendency of the mutual information method being more reproducible than the value function method at the beginning
of the elimination then becoming less deterministic is also confirmed. For instance, both value function and mutual
information methods propose 10 different layouts having 4 active actuators, but the distribution is more even in the
case of the value function, thus leading to a higher entropy.

4.3 Computational cost

The three proposed metrics require various computational overheads, both in terms of increased training duration (in
epochs) than in neural network optimization. Since all neural networks have the same size and number of layers, the
impact of the architecture of the neural structures being out of the scope of the present study. The computational
overhead is thus counted in number of extra epochs and/or average number of neural networks optimized per training
epoch. Both measures are segregated since the overhead cost is made of both the cost of running the environment and
of the optimization phase. The total computational overhead ratio is defined as:

total overhead ratio =
(
1 + extra epoch ratio

) (
1 + computational overhead ratio

)
− 1

where extra epoch ratio =
average number of extra epochs

average reference number of epochs

and computational overhead ratio =
computational overhead

environment cost + optimization cost
(per epoch).

The environment cost per epoch (in floating-point operations) is hard to estimate especially in the case of a CFD
simulation, but compared to a unitary optimization cost, it can be considered negligible in the case of the KS equation
and dominating for the NACA test case. Table 1 summarizes the computational overheads in the case of the KS
equation (env. cost≪ optim. cost) and the NACA flow (env. cost≫ optim. cost), for the three proposed metrics:

Metric Extra epoch ratio Comp. overh. ratio (KS vs NACA) Total overh. ratio (KS vs NACA)
Value function 92% −24% ∼ 0% 46% ∼ 92%

Mutual information 0% 310% ∼ 0% 310% ∼ 0%
Action norm 0% 0% 0%

Table 1: Comparison of computational overheads for the three proposed metrics.

The value function yields a negative computational overhead ratio per epoch simply because runs of the second
training phase are only dedicated to training one V i network. Yet the total overall ratio is much larger than one due
to the larger extra number of epochs required to run approximately nact extra "what-if" analysis roll-outs. Despite
some skipping mechanisms allowing to reduce the computational burden on already converged value functions and
eliminated components, this can represent a major drawback for costly environments such as CFD simulations. The
mutual information analysis runs "on-the-fly", thus no extra epochs are needed. The increased number of neural
networks is the only source of overhead. In the case of the KS equation, the environment running cost is supposed
null, thus giving a clear advantage to the value function metric, but for NACA flow, the value function becomes much
less advantageous (since extra epoch ratio costs scale with environment costs), and the global overhead induced by
the mutual information method shrinks to a negligible value. Other considerations such as the stability of the metrics,
impact the lengths of the training phases or initial number of actuators may have a small impact on the results, but
would not impact the orders of magnitudes and thus, the conclusions.

4.4 Qualitative study of the results on the NACA test-case

Figure 13 illustrates the evolution of both drag (Cd) and lift (Cl) coefficients with the number of active action com-
ponents. Compared to the value function analysis, both mutual information and action norm metrics tend to provide
a lower performance for large numbers of actuators. This is likely due to a shorter second phase of training (where
ranking estimators are converged) for these two methods, where the agent is further optimized. Mutual information
appears to clearly perform worse than the other metrics on the average lift, this fact remains to be explained. This
performance indicator not being directly embedded in the reward formulation, one can see it as a secondary objective
that is expected to increase as the flow reattaches. One should note that these performances are measured during the
elimination process. It is likely that performances achieved by the obtained actuator layouts trained from scratch would
be different.

11

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

Figure 13: Averaged training performance indicators with respect to the number of active action components. Ensemble
averages are computed on these data points (batch-size 5, 10 and 10 respectively). The blue dashed line represents the
uncontrolled (baseline) performance, lines denote the evolution of the ensemble average and shaded areas illustrate the
standard deviation across the batch. All indicators are computed on the last 40 control steps of a training run. (Upper
left and right) Evolution of the standard deviation of the drag S (Cd) and lift S (Cl) coefficients. (Lower left and right)
Time-averaged drag Cd and lift Cl coefficients.

4.5 Actuator neighboring effect

Figure 14 illustrates the impact of the elimination of a given actuator on the perceived importance of its neighbors
on the KS equation. The elimination of the first actuator starts as soon as both performance and mutual information
estimates are stabilized. From epoch 450 onward, the first actuator (actuator #0, located at x = 0.0625) is eliminated
and consequently the mutual information of its two neighbors (actuators #1 and #7) drastically increases and stabilizes
as the first two highest mutual informations, indicating their modified importance. This phenomenon also occurs during
the second elimination (of actuator #6) where both actuators #5 and #7 see their importance modified.

Figure 14: Evolution of the estimated mutual informations I(∆s, ai) for each actuator during training on the KS test-
case. Averages are performed on a batch of 100 test-cases. Color-shaded areas correspond to the ensemble standard
variation. Gray-hatched zones indicate the periods during which an action component is eliminated. Only the first two
eliminations are reported here, for the sake of readability.

These observations support the fact that a simultaneous elimination would yield widely different actuator layouts
and performances since for instance actuator #7 would be the second one eliminated with this method instead of being
kept longer using sequential elimination.

12

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

4.6 Correlation versus causation

Multiple ranking indicators are proposed in the current study. They all rely on indirect links between a given estimated
quantity and the true quantity of interest which is the maximum performance (expected return) a given actuator layout
would enable with a fully converged agent. One may then question if these links exploit a real causation or if it simply
uses a possibly biased correlation.

Figure 15: Average training performance with respect to
the number of active action components on the KS test-
case for he mutual information metric obtained with an
initial gate opening probability of 0.95 (green) and 1 (pur-
ple).

Figure 16: Frequency histograms of the obtained layouts
(bar plots) for the mutual information metric obtained with
an initial gate opening probability of 0.95 (top, green) and
1 (bottom, purple). These can be compared to the best
layout from the systematic study (blue numbered boxes).
Fixed point E1 has been plotted in the background as a
reference.

The action-norm-based metric uses the assumption that action norm (proportional to the injected forcing power
in the system) correlates with the importance of the actuator. This correlation may obviously be spurious, for instance
if an actuator is located somewhere insensitive to forcing. Value function analysis breaks the correlation of policy-
produced action components by imposing null action values and thus directly performing the removal experiment
all other things held constant. This method directly ensures causation. At last, for the mutual information metric,
correlation may become more and more biased as the policy converges it becomes increasingly deterministic (π∗ is not
stochastic). Thus, action components become correlated with one another, but the causation between a given action
component ai and a state transition ∆s cannot be asserted, since this transition could be caused by another correlated
action component. This explains why the maximum and initial gate opening probability is set to 0.95 instead of 1. This
uncertainty indeed slightly decorrelates the action components at the expense of a lower performance for five and more
actuators as shown by figure 15. Figure 16 shows that this decorrelation enables a more deterministic/reproducible
choice of layouts, most likely indicating a better choice quality.

5. Conclusion

In this study, three candidate metrics quantifying the importance of each actuator have been tested on two different
test-cases: the 1-D Kuramoto-Siavshinky equation, which is a cheap environment displaying dynamics close to low
Reynolds flows and presents intrinsic challenges to actuator selection and a bi-dimensional NACA airfoil flow, closer
to practical control issues in fluid mechanics.

Criterion Perfo. Stable & Repro. Comput. Far-sighted 1-move-ahd. Context-dec.
Value function ✓ ∼ ✗ ✓ ✗ ✗

Mutual information ∼ ✓ ✓ ✓∗ ✗ ✗
Norm-based ∼ ✗ ✓ ∼∗ ✗ ✗

Table 2: Qualitative comparison of the fitness of the three introduced metrics to the previously presented quality criteria.
*Depends on the compliance of the observation dynamics to the Markov property.

13

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

Numerous issues ranging from performance to computational cost have been discussed and are qualitatively
summarized in table 2. While value function appears as the most reliable metric in terms of actuator elimination and
performance, it becomes prohibitively expensive for costly environments compared to the mutual information metric
which is slightly less efficient but guarantees stable computational costs. At last, the action norm metric is the simplest
indicator but is clearly biased by the spurious correlation between action amplitude and action importance to the control
law.

All the previously introduced methods rely on a model-free policy-iteration algorithm (PPO-CMA). Indirect
optimizations using value-iteration (such as DDPG or DQN), that are normally considered less efficient since not
principled to the control objective, could become interesting in the context of actuator elimination that requires off-
policy data. Model-based RL algorithms could also introduce a relevant approach to this issue.

Acknowledgments

This work is funded by the French Agency for Innovation and Defence (AID) via a PhD scholarship, their support is
gratefully acknowledged.

References

Amitay, Michael& Glezer, Ari 2002 Role of actuation frequency in controlled flow reattachment over a stalled airfoil.
AIAA Journal 40 (2), 209–216.

Belghazi, Mohamed Ishmael, Baratin, Aristide, Rajeshwar, Sai, Ozair, Sherjil, Bengio, Yoshua, Courville, Aaron
& Hjelm, Devon 2018 Mutual information neural estimation. pp. 531–540. PMLR.

Bhattacharjee, Debraj, Hemati, Maziar, Klose, Bjoern & Jacobs, Gustaaf 2018 Optimal actuator selection for airfoil
separation control. In 9th AIAA Flow Control Conference, 2018, p. 3692.

Bruneau, Charles-Henri & Mortazavi, Iraj 2008 Numerical modelling and passive flow control using porous media.
Computers & Fluids 37 (5), 488–498.

Brunton, Steven L & Noack, Bernd R 2015 Closed-loop turbulence control: progress and challenges. Applied Me-
chanics Reviews 67 (5), 050801.

Brunton, Steven L., Noack, Bernd R. & Koumoutsakos, Petros 2020 Machine learning for fluid mechanics. Annual
Review of Fluid Mechanics 52, 477–508.

Bucci, Michele Alessandro, Semeraro, Onofrio, Allauzen, Alexandre, Wisniewski, Guillaume, Cordier, Laurent&
Mathelin, Lionel 2019 Control of chaotic systems by deep reinforcement learning. Proceedings of the Royal Society
A 475 (2231), 20190351.

Chomaz, Jean-Marc 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev.
Fluid Mech. 37, 357–392.

Dandois, Julien, Mary, Ivan & Brion, Vincent 2018 Large-eddy simulation of laminar transonic buffet. Journal of
Fluid Mechanics 850, 156–178.

Donsker, Monroe D. & Varadhan, S. R. Srinivasa 1975 On a variational formula for the principal eigenvalue for
operators with maximum principle. Proceedings of the National Academy of Sciences 72 (3), 780–783.

Edwards, Jack R. & Liou, Meng-Sing 1998 Low-diffusion flux-splitting methods for flows at all speeds. AIAA Journal
36 (9), 1610–1617.

Evans, Humberto Bocanegra, Hamed, Ali M., Gorumlu, Serdar, Doosttalab, Ali, Aksak, Burak, Chamorro,
Leonardo P. & Castillo, Luciano 2018 Engineered bio-inspired coating for passive flow control. Proceedings of
the National Academy of Sciences 115 (6), 1210–1214.

Giannetti, Flavio & Luchini, Paolo 2007 Structural sensitivity of the first instability of the cylinder wake. Journal of
Fluid Mechanics 581, 167–197.

Hämäläinen, Perttu, Babadi, Amin, Ma, Xiaoxiao & Lehtinen, Jaakko 2020 Ppo-cma: Proximal policy optimization
with covariance matrix adaptation. In 2020 IEEE 30th International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6. IEEE.

14

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

Hjelm, R. Devon, Fedorov, Alex, Lavoie-Marchildon, Samuel, Grewal, Karan, Bachman, Phil, Trischler, Adam &
Bengio, Yoshua 2018 Learning deep representations by mutual information estimation and maximization. arXiv
preprint arXiv:1808.06670 .

Joubert, Gilles, Le Pape, Arnaud, Heine, Benjamin & Huberson, Serge 2013 Vortical interactions behind deployable
vortex generator for airfoil static stall control. AIAA Journal 51 (1), 240–252.

LeCun, Yann, Bengio, Yoshua & Hinton, Geoffrey 2015 Deep learning. Nature 521 (7553), 436–444.

Li, Jichao & Zhang, Mengqi 2022 Reinforcement-learning-based control of confined cylinder wakes with stability
analyses. Journal of Fluid Mechanics 932, A44.

Louizos, Christos, Welling, Max & Kingma, Diederik P. 2018 Learning sparse neural networks through l0 regulariza-
tion. Sixth International Conference on Learning Representations, Vancouver Canada, Monday April 30-Thursday
May 03, 2018 .

Natarajan, Mahesh, Freund, Jonathan B. & Bodony, Daniel J. 2016 Actuator selection and placement for localized
feedback flow control. Journal of Fluid Mechanics 809, 775–792.

Paris, Romain, Beneddine, Samir& Dandois, Julien 2021 Robust flow control and optimal sensor placement using deep
reinforcement learning. Journal of Fluid Mechanics 913, A25.

Rabault, Jean, Kuchta, Miroslav, Jensen, Atle, RÃ©glade, Ulysse & Cerardi, Nicolas 2019 Artificial neural net-
works trained through deep reinforcement learning discover control strategies for active flow control. Journal of
Fluid Mechanics 865, 281–302.

Rogers, James 2000 A parallel approach to optimum actuator selection with a genetic algorithm. In AIAA guidance,
navigation, and control conference and exhibit, p. 4484.

Sashittal, Palash & Bodony, Daniel J. 2021 Data-driven sensor placement for fluid flows. Theoretical and Computa-
tional Fluid Dynamics 35 (5), 709–729.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec & Klimov, Oleg 2017 Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347 .

Seifert, A., Bachar, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993 Oscillatory blowing: a tool to delay
boundary-layer separation. AIAA Journal 31 (11), 2052–2060.

Seifert, Avraham, Darabi, A. & Wyganski, Israel 1996 Delay of airfoil stall by periodic excitation. Journal of Aircraft
33 (4), 691–698.

Seifert, A. & Pack, L. G. 1999 Oscillatory control of separation at high reynolds numbers. AIAA Journal 37 (9),
1062–1071.

Seshagiri, Amith, Cooper, Evan & Traub, Lance W. 2009 Effects of vortex generators on an airfoil at low reynolds
numbers. Journal of Aircraft 46 (1), 116–122.

Shimomura, Satoshi, Ogawa, Takuto, Sekimoto, Satoshi, Nonomura, Taku, Oyama, Akira, Fujii, Kozo & Nishida,
Hiroyuki 2017 Experimental analysis of closed-loop flow control around airfoil using DBD plasma actuator. In
ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017, , vol. 58066, p. V01CT22A004. American
Society of Mechanical Engineers.

Shimomura, Satoshi, Sekimoto, Satoshi, Oyama, Akira, Fujii, Kozo & Nishida, Hiroyuki 2020 Closed-loop flow sepa-
ration control using the deep Q network over airfoil. AIAA Journal 58 (10), 4260–4270.

Sivashinsky, Gregory I. 1980 On flame propagation under conditions of stoichiometry. SIAM Journal on Applied
Mathematics 39 (1), 67–82.

Vinuesa, Ricardo & Brunton, Steven L. 2021 The potential of machine learning to enhance computational fluid
dynamics. arXiv preprint arXiv:2110.02085 .

Wang, Yi-Zhe, Mei, Yu-Fei, Aubry, Nadine, Chen, Zhihua, Wu, Peng & Wu, Wei-Tao 2022 Deep reinforcement
learning based synthetic jet control on disturbed flow over airfoil. Physics of Fluids 34 (3), 033606.

15

DOI: 10.13009/EUCASS2022-7350

ACTION SELECTION WITH DRL TRAINED FLOW CONTROL

Wu, Jie-Zhi, Lu, Xi-Yun, Denny, Andrew G., Fan, Meng & Wu, Jain-Ming 1998 Post-stall flow control on an airfoil
by local unsteady forcing. Journal of Fluid Mechanics 371, 21–58.

Yeh, Chi-An & Taira, Kunihiko 2019 Resolvent-analysis-based design of airfoil separation control. Journal of Fluid
Mechanics 867, 572–610.

16

DOI: 10.13009/EUCASS2022-7350

	Introduction
	Test-cases and base RL algorithm
	Proximal Policy Optimisation with Covariance Matrix Adaptation
	The 1D Kuramoto-Sivashinsky equation
	2D flow around a stall NACA airfoil

	Actuator ranking
	A generic gating mechanism and procedure
	Choosing the ranking metric
	Value function analysis
	Mutual information analysis
	Norm-based

	Results and discussion
	Comparison between metrics
	Statistical study of the results on the KS equation
	Computational cost
	Qualitative study of the results on the NACA test-case
	Actuator neighboring effect
	Correlation versus causation

	Conclusion

