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Abstract
Virtually every controller and component involves a number of parameters whose correct tuning can be
critical to ensure satisfactory performance. Because the manual tuning of controllers is tedious and time-
consuming, resulting control and GNC systems often operate at reduced performance. In this paper, we
propose the automatic tuning of GNC parameters based on Bayesian Optimization (BO) constrained with
Temporal Logic (TL) constraints. We validate the methodology proposed against two study cases: the
tuning of a classical control problem in form of an inverted pendulum, and the retuning of the GNC
subsystem for an autonomous parafoil system in the final approach phase just prior to pinpoint landing. Our
results show how temporal logic constrained BO can be efficiently used to improve system performance,
explore parameter interdependencies and provide valuable insights to support the tuning of GNC systems
to fulfill complex requirements.

1. Introduction

Automated tuning of control systems (auto-tuning) has been a long-standing problem in control and continues to be an
active research field. Classical automatic tuning methods typically target simple SISO structures such as PID control
[1]. For complex control systems the relationship between parameterization and achieved performance (potentially with
respect to high-level goals or requirements) often becomes prohibitively hard to express concisely and techniques such
as global derivative-free optimization algorithms have been considered for their automatic optimization e.g. particle
swarm [2] in [3], ant colony [4] in [5] and genetic algorithms [6] in [7]. Even though they have obtained promising
results, they often require a vast number of simulations or experiments in order to find good optimizers. In these
settings, data efficiency quickly becomes a dominating issue, in particular if experiments on real hardware are involved.

This motivates the use of data-efficient techniques such as Bayesian Optimization (BO) which aims to reduce the
number of simulations required to obtain the optimum value. The explicit consideration of noisy function evaluation,
as well as extension for constrained optimization, further add to the attractiveness of BO for controller tuning. In the
context of controller learning, BO can be understood as aiming at optimizing a closed-loop performance metric cost
J(x) as a mapping of the controller parameters x which is evaluated over a sequence of finite-time experiments and has
gathered significant attention in recent years [8] [9] [10] [11].

Given the flexibility of this framework, it is then attractive to use the approach to tune with respect to high-level
requirements, which we express via temporal logic expressions. Temporal logic provides a framework combining
familiar (Boolean) logical operations with temporal modalities to describe a rich set of specifications, based e.g. on
the output signals of a system evolving over time. This allows for the precise expressions of requirements and subse-
quent formal manipulation, enabling the development of automated and systematic design and verification methods.
We employ quantitative semantics of such expression to formulate the requirements as constraints in our black-box
optimization [12], arriving at an algorithm that efficiently explores the parameter regions to maximize the performance
while satisfying temporal logic requirements in the form of constraints.

The ideas described above have been translated into a toolbox called GNCTuner that has been developed by
SENER. The GNCTuner toolbox is a global optimization toolbox based on BO where it is possible to express constraints
in the form of TL expressions. This toolbox has been specifically designed for the tuning of GNC parameters since a)
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given the Gaussian nature of the BO algorithm, it performs correctly in stochastic environments, and b) TL allows to
capture and manage efficiently the requirements of the mission.

This paper is organized as follows. Section 1 provides an introduction to BO and TL. Section 2 then presents the
GNCTuner toolbox description while Section 3 contains the simulation studies carried out to test the performance of
the toolbox. Finally, in Section 4 we draw some conclusions based on the results obtained with the GNCTuner toolbox.

1.1 Bayesian Optimization

Bayesian Optimization (BO) describes a family of ML-based optimization techniques minimizing an unknown ob-
jective function having access only to noisy observations thereof [13]. In this contribution, we consider the case of
constrained and contextual BO which aims to solve problems of the form

minimize
x ∈ D ⊂ Rd

E( f (x, p,w))

subject to E(c j(x, p,w)) ≤ 0 , j = 0, . . . , nc ,
(1)

where the optimization variable x typically has reasonably low dimension d and the context variable p ∈ Rdp parame-
terizes the problem. The only access to objective and constraint functions is through noisy evaluations y = f (x, p,w),
yc = c j(x, p,w), respectively, in which w describes the random noise and is typically independently distributed be-
tween evaluations. The goal of the optimization is then to find x∗(p) minimizing the objective function while satisfying
constraints in expectation in an effective manner, i.e. reducing the number of function evaluations.

The main components that constitute the BO framework to achieve that goal are

(a) a surrogate model of the objective and constraint functions, typically presented by Gaussian process (GP)1; and

(b) an acquisition function αi : Rd+dp → R, where i is the current optimization step, on the basis of which the BO
algorithm selects a new probing location to effectively navigate the exploration-exploitation tradeoff.

Surrogate Model GP regression is a kernel-based nonlinear stochastic regression technique that provides the inter-
pretation of a distribution over functions and is used as the standard surrogate model in BO. A Gaussian process

f (x) ∼ GP(µ(x), k(x, x′))

is completely specified by its prior mean and covariance function

µ(x) = E( f (x))
k(x, x′) = cov( f (x), f (x′))

based on which the posterior distribution of the function f (after collection of data {xi, yi}) can be computed. The
stochastic Bayesian interpretation – and in particular the fact that function evaluations of f follow a Gaussian distribu-
tion – is a distinguishing feature of Bayesian optimization setting it apart from competing optimization schemes.

In GP regression, it is generally assumed that the observations are function evaluations perturbed by additive
Gaussian noise with fixed intensity yi = f (xi) + wi, where wi ∼ N(0, σ2

n). In this case, the inference can be carried out
in closed form by Gaussian conditioning, while (hyperparameter) training, e.g. the tuning of parameters affecting the
kernel function k, is often done through marginal likelihood maximization, see e.g. [15] for a comprehensive overview.
Practically, GP regression is often very effective also if these assumptions are violated – as is the case in scenarios we
consider in this paper. Extensions have been developed, dealing e.g. with spatially varying noise characteristics [16],
mixture and multi-modal models [17, 18, 19], or heavy-tailed distributions, aiding robustness to outliers [20], which
we do, however, not consider here.

Acquisition Function The acquisition function αi acts as a surrogate cost function that is optimized to enable efficient
exploration and thereby define the following probing location

xi+1 = arg min
x ∈ D

αi(x) , (2)

where i is the current optimization step and xi+1 the new location at which objective and constraint functions are to
be evaluated. The acquisition function αi is then much easier to optimize than the original f since it is based on the

1Note that alternatives exist and the algorithm is generally adaptable to any Bayesian surrogate model [14]
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GP approximation and does not require expensive (simulation) experiments associated with the evaluation of f (x). A
multitude of choices of different acquisition functions exists. In this contribution, we focus on variants of the expected
improvement (EI) acquisition function [21]. In particular, we consider the so-called plug-in expected improvement
[22] which can be expressed as

αPEI
i (x) = (µi(x) − µ∗i )Φ

(
µ∗i − µi(x))
σi(x)

)
− σi(x)φ

(
µ∗i − µi(x))
σi(x)

)
, (3)

where φ and Φ are the density and cumulative distribution function of the standard normal distribution and µi(x),
σi(x) the mean and standard deviation at x of the current GP surrogate model. The current estimated optimal value,
represented by µ∗i is then selected as the best posterior mean of the objective function among previous evaluation points

µ∗i = min
1≤k≤i

(µi(xk) − βσi(xk)) (4)

where β ∈ R is a parameter that defines the quantile used to establish the current minimum. Throughout this
paper, we use β = 2.

Constrained Bayesian Optimization In constrained BO, the (unknown) feasible region of the problem is defined by{
x
∣∣∣ c j(x) ≤ 0, j = 1, . . . , nc

}
in which nc is the number of constraints present. We consider an approach following largely [12] and [23] which
assumes access to (noisy) real-valued evaluations of the constraint functions c j, allowing for the training of surrogate
constraint models c j ∼ GP directly analogous to the objective function f . The EI acquisition function can then be
adjusted to the constrained case by weighing the expected improvement with the probability of constrained satisfaction

αwPEI
i = αPEI

i (x)
nc∏
j=1

p j.i(x) , (5)

where p j.i(x) is the probability of constraint satisfaction under the surrogate model c j,i. Due to the fact that under the
GP surrogate model c j,i(x) follows a Gaussian distribution, this probability can be expressed in a straightforward way as

p j.i(x) = Φ
(
−µ j,i(x)
σ j,i(x)

)
where µ j,i(x), σ j,i(x) are posterior mean and standard deviation of the surrogate model of constraint

j and optimization step i.

Contextual Bayesian Optimization Contextual BO addresses the optimization under available side-information (or
context information) which may change the minimum in the considered optimization problem. This results in a para-
metric optimization problem where the parameter p ∈ Rdp is observed and may vary during the optimization. At each
optimization step i the BO then aims to find the parameterized optimizer x∗i (pi). It is assumed that the context parameter
p influences the location of the minimum in a similar fashion to x, which motivates the natural solution of extending
the GP surrogate models by the considered context [24], i.e. for the objective function

f ∼ GP(µ, k), µ : Rd+dp → R, k : Rd+dp × Rd+dp → R ,

i.e. with x̃ := [xT, pT] ∈ Rd+dp . Under these considerations, the previous exposition is readily adapted to the contextual
case, in which now part of the variables p are fixed at each step, i.e. cannot be chosen in the optimization, whereas x is
optimized over as before.

With these main ingredients, a high-level pseudo-algorithm for BO is stated in Algorithm 1. For simplicity, we
formulate this in the unconstrained and non-contextual case. There, the stopping condition is typically a fixed number
of optimization steps, but can also arbitrary conditions on e.g. the achieved (estimated) precision, and the initial training
size n0 can be equal to 0.

1.2 Temporal Logic

Temporal logic (TL) refers to a number of formal languages that allow describing complex properties (i.e., behaviors)
of the (temporal) evolution of a system. As such, it has seen important applications in the formal verification of
software systems [25]. More recently, variations are researched for the management and verification of temporal
objectives in mechatronic & robotic systems [26], as well as for synthesis of controllers subject to TL specifications,
see e.g. [27] [28] and references therein. There exists a vast variety of different TL languages, of which we focus on

3
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Algorithm 1 Bayesian optimization pseudo-algorithm (unconstrained, without context)

1: Place a Gaussian process prior on f
2: Observe f at n0 points from an initial experimental design and set i = n0
3: while stopping criterion not met do
4: Update the posterior probability distribution on f using all available dataD = {(xk, yk)}ik=0
5: (optional) (Re)-optimize hyperparameters
6: xi+1 = argminαi(x)
7: Carry out experiment at and observe yi+1 = f (xi+1),
8: (Re)-compute optimizer x∗i+1 as the point with the smallest posterior mean.
9: Increment i

10: end while
11: Return the solution x∗i

Signal Temporal Logic (STL) specializing in continuous-valued signals over real-time [29] as is commonly the output
of dynamic systems considered in GNC. We give here a simplified introduction and refer to e.g. [30, 31].

Given a trace si(t) : R → Rn of a dynamic system, comprising for instance the state and input trajectories, STL
can be used to formulate propositions ϕ whose satisfaction relation is expressed as (s, t) ⊨ ϕ, indicating that the trace
s satisfies ϕ starting from position t. This is done starting from atomic propositions a whose satisfaction relation is
directly defined through a condition µ(s(t)) > 0 which can be combined into complex expressions using the following
syntax

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b] ϕ2

Here, the negation ("not", ¬) and conjunction ("and", ∧) correspond to the typical propositional logic, whereas the until
operator (U[a,b]) with interval [a, b] introduces temporal characteristics. For convenience, derived operators, such as
disjunction ("or", ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2)), implication (’ϕ1 ⇒ ϕ2 := ¬ϕ1∨(ϕ1∧ϕ2), eventually (♢[a,b]ϕ := trueU[a,b]ϕ)
or always (□[a,b]ϕ := ¬♢[a,b]¬ϕ) are additionally used.

A trace s then satisfies ϕ iff (s, 0) ⊨ ϕ, which is defined inductively as [32]:

(s, t) ⊨ true (6a)
(s, t) ⊨ a iff µ(s(t)) > 0 (6b)
(s, t) ⊨ ¬ϕ iff (s, t) ⊭ ϕ (6c)
(s, t) ⊨ ϕ1 ∧ ϕ2 iff (s, t) ⊨ ϕ1 and (s, t) ⊨ ϕ2 (6d)
(s, t) ⊨ ϕ1U[a,b]ϕ2 iff ∃t′ ∈ t + [a, b] s.t. (s, t′) ⊨ ϕ2 and ∀t′′ ∈ [t, t′] (s, t′′) ⊨ ϕ1 (6e)

Spatial Robustness STL and related languages allow the expression of robustness measures as a real-valued quantity
that describes the distance (in a suitable sense) of a given signal to the satisfaction threshold of a given proposition,
often called the robustness degree [33]. Here, positive values typically represent satisfaction of the constraint, therefore
the greater the robustness degree of a signal with respect to an STL formula, the greater the margin of satisfaction. An
example of this is the spatial robustness degree, which can be defined recursively as [32]

ρ(true, s, t) = ∞

ρ(µ, s, t) = µ(s(t))
ρ(¬ϕ, s, t) = −ρ(ϕ, s, t)
ρ(ϕ1 ∨ ϕ2, s, t) = max(ρ(ϕ1, s, t), ρ(ϕ2, s, t))
ρ(ϕ1Ua,bϕ2, s, t) = max

t′∈t+[a,b]
(min(ρ(ϕ2, s, t′), min

t′′∈[t,t′)
ρ(ϕ1, s, t′′))

2. Temporal Logic Constrained Bayesian Optimization

The following section presents an overview of the GncTuner Toolbox under development at SENER Aeroespacial,
aiming to enable GNC autotuning subject to temporal logic constraints.

2.1 Overview

The GncTuner Toolbox is developed with the goal of automatically tuning control systems – in particular GNC software
– making use of noisy simulations in the style of Monte Carlo simulations. The outcomes of these simulations are
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then considered as functions, mapping a chosen parameterization of the control system x that is to be optimized (and
potential additional parameters p), as well as stochastic elements w due to the Monte Carlo nature, to a simulation trace
s. That is, given a simulation shot indexed by i we have

si = fsim(xi, pi,wi) ,

where wi are i.i.d. between simulation shots and the parameterization xi can be chosen and is to be optimized.
In order to formulate an optimization problem, these simulation traces are then evaluated with respect to their

achieved performance using a suitable scalar cost function f (s), or, similarly, with respect to the satisfaction of con-
straints using constraint function c j(s) ≤ 0 for all j = 1, . . . , nc where nc are the number of constraints. Within the
GncTuner Toolbox, we put particular emphasis on constraints expressed via temporal logic, see Section 2.3. Finally, in
order to express a sound optimization problem, the influence of uncertainty and noise w need to be taken into account,
resulting in an optimization of expected cost and constraint satisfaction

minimize
x ∈ Rd

Ew (( f ◦ fsim)(x, p,w))

subject to Ew

(
(c j ◦ fsim)(x, p,w)

)
≤ 0 , for all j = 1, . . . , nc

(7)

An optimization of this problem class poses numerous challenges, for instance:

1. While we can draw samples of w and generate simulation traces to evaluate cost and constraint functions, the
expected values are not directly available.

2. Derivative information, even for a single simulation trace, are not available, i.e. we are limited to simple evalua-
tion of the functions via simulation.

3. The simulations are typically computationally expensive.

4. The parameters x we optimize over are usually continuous-valued vectors x ∈ Rd.

5. The uncertainty and noise w can affect the simulation in complex and ill-behaved ways.

The first three challenges leave us in the domain of (derivative-free) stochastic optimization, with direct links
to e.g. reinforcement learning and multi-armed bandits [34]. Depending on the particular problem class, there exist
a wealth of solution approaches; for the case of continuous vector-valued optimization variables (challenge 4), BO
has been particularly successful and currently forms the backbone of the GncTuner toolbox. While the formulation
in (7) remains highly general, the careful choice and design of suitable cost and constraint functions f , c j can be
essential to arrive at a practically solvable problem. In particular, whenever possible, care should be taken to avoid e.g.
non-continuities and facilitate the regression tasks that underlie surrogate-based optimization techniques such as BO.

2.2 Toolbox structure

The overall toolbox structure and software architecture of the GncTuner Toolbox is illustrated in Figure 1. It is imple-
mented in MATLAB following an object-oriented approach with a central GncTuner class. This class then contains
two central components

1. SimulationInterface: Manages the simulation environments associated with the considered GNC or control
system tuning problem. The simulations are organized via scenario folders following a standardized interface to
enable data transfer between simulation and tuning algorithm. Current examples include MATLAB, Simulink,
and Python-based simulators, the latter being integrated via the established MATLAB-Python interface.

2. Optimizer: An optimizer object, implementing the actual optimization algorithm for tuning the GNC software.
Currently, this supports the associated BO Toolbox developed in this contribution.

In addition to that, open external software packages are used, namely the GPML toolbox2 as the basis for the Gaussian
process regression on the BO Toolbox, as well as TALIRO3 for the formulation and evaluation of temporal logic
constraints.

2www.gaussianprocess.org
3sites.google.com/a/asu.edu/s-taliro
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GPML

External Tool

Figure 1: Overview of GncTuner Toolbox software architecture

2.3 Temporal Logic Constraints

In order to express temporal logic constraints, we make use of the open tool TALIRO (TemporAl LogIc RObust-
ness) [35]. While the TALIRO suite encompasses a large collection of powerful tools, we make exclusive use of the
sub-tool DP-TALIRO, which allows the evaluation of the robustness degree of a simulation trace with respect to a
defined temporal logic specification in an effective manner, using a dynamic programming algorithm. For a general
discussion of temporal logic and robustness degree, we refer to documents [33] and [29] respectively.

Using this robustness degree allows us to formulate temporal logic constraints of the c j(s) ≤ 0, which directly
expresses that the simulation trace s satisfies the temporal logic constraint if (the negative of) its robustness degree is
lower than 0. Additionally, using the robustness degree allows formulating a ’distance’ or metric on how close the trace
is to a violation, or satisfaction, of the temporal logic constraint. Under the assumption of a sufficiently smooth map
from optimization parameter x to the robustness degree, this can then greatly facilitate the search and establishment of
feasible parameter combinations, i.e. the parameterizations x that satisfy the considered TL requirements.

As has been noted in [36], in particular the logical operations in a TL expression can lead to difficult signals for
the underlying regression4. In our setting, this can be partly alleviated since a) the noise in the simulations is expected to
smooth the discontinuities in the individual signals, that is, we aim to learn the expected value of the robustness degree,
not the robustness degree itself, and b) AND operations on the primary level of the TL expression can be handled by
defining separate constraints, evading the problem. Nevertheless, if discontinuous derivatives or nearly discontinuous
derivatives are to be expected, a careful choice of an adequate kernel function may be necessary.

3. Simulation Studies

In the following, we present two simulation studies demonstrating the developed tool. The first is a toy example of the
swing-up of an inverted pendulum which is provided by the open AI gym5 (Pendulum-v1). As a second example, we
investigate the tuning of high-level parameters of a GNC algorithm for autonomous landing under parafoil, which is
inspired by Space Rider GNC developed at SENER Aerospace [37].

3.1 Inverted Pendulum: Swing-up Optimization

In this example case, we are going to test the proposed methodology for the tuning of a non-linear controller (4-
dimensional parameter) while imposing time-dependent requirements via STL. The controller consists of an energy-
based swing-up controller, which then switches to PD control around the upper equilibrium of the pendulum. The
tuning parameters consist of the PD gains, as well as a gain of the energy controller and the mode switch condition
between the two. In addition to that, we impose an STL constraint to combat chattering behavior which occurs under
an unconstrained optimization. Figure 2 presents an illustration.

4For instance, AND and OR operations essentially correspond to a ’min’ and ’max’ operation on the two signals, leading to discontinuous deriva-
tives.

5gym.openai.com
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(a) Simulation Screenshot
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(b) Input trajectory (unconstrained)
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(c) Input trajectory (TL-constrained)

Figure 2: Illustration of the inverted pendulum simulation environment (OpenAI Gym) and exemplary control inputs
after unconstrained and constrained controller tuning.

3.1.1 Problem Description

System dynamics The dynamics of the inverted pendulum are given by

Iθ̈ = glc sin(θ) + u , (8)

where θ is the pendulum’s angle with respect to its upper equilibrium, I is the inertia of the system, lc is the center of
mass, here lc = l/2 where l is the total length of the rod, and u is the applied torque. For this example we will consider
that the initial state is uncertain and is distributed as:

x(0) = [θ(0), θ̇(0)]T ∼ N
(
[π, 0]T, [σ2

w, 0]T
)
,

where σw is the standard deviation of the initial pendulum angle and constitutes the only considered source of noise
in this case. We consider here σw = 1. The input to the system is the applied torque at the base of the rod, which is
limited to u ∈ [−2, 2].

Simulation Environment The system is simulated via a Matlab script calling the OpenAI Gym Python environment
of the inverted pendulum. The system is discretized with an Euler forward method with a sampling time of 0.05
seconds and the total simulation time is 10 seconds. The setup corresponds to the unmodified OpenAI Gym continuous
pendulum problem (Pendulum-v1).

Controller description The controller considered is an energy-based swing-up controller, switching to a linear
around the (upper) equilibrium [38]. The energy of the system can be expressed as

E(θ, θ̇) = Ekin(θ̇) + Epot(θ) =
1
2

Iθ̇2 + lcgm cos(θ) (9)

where the desired reference energy corresponds to the equilibrium (θ̇ = 0, θ = 0) leading to Eref = mglc. The main
concept behind this controller is, therefore, to reach the upper state as soon as possible by increasing the energy of the
system and, when near the equilibrium point, to stabilize the system. As a switching criterion, we consider the 2-norm
of the system state, such that the control action can be described as:

u(θ, θ̇) =

 −(Kkθ + Kdθ̇) if
√
θ2 + θ̇2 < ϵ

−Ksu · (E(θ, θ̇) − Eref) · sign(θ̇) if
√
θ2 + θ̇2 ≥ ϵ

(10)

Here the considered tunable parameters are the proportional and derivative gain Kk and Kd of the stabilizing controller,
as well as the proportional gain of the energy-based controller Ksu and the threshold to switch between controllers ϵθ.
With this, our tuneable parameter vector is

x = [Ksu, ϵ,Kk,Kd]T .

Objective function As objective function for this example we consider the "swing-up time", which we establish as
the maximum time at which |θ| > 0.01, i.e the maximum time where the pendulum position is not sufficiently close to
the upper equilibrium. Therefore, the objective function can be expressed as

f (θ(t)) = max t s.t. |θ(t)| > 0.01 (11)

Given that the step for the discretization considered by the openAI environment is 0.05 seconds, the objective function
is mildly discontinuous and varies in steps of 0.05. Additionally, due to the maximum simulation time, it is saturated
at 10 seconds.

7
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Constraints In the unconstrained setting, optimal controllers were found to display chattering behavior in particular
at the instances of controller switching, but also due to high gains in the energy controller, i.e switching rapidly from
maximum to minimum action in a short period of time. Figure 2b shows an example. In order to avoid this behavior,
we investigate additional requirements expressed as STL. In particular, we consider a constrained expressed in natural
language as:

After a change in control of maximum amplitude (e.g. from maximum to minimum control action) no such
change of maximum amplitude is allowed for the following 0.2 seconds.

This is expressed in STL as:
ϕ = □(bang⇒ □[0,0.2](¬bang)) , (12)

where "bang" is an atomic proposition that is true whenever the control input changes by a magnitude of 4 which
constitutes the maximum possible change. For the definition of the constraint function, we make use of the robustness
degree of the previously defined STL formula for which we add a heuristically chosen safety margin accounting for the
variability due to noise.

c(s) = −ρ(ϕ, s) + 1.5 (13)

3.2 Design Consideration

Domain Considering that we have little apriori knowledge about the true minimizer or the domain where the mini-
mum is likely to be, we will consider a reasonably big domain:

Ksu ∈ [0.1, 100],
ϵ ∈ [0.1, 2],

Kk ∈ [0.1, 100],
Kd ∈ [0.1, 100].

To facilitate the search, we furthermore use a logarithmic transformation of the decision variables, i.e. we opti-
mize over log(x). This gives account to the assumption that the effects of changes in the controller parameters on the
swing-up time behave logarithmically, e.g. we assume that a change in controller gain from 0.5 to 1 has an effect in the
same order of magnitude as one from 50 to 100.

Approximation of true cost and constraint value In order to evaluate the performance of our algorithm, we would
like to evaluate the true expected value of cost and constraint functions given a parameterization x. Unfortunately, these
are not analytically available so that we have to approximate them. To investigate the performance of our algorithm we
will therefore compute the approximated true cost and the true constraint as an empirical average, i.e. by simulating
the same parameterization 30 times and taking the mean

Ew (( f ◦ fsim)(x,w)) ≈
i

30

30∑
i=1

( f ◦ fsim)(x,wi) , (14a)

Ew ((c ◦ fsim)(x,w)) ≈
i

30

30∑
i=1

(c ◦ fsim)(x,wi) . (14b)

Note that in particular this step increases the computational effort for the evaluation of the algorithms in this
example.

3.2.1 Results

To evaluate the effectiveness of the proposed scheme we compare three cases, namely

TL-constrained BO Considering the weighted PEI acquisition function as presented in(5) and temporal logic con-
straint (13).

Unconstrained BO The same setup without the TL constraint, making use of the PEI acquisition function (4)

Random Sampling Using Latin-hypercube sampling to generate probing locations. The current minimizer is then
defined by the minimum cost sample which simultaneously satisfies the TL-constraint, i.e. given sample points
{(xk, yk, yc,k}

i
k=1 we define the optimizer as x∗i = xi∗ with i∗ = argmin1≤k≤i yk such that yc,k < 0.

8
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Figure 3: Inverted pendulum optimization results. Top row: mean and 90% quantile of the objective function. Middle
row: mean and 90% quantile of constraint function. Bottom row: mean and 90% quantile of the fraction of samples
satisfy the TL constraint

For all GPs, we consider a squared-exponential kernel with automatic relevance determination (ARD-SE kernel), mean-
ing that the kernel length-scales are automatically tuned via hyperparameter optimization. We consider 30 initial data
points for pre-training the GPs using Latin-hypercube sampling and carry out hyperparameter optimization after every
5 optimization steps by optimizing the log-marginal likelihood through a BFGS algorithm.

To generate the results, we run each considered case 30 times for different noise realization to evaluate the
achieved true cost and constraint values along (14). Fig 3 shows the results of these experiments, displaying the
mean (over the 30 runs) as well as the 90% quantile of the objective function (14a) and constraint function (14b).
Additionally, we show the mean and quantile of the fraction of samples in (14b) that satisfy the original temporal logic
constraint, i.e. approximating the probability of satisfying the TL constraint with the current optimizer.

We observe that the unconstrained BO rapidly minimizes the necessary time to swing-up the pendulum, although
this clearly comes at the expense of constraint satisfaction, that is the solution generally displays chattering behavior,
which can be quantified by the high likelihood of violating the temporal logic expression (12). The constraint opti-
mization, on the other hand, converges somewhat slower and to a slightly higher minimum swing-up time, as was to
be expected by introducing the additional constraint. It can, however, be observed that throughout the optimization
the expected value of the constraint function is kept below 0 and that as a result, the current optimizers provide a high
chance of satisfying the original TL constraint. Finally, the proposed random sampling scheme shows both slower
convergence with respect to the objective value and decreased reliability with respect to constraint satisfaction.

Overall, the results show that the GncTuner can be effectively used to ease the controller design process for dy-
namical systems as it has allowed expressing a complex high-level and time-dependent requirement in a mathematical
and verifiable form. The underlying BO algorithm has shown good success when optimizing the 4-dimensional con-
troller parameters, enhancing the performance of the overall system significantly while satisfying the TL constraints
with high probability.

3.3 Autonomous Parafoil Landing: Final Approach Optimization

As a second scenario consider the terminal descent and landing (D&L) phase of an atmospheric re-entry scenario,
in particular, a flight under a guided parafoil for pinpoint landing. Such a pinpoint landing scenario is considered,
for instance, in the ongoing European Space Agency (ESA) Space Rider mission for which SENER is developing the
GNC [37]. In the following we investigate the automatic tuning for a similar GNC algorithm using a related benchmark
simulation environment–we will collectively refer to this as a generic parafoil landing GNC (GPLGNC).

The guidance strategy for the vehicle is based on the selection of two waypoints, which define regions where the
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Figure 4: GPLGNC trajectory legs. Credits: [37]

system can safely lose (potential) energy, i.e. height, after which a final maneuver is executed in the terminal guidance
phase. Figure 4 presents an overview. To account for the dynamic capabilities of the system and the drift induced
by wind effects, guidance is done in so-called wind-corrected coordinates, i.e. by subtracting nominal effects of wind
that are assumed known due to measurements previous to the landing operation. The waypoints are then computed
(offline) on-ground based on the wind conditions, aerodynamic coefficients, and MCI properties of the system and then
uploaded to the re-entry vehicle. For further information on the considered guidance strategy, we refer to [37].

For the use of the presented GNC autotuner, we will consider the final phase of the D&L scenario, namely the
final approach. This corresponds roughly to the final 100 m of the descent, including a "flare" maneuver to temporarily
reduce the vertical velocity and ensure a soft touchdown. The objective is, therefore, to improve the vehicle’s landing
accuracy, while satisfying the velocity constraint at the moment of touchdown. This is to be optimized considering
uncertainties corresponding to a full Monte Carlo campaign, including perturbations or aerodynamic properties, mass
and inertia as well as uncertainties regarding the wind knowledge and resulting disturbances.

3.3.1 Problem Description

The final phase of the D&L is initiated when passing the so-called final approach point (FAP), which then activates
a flight path angle control law, optional the lateral velocity correction as well as a final flare maneuver6 just before
landing. There are a number of high-level parameters affecting this phase; the following presents a quick overview of
the major ones we consider here for tuning

FAP Height describes the height at which the mode change into the final approach is initiated. Default: 100 m

FAP Angle describes the reference flight path angle (in wind compensated coordinates) defining the final approach.
Default: −atan(1/3.6) = 0.271 rad

Flare Distance describes an offset in the ground wind direction from the landing point at which the final approach
aims. This is meant to compensate longitudinal effects of the flare. Default: 0 m.

With these three, the final approach point can be fully reconstructed in space, with its horizontal distance in ground
wind direction and wind-compensated coordinates given by

FAP Angle + tan−1(FAP Angle · FAP Height) (default value: 360 m) .

As we suspect that the FAP angle, i.e. the flight path angle reference during the final descent has an influence on the
vertical velocity at touchdown, we simultaneously wish to optimize the so-called flare-trigger height and formulate a
touchdown velocity constraint for the optimization. Finally, we wish to investigate whether the optimal configuration
is influenced by the encountered nominal wind speeds at the landing site. Since this value is known beforehand, but
cannot be freely chosen, we include it as a context parameter. With this, we can summarize optimization variables and

6The flare is a maneuver consisting in an abrupt stroke of the parafoil to reduce the vertical velocity triggered meters above the landing point.
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context parameters as

x =


FAP Height
FAP Angle

Flare Distance
Flare Height

 , p = wind speed .

Simulations In order to simulate the scenario described, an in-house simulation environment in Simulink will be
used.

Objective function As the main performance metric for a pinpoint landing we consider the landing accuracy (i.e the
distance from the desired landing point to the actual landing point):

f (s) = ∥pLP − p(s, tlanding)∥ ,

where pLP is the position of the desired landing point and p(s, tlanding) is the position extracted from simulation trace s
at the time instant of landing tlanding, which we define as the instant at which the vehicle height drops below the landing
point.

Constraint function We consider a requirement to keep the vertical velocity at impact below 3m/s, which we can
express as a temporal logic expression in a natural way, e.g

ϕ = □
(
aground_contact ⇒ aperp_vel≤3

)
. (15)

With this, we formulate the constraint function

c(s) = −ρ(ϕ(s)) + ϵ ,

in which we choose the margin ϵ as the 3-σ variance of touchdown velocities from previous simulations – effectively
aiming to enforce that the expected value of the touchdown velocity remains at a 3-σ distance to the requirement.

3.3.2 Results

We pre-train the GP models with 150 simulations, again chosen via Latin hypercube sampling, and then optimize for
another 350 steps for a total of 500 carried out simulations. Note that for the 5-dimensional parameters space we
consider this corresponds to about 3.5 data points per dimension. Again, we consider an ARD-SE kernel and optimize
hyperparameters every 10 optimization steps. Due to the increased computational complexity of this examples, we
show results here of a single optimization as opposed to the analysis we carried out for the pendulum example.

The final result of the optimization of 350 steps is shown in Figure 5 illustrating the posterior GPs of both
objective and constraint functions, as well as the final acquisition function values. In terms of the constraints, we can
see that the flare trigger altitude has the biggest influence, but also the approach angle has some importance. The
influence of the other parameters appears largely mild. The results suggest that steep approaches are not possible as
they would violate the touchdown velocity constraint.

With respect to the objective, we observe most clearly that very shallow approach angles lead to a significant
deterioration of landing performance, with more nuanced effects for larger angles. The flare height has next to no
influence on the landing performance, but the flare distance parameter shows some influence, with typical minima
around 10 m. We see that the identified flare height lies around 10 m, with a slight increase for higher wind speeds. In
terms of the flare distance, a generally positive value of around 10 m is recommended by the tuning algorithm, which
appears to vary with the identified ground wind speed. Overall, the effect of the wind speed as the context parameter
appears very mild, suggesting that a GNC tuning irrespective of the nominal wind speeds at the landing points is likely
a suitable solution. The height of the FAP is fairly consistently optimized towards the minimum value of 50 m, which
may point to a benefit of continuing the periodic update and recalculation of the terminal guidance trajectory towards
the very end of the maneuver – in the final approach phase, the heading rate is primarily kept to 0.

Based on these insights, we suggest a slight retuning of the default GNC values, namely by setting the flare
distance parameters to 10 m (default: 0 m) and the FAP height to 50 m (default: 100 m). To evaluate the performance of
this reparameterization, we run 100 MC shots under the same conditions, comparing them to a similar MC campaign
of the original tuning. The results are shown in Figures 7 and 6, respectively. From these figures, the following
conclusions can be extracted:
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• The landing accuracy has been improved significantly; the mean of the landing accuracy has been reduced from
25.2 m to 15.6 m, and also the non-compliant cases (landing accuracy over 150 meters) have been eliminated.
This corresponds to an improvement of 38%.

• Both parameterizations are able to fulfill the vertical velocity requirement with margin. nevertheless, the GNC
retuning has reduced the touchdown vertical velocity from a mean of 2.46 m/s to 2.31 m/s, or by 6.1%.
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Figure 6: GNG performance before retuning of the final approach phase
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Figure 7: GNC performance results after BO retuning of the final approach.

4. Conclusions

In this paper, we have described and tested a toolbox for tuning GNC systems in constrained and stochastic environ-
ments. On the one hand, the toolbox has been able to capture a complex and time-dependent requirement using STL
while also showing its competitiveness against naive optimization by random sampling in the inverted pendulum sce-
nario. In a second example, we have tested GNCTuner against a real-world problem related to the tuning of a GNC
system. GNCTuner has shown a twofold success: it has been able to reduce the landing accuracy while maintaining a
high margin of security in satisfying the vertical velocity constraint while also providing insights into how the param-
eters affect the performance of the whole GNC system. Additionally, the optimization effectively provides insight on
the GNC scenario and parameter interdependencies, also thanks to the contextual optimization.
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