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Abstract
Solid rocket motors, fuelled by aluminum, are characterized by a two-phase flow that plays an essential
role in several aspects of the motor behavior. In the present work, the dispersed phase is considered via an
advanced Eulerian model that exploits a pseudo-pressure term deprived of any calibration need in order to
overcome the intrinsic limitations of the basic Eulerian monokinetic closure. Numerical simulations per-
formed on different geometries and setups show promising results, ensuring the possibility to investigate
solid rocket motors flowfield with relatively low computational costs.

1. Introduction

Multiphase flows constituted of liquid droplets or solid particles carried by a gaseous phase play a major role in a
wide variety of industrial and scientific applications. Among the space propulsion technologies, modern Solid Rocket
Motors (SRMs) are a clear example of such kind of flows. Current propellants are laden with metal particles, mainly
aluminum, that compose up to the 20% of the total mass. The primary reason for the inclusion of such fuel particles into
the solid propellant stems from the significant heat release obtained as the aluminum particles react to form aluminum
oxides (Al2O3). As the propellant burns, the grain surface regresses and the particles added to the propellant melt
to form liquid droplets. A complex mechanism follows, resulting in the release of aluminum agglomerates and their
injection into the accelerating core flow [18]. The final size of the aluminum oxide particles is found to vary from a few
micrometers to a few hundred micrometers, providing a polydisperse multiphase flow. Collisions between particles and
breakup events near the motor nozzle generate further modification of particles distribution, exacerbating the already
complex flowfield. Despite of its favourable effect on specific impulse, inclusion of Al particles in the propellant has
some side effects. Indeed, it may lead to slag accumulation in submerged nozzles, thermoacoustic instability due to
distributed combustion and, moreover, the alumina droplets are the main source of nozzle scouring from particulate
impact, contributing to nozzle erosion. Two-phase flow losses in the nozzle expansion process caused by the velocity-
and thermal-lag are also hindering the performance enhancement due to particle addition [21, 23]. For such reasons, a
correct evaluation of such two-phase flowfield plays an important role in the study of this kind of propulsive systems.

SRM flows can hardly be investigated via experiments due to the severe internal conditions characterized by high
temperatures and pressures. Therefore, numerical simulations are often mandatory to understand the underlying driving
physics of the internal flow. To model the behaviour of alumina particles and their impact on the motor system, a wide
variety of solutions have been proposed over the years and can be classified into two main categories, the Lagrangian
and the Eulerian models. Lagrangian mathematical models, tracking each particle within the flow, are intrinsically
able to represent in a very reliable way all the characteristic aspects of multiphase flows but, given the huge number
of particles within SRMs, present large computational costs. Eulerian models, instead, solve the condensed phase
in the same fixed reference frame of the gaseous carrier, offering relevant savings in terms of computational time.
Eulerian descriptions are well suited for low inertia particles for which particles trajectory crossings do not occur.
On the contrary, when the dispersed phase is characterized by larger inertia and particles trajectories should cross,
Eulerian models are affected by the formation of a numerical, non-physical, particle dense structure called δ-shock [5].
The presence of δ-shocks leads to an incorrect evaluation of the coupling source terms and therefore to an inaccurate
estimate of the flowfield.

In order to overcome the intrinsic limits of Eulerian methodologies, a wide range of mathematical closures have
been developed. The first and most elementary models are based on a multi-family approach where the family selection
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criteria is about the velocity direction [3, 14, 19]. The selling point of such methodology is the possibility to completely
avoid δ-shocks formation solving in a separate way the crossing particles jets. Despite the good results that this method
allows to achieve, a multi-family framework is limited by the need of an a priori knowledge of the flowfield. Most
advanced Eulerian models are built on a statistical approach based on the velocity moments equation arising from the
integration of the Williams-Boltzmann Equation (WBE). The WBE conveniently describes all the characteristics of
a condensed phase with numerous degrees of freedom, as size, velocity, and temperature. The moments governing
equations, i.e. the set of conservation laws used to the describe the flowfield dynamics, are obtained integrating the
WBE. Based on the closure strategy necessary to compute the fluxes terms, mathematical models may be distinguished
into Algebraic Based Closure Moment Methods (ABCMM) [22, 12, 8] and Kinetic Based Closure Momment Methods
(KBCMM) [15, 7, 11, 27, 2].

The aim of this work is the application of an advanced Eulerian formulation to solve the internal flows typical of
SRMs. In particular, a comparison between different strategies is presented in order to show the improvement that can
be achieved with enhanced modeling.

2. Two-Phase Modeling

The model employed in this work is based on a multidimensional formulation applied to a set of equations able to
solve gaseous and condensed phases behaviour within motor chambers. The inviscid Euler set of equations are solved
to describe the gaseous phase. As for the particles one, a fully Eulerian model is exploited, with condensed phase
supposed dilute ( ρp

ρAl2O3
≪ 1) and assumed to be spherical. In the present model, a multifamily approach is followed:

the overall condensed phase is decomposed in a certain number of particles groups, each one with its own set of
equations. As the flow is dilute, only gas-particles interactions count whereas any coupling among the particles groups
are neglected.

The general governing equations in compact form read:

∂

∂t

(
Wg

Wp,k

)
+ ∇ ·

(
Fg

Fp,k

)
=

(
S g

S p,k

)
, k = 1, . . . ,Nk (1)

where W denotes the conservative variable vector, F is the flux vector, and S is the two-way source term vector.
Subscripts g and p stand respectively for the gaseous carrier phase and the condensed one. The subscript k identifies a
single group of particles.

A full two-way coupling is enforced between the gaseous carrier and the groups of particles. In the present
work both drag force and heat exchange are modelled accordingly with the work of Carlson and Hoglund [1], Miller
[17] and, Shimada and Daimon [21]. For what concerns the drag force, the classical law for a cloud of np particles is
employed:

F⃗d =
1
8
πρgd2

pnpCd(V⃗g − V⃗p)||V⃗g − V⃗p|| (2)

Where dp is the particle diameter, np the number of particles per unit volume and Cd the drag coefficient, evalu-
ated accordingly with the formulation derived by Henderson [9].
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Finally for the range 1 < Mp < 1.75.

Cd = Cd(1.0,Rep) +
3
4

(Mp − 1)[Cd(1.75,Rep) −Cd(1.0,Rep)] (5)

where Rep and Mp respectively represent the Particulate Reynolds and Mach numbers:

Rep =
ρg||V⃗g − V⃗p|| dp

µg
(6)

Mp =
||V⃗g − V⃗p||

a
(7)

Assuming that radiation is actually negligible, convection is the sole heat exchange phenomenon taken into account.
Its relation reads:

Qc = π
λg

µg
d2

pnp(Tg − Tp)Nu (8)

where λg is the gaseous thermal conductivity, µg is dynamic viscosity. Finally, the Nusselt number Nu is evaluated
through the well-known Kavanau-Drake [13] correction:

Nu =
2 + 0.458Re0.55

p Pr0.33

1 + 3.42 Mp

RepPr (2 + 0.459Re0.55
p Pr0.33)

(9)

2.1 Monokinetic Model - MK

The Monokinetic (MK) approach represents the basic pressure-less closure of Eulerian descriptions [16]. It assumes
that for a given position and time, all particles have the same velocity, a conditions that naturally leads to the generation
of δ−shocks. The corresponding terms of Eq.1 valid for the MK are reported in Eq.10:

WP =


ρp

ρpV⃗p

ρpep

 Fp =


ρpV⃗p

ρpV⃗p ⊗ V⃗p

ρpV⃗pep

 S p =


0

F⃗d

F⃗d · V⃗p + Qc

 (10)

The total energy of the dispersed phase eP is the sum of thermal and kinetic energy. In the MK model has the following
expression:

ρpep = ρpcAl2O3 Tp +
1
2
ρp||V⃗p||

2 (11)

where cAl2O3 is the thermal capacity of alumina and Tp is the particle temperature.

2.2 Isotropic Gaussian Model

In order to deal with high inertia particles, the polykinetic aspect of the multiphase flow has to be taken into account.
The approach chosen in the present work assumes the moment equations up to the second order, enabling to consider
not only the average velocity value but also a local velocity dispersion. The Isotropic Gaussian (IG) approach, derived
by Levermore and Morokoff [15], is able to retain the existence of different crossing particle trajectories through the
generation of an isotropic pseudo-pressure term Pp, proportional to the particle density. It is convenient to define P as
a diagonal matrix of size equal to the spatial dimension of the addressed problem with elements equal to Pp. The IG
governing equations read:
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Wp =


ρp

ρpV⃗p

ρpekin

ρpep

 Fp =


ρpV⃗p

ρpV⃗p ⊗ V⃗p + P
(ρpekin + Pp)V⃗p

(ρpep + Pp)V⃗p

 S p =


0

F⃗d

F⃗d · V⃗p + 3Pp/τp

F⃗d · V⃗p + 3Pp/τp + Qc

 (12)

Where τp is the characteristic kinetic relaxation time of the dispersed phase related to the particle diameter and used
drag model correction as shown in Eq.13 [26].

τp =
ρpd2

p

18µg

24
CdRep

(13)

The variable ekin is the turbulent kinetic energy that is linked to the pseudo-pressure term by the following equation:

ρpekin =
1
2
ρp||V⃗p||

2 +
3
2

Pp (14)

The total energy ep remains the sum of the thermal and kinetic contribution, the latter now including also the turbulent
part.

ρpep = ρpcAl2O3 Tp + ρpekin (15)

The introduced pseudo-pressure term alters both momentum and energy conservation laws, generating a motion of the
dispersed phase from high to low particles concentration regions, allowing to break δ-shocks and thus obtaining a better
representation of the SRM flow field. It is worth to note that the model does not need any calibration term.

3. Numerical Results

In order to highlight the advantages and limitations of the aforementioned mathematical models, two numerical test
simulations, with increasing complexity, have been carried out. The presented computations have been provided by the
DIMA in-house code based on a finite volume Godunov numerical scheme [10] and multi-blocks structured meshing.
Conservative variables are calculated at the center of each computational cell whereas convective fluxes are computed
at cell interfaces using an approximate Roe Riemann Solver [24] for the gaseous phase, a Saurel Particulate Solver
[20] for the MK closure and an HLL Riemann Solver [24, 5, 6] with the simple speed wave evaluation algorithm by
Davis [4] for the IG closure. Space discretization is performed thanks to a second order TVD scheme in which the
interface reconstruction strategy proposed by Doisneau [5] and Vié [25] was followed in order to ensure that moments
did not lose their physical meaning (negative density or pressure are not allowed), while second order accuracy in time
is recovered using an explicit two-steps Runge-Kutta approach.

3.1 JAXA Planar Nozzle

The first test case under analysis consists in a mono-disperse multiphase flow due to the injection of particles into the
divergent section of a planar nozzle [21]. The injectors are located on the lower and upper walls downstream the throat,
resulting in a symmetrical configuration, as it is possible to see in Fig.1. The physical features regarding boundary
conditions for gas and particles may be found in Ref.[21].

CFD simulations are performed with three different model closures: MK with Nk = 1 (MK-1), MK with Nk = 2
(MK-2), and IG. For what concerns the second set-up, the MK-2, each group is injected from a single wall. Numerical
outcomes regarding the particle density field for the three closures are shown and compared in Fig.2 along with a
Lagrangian solution extracted from the reference work.

In the MK-1 result, visible in Fig.2a, the formation of a δ-shock along the symmetry axis is clearly evident.
This behaviour is due to the presence of a single averaged value of the dispersed phase velocity in each cell. As a
matter of fact, when the two particles jets cross, the vertical momentum component is cancelled out and only the axial
component remains. Comparing the solution obtained with the MK-1 approach with the Lagrangian envelope (green
lines in Fig.2a), it can be deduced that the presence of particles crossings makes the MK model unrepresentative of
the physical reality and therefore not particularly suitable for this type of applications. The intrinsic limitations of the
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Figure 1: JAXA planar nozzle geometry [21].
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(a) MK closure, Nk = 1
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(b) MK closure, Nk = 2.
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(c) IG closure.

Figure 2: Particles density field for the JAXA planar nozzle (green lines identify the Lagrangian solution).

MK closure may be effectively overcome thanks to a multi-family approach. In fact, addressing the solution proposed
in Fig.2b, it is evident that by defining two particles families, one for each injection location, it is possible to obtain
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a flowfield solution much more similar to the Lagrangian one: the two jets cross without interacting, avoiding the
formation of any δ−shock, so to generate an emptier region downstream of the crossing point. Of course, the enhanced
quality of this outcomes is paid with heavier computational loads since two separate sets of equations, one for each
particles group, must be solved on the entire grid. Finally, the IG result is presented in Fig.2c. Contrary to the MK-
1, the δ-shock structure is broken and the particles are dispersed in all directions, following the isotropic nature of
the mathematical closure. Comparing this solution with the Lagrangian reference one, a good agreement is actually
achieved just adding only one more equation with regard to the MK-1 closure.

3.2 Aft-Finocyl Solid Rocket Motor

A more complex test case is hereafter presented. It consists in an axisymmetric aft-finocyl SRM geometry featured in
Fig.3. An injection boundary condition is applied to the solid propellant surface, providing mass and energy flowrates
for both gaseous and condensed phases. Unlike the previous simulations, the typical polydisperse aspect of SRMs
flows is taken into account considering both alumina smoke (dp = 2 µm) and large oxide droplets (dp = 100 µm).
CFD simulations are performed applying several model closure: MK-1, MK-5 and IG. Note that the number in these
acronyms identifies only the amount of groups associated to large alumina particles. A further group is injected in each
simulation to account for the alumina smoke. Regarding the MK-5, the several families associated to large particles
are separately injected from the propellant surface at every major slope change of the geometry.

Figure 3: Aft-finocyl SRM geometry.

Figure 4: MK-1 solution for the aft-finocyl SRM.

In Fig.4, the MK-1 particles density field is shown for both large and small particles. As it is possible to see,
the smoke density presents a very homogeneous behaviour, typical of low inertia droplets, whereas the large particles
flowfield is characterized by the presence of relevant accumulations, with density values peaking at nearly 500 kg/m3,
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a really high value that compromises the hypothesis of dilute two-phase flow. Contrary to what has been presented for
the JAXA planar nozzle, a greater number of particles groups do not alleviate the scenario. Indeed, as it is evident in
Fig.5, the two flowfields concerning MK-1 and MK-5 are very similar, with minor differences in the region close to the
nozzle.

Figure 5: MK-1 vs MK-5 solutions for the aft-finocyl SRM.

Finally, results concerning the application of the IG closure are presented in Fig.6. Both particles density and
pseudo-pressure flowfields are reported in order to give major insights in the model functioning. Looking at the density
flowfield, a solution very similar to the one already seen for the MK is obtained. The pseudo-pressure closely follows
the density field, showing higher values where the particles tend to accumulate.

Figure 6: IG solution for the aft-fynocil SRM.

However, an important improvement is actually achieved thanks to the IG closure. The pseudo-pressure term
enables a redistribution of the particles, strongly reducing the accumulates. This behaviour is clearly witnessed by
Fig.7 that represents the particle density profile along the motor radius for a certain longitudinal position for the two
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different closures. As it is possible to see, the density peak is decidedly lower for the IG, assuring the validity of the
modeling assumptions.
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Figure 7: MK vs IG results for particles density profile.

4. Conclusions

Current Solid Rocket Motors (SRM) employed in the space transportation system are characterized by a two-phase
flow that needs to be correctly evaluated in order to investigate the internal flow dynamics. As the basic monokinetic
Eulerian model presents important drawbacks (non-physical accumulation of particles), statistical approaches in the
kinetic theory framework are nowadays preferred. In the present work, a particular Eulerian closure model, named
Isotropic Gaussian, is considered. The applied method accounts for the effect of the local particle distribution, via a
pseudo-pressure term with no need for any calibration. Two test cases have been analyzed: a simple planar nozzle and
an aft-finocyl SRM. Both simulations have emphasized the good ability of the IG closure to capture particle dynamics
and dispersion and have highlighted the model potential to keep true the dilute flow hypothesis even in presence of a
flowfield characterized by large inertia particles.
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