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ABSTRACT 

This study is aimed at optimization of axisymmetric nozzles with a center body, which are suitable for 
thrust engines having an annular duct. To determine the flow conditions and nozzle dimensions, the 
Vinci rocket engine is chosen as an example. The nozzle contours are described by 2nd and 3rd order 
analytical functions and specified by a set of geometrical parameters. A direct optimization method is 
used to design maximum thrust nozzle contours. During optimization, the flow of multispecies reactive 
gas is simulated by an Euler code. Several optimized contours have been obtained for the center body 
diameter ranging from 0.2 m to 0.4 m. For this contours, Navier-Stokes simulations have been made to 
take into account viscous effects assuming adiabatic and cooled wall conditions. The paper presents an 
analysis of factors influencing the nozzle thrust. 
 
INTRODUCTION 

Particular concepts of aerospace engines, e.g. continuous detonation wave engine [1], have an 
annular combustion chamber and require a supersonic nozzle with a center body for compatibility. To 
provide the maximum thrust for given geometric limitations (length and diameter), the nozzle contour 
must be carefully optimized. The modern approach to the nozzle design and optimization and related 
problems are discussed in [2]. 

Since the early works of Rao [3, 4] on the optimization of bell and spike nozzle contours, a 
significant effort has been made to apply the nozzle optimization, based on the calculus of variations 
and the method of characteristics, to flows with viscous boundary layers [5] and chemically 
nonequilibrium flows [6]. At the same time, applicability of direct optimization methods together with a 
simple analytical description of nozzle contour was proved [7]. 

Being well adapted to the design of several standard aerodynamic shapes, the method of 
characteristics is relatively difficult to generalize for an arbitrary form. Finite-volume methods based on 
shock capturing numerical schemes are much more flexible in this respect. In this paper, a direct 
optimization method is used in combination with a 2D Euler code to design maximum thrust nozzle 
contours. 
 
PROBLEM FORMULATION AND NUMERICAL METHODS 

Nozzle geometry 
For an annular nozzle, each wall contour is considered as a circular arc followed by a 2nd or 3rd 

order parabolic curve as shown in Fig. 1. For the lower (index “L”) and upper (index “U”) contours, the 
following parameters are specified: 

– starting point coordinates, xinl and yinl; 
– circular arc radius, R; 
– contour angle at the attachment point, βatt; 
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– limiting coordinates, xend and yend; 
– parabolic contour abscissa, xpar, on the line y = yend; 
– tangent angle, βpar, at the point (xpar, yend). 

This parameter set is sufficient to define a parabolic contour passing through the points (xatt, yatt) and 
(xpar, yend) with the βatt tangent angle. βpar is used as a parameter if the upper contour is described by a 
cubic parabola. If xpar < xend, the contour is limited by the radial coordinate, yend. If xpar > xend, the contour 
is limited by the axial coordinate, xend. 
 

x 

RL βL att 

(xL inl, yL inl) 
y L

 en
d 

xL par 

(xU inl, yU inl) 

RU 
βU att 

xU end 

y U
 en

d 

βU par xU par y 

symmetry 
axis  

 
Fig. 1: Schematic of the nozzle contour. 

 
Flow simulation methods 

A steady-state nozzle flow is simulated in 2D axisymmetric configuration using either the Euler or 
Navier-Stokes approach. Most of the Euler simulations have been made with a particular code that 
realizes a 2nd order accurate space-marching scheme. The space marching is performed along the 
principal flow direction. An implicit Runge-Kutta integration scheme is applied to ensure a robust 
solution procedure for a chemically reacting flow. The computational mesh is automatically generated 
during each simulation. It has 50 points in the y-direction uniformly distributed and arranged along 
parallel vertical lines. The mesh step in the x-direction is controlled by a given Courant number. 
Numerical tests have shown that the integral pressure forces applied to the nozzle are practically 
independent (to 0.01%) of the Courant number variation within the range 0.5-2 and are the same for a 
twice denser mesh in the y-direction. 

Navier-Stokes simulations as well as some Euler simulations have been performed with the 
Fluent® 6.3 commercial code. Implicit integration and a 2nd order accurate space approximation are 
chosen for the solution procedure. A structured mesh has 70 cells in the transversal direction and the 
cell number in the longitudinal direction is of the order of 500. The mesh is clustered near the walls in 
order to properly resolve the boundary layers. The minimum cell size is about 60-70 μm. 

A finite-rate kinetic model is adopted to describe the non-equilibrium chemistry during the 
combustion product expansion. This model is represented by a kinetic mechanism including 6 species 
(H2, O2, H2O, H, O, and OH) and 7 reversible chemical reactions [8]. For pure species, temperature-
dependent thermodynamic properties are described by standard polynomials [9]. 

The molecular viscosity and conductivity of the gaseous mixture are evaluated according to the 
kinetic theory [10] and approximated as temperature functions under the following assumptions: the 
mixture is at chemical equilibrium whereas the temperature and pressure are isentropically related. 
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Species diffusivities are considered with respect to fully recombined combustion products, containing 
only major species, and approximated as functions of the pressure and temperature. 

As a turbulence model, the Wilcox k-ω model [11] is used together with the compressibility 
correction. The turbulent Prandtl and Schmidt numbers are taken equal to 0.85. 
 
Nozzle contour optimization 

An automatic optimization procedure specifies the nozzle contour, for which the flow is simulated 
by the marching Euler code. The optimization procedure operates on maximum 4 parameters: 

– βL att and xL par for the lower contour, which is always quadratic; 
– βU att and xU par for the quadratic upper contour or βU att and βU par for the cubic upper contour. 

The optimization algorithm is based on the alternate-direction method with simple restrictions on the 
optimization parameters. The x-component of the pressure force, integrated along the lower and upper 
contours, are included in the optimization criterion. 
 
Engine specifications 

In the present study, the optimization method is applied to an annular nozzle, for which the nozzle 
of the Vinci rocket engine is taken as a prototype. From publications made by Astrium and Snecma, the 
following data are fixed for the study: 

– nozzle exit diameter 2.15 m 
– mass flow rate 33.7 kg/s 
– chamber pressure 6.08 MPa 
– mixture ratio O2/H2 5.84 

From available photos of the engine, we could roughly estimate longitudinal dimensions of the diverging 
nozzle: 

– length of the fixed part 1.4 m 
– total deployed length 3.4 m 

The throat area, the flow conditions in the throat section, and the ideal engine performance have been 
obtained from ideal equilibrium simulations. 

– throat diameter 0.1323 m 
– total pressure 5.781 MPa 
– static pressure 3.334 MPa 
– total temperature 3529 K 
– static temperature 3340 K 
– velocity 1548 m/s 
– engine specific impulse 4842 m/s 4581 m/s (official data) 
– engine vacuum thrust 163.2 kN 155 kN (official data) 
– supersonic nozzle thrust 65.2 kN 

For most of the cases considered below, the circular arc radii, RU and RL, are taken equal to the throat 
diameter. Different diameters of the center body chosen for the optimization are DCB = 0, 0.2, 0.3, and 
0.4 m. The nozzle length, xU end, is limited to 3.4 m and the center body length to 1.4 m (length of the 
fixed part of the nozzle). 
 
Boundary conditions 

For the nozzle flow simulation, a uniform sonic flow is imposed in the inlet cross section. This is 
a 1st order approximation. The sonic line is usually curved [12] and its exact form depends on the duct 
configuration upstream from the nozzle throat that we do not consider in the present study. The gas 
composition at the inlet corresponds to the chemical equilibrium and is specified in terms of species 
mass fractions in Table 1. One can appreciate the dissociation level noting that the composition of filly 
recombined combustions products is 0.96138 of H2O and 0.03862 of H2. 
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Table 1: Species mass fractions at the inlet 
H2O  H2 O2 OH H O 

0.89866 0.04008 0.00704 0.04789 0.00272 0.00361 
 

For the Navier-Stokes simulations, a turbulence intensity of 5 % and a turbulence length scale of 
0.5 mm are imposed at the inlet. No slip conditions are used for the flow velocity on the walls. Two kinds 
of thermal wall conditions are considered: adiabatic and constant temperature of 1300 K. 

The outflow conditions are without importance as the flow velocity is supersonic everywhere in 
the exit cross section. 
 
RESULTS AND DISCUSSION 

Validation of the optimization method 
A first test is related to the classical bell nozzle. A nonreacting perfect gas is considered with 

the following properties: ratio of specific heats 1.2; gas constant 630 J/(kg K). The aforementioned static 
pressure and temperature in the throat are imposed together with a Mach number of 1.01. The nozzle 
contour is designed using several methods: the method of characteristics [12], optimum quadratic 
contour, and optimum cubic contour. For the method of characteristics, the circular contour upstream 
from the attachment point is fixed whereas the downstream contour is designed along a streamline. The 
βU att angle is adjusted to obtain a contour passing through the point (xU end = 3.4 m, yU end = 1.075 m). It 
should be noted that the end point has the same coordinates in the other cases. The results are 
summarized in Table 2. 
 

Table 2: Contour angles and normalized thrust for the classical nozzle 
 Characteristics Quadratic optimum Cubic optimum 

βU att, deg 32.1 40.3 36.1 
βU par, deg 8.0* 10.1* 8.2 

FN /F*N# 0.9829 0.9816 0.9857 
*Non-optimized angle. 
#Nozzle thrust normalized by the ideal nozzle thrust 63 kN in the perfect gas case. 
 

One can note that the angles obtained for the quadratic contour are significantly different from the 
corresponding values provided by the method of characteristics. The optimum cubic contour is in closer 
agreement with the method of characteristics and it gives a higher thrust. The three contours are plotted 
in Fig. 2. 
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Fig. 2: Comparison of nozzle contours obtained for the classical configuration. 
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Factors influencing the thrust 
The nozzle thrust, FN, can be considered as a sum of the integral pressure force and the skin 

friction drag acting in the x-direction. The most important factors that influence these integral forces are 
the contour form, chemical reactions, and wall thermal conditions. The contribution of each factor can be 
assessed from the following consideration. 0D equilibrium computations provide the highest theoretical 
level for the nozzle thrust F*N = 65.2 kN and the engine thrust F*E =163.17 kN. By progressively 
increasing the complexity of the numerical approach and choosing different options, it is possible to 
evaluate the influence of each factor more or less independently. Results obtained for the classical 
configuration are given in Table 3. The figures represent differences of the pressure force, ΔFp = Fp – 
F*N, nozzle thrust, ΔFN = FN – F*N, and engine thrust, ΔFE = FE – F*E, as well as the viscous force, Fv, 
with respect to the highest theoretical thrust. 

 
Table 3: Influence of different factors on the nozzle and engine thrust 

Approach Chemistry Form Wall ΔFp / F*N 
(%) 

Fv / F*N 
(%) 

ΔFN / F*N 
(%) 

ΔFE / F*E 
(%) 

0D Frozen   –12.1   –12.1 –4.8 
1D Finite rate Conical  –0.7   –0.7 –0.3 

Conical  –5.3   –5.3 –2.1 2D 
Euler Finite rate Cubic  –2.0   –2.0 –0.8 

Adiabatic 0.7  –5.2  –4.5 –1.8 2D 
NS Finite rate Cubic Tw = 1300 K –0.7 –5.8 –6.5 –2.6 

 
The most important losses are obtained if the gas composition is frozen in the nozzle but this is 

not a real case. With the finite-rate chemistry, the nozzle thrust losses are within 1 %. Independently of 
the numerical approach and the nozzle form, the mean mass fraction of H2O in the exit cross section is 
about 0.961 i.e. close to the equilibrium. Due to the nozzle form, the trust losses increase by 1.3-4.6 %. 
As compared to the conical nozzle, more than 3 % of thrust can be gained if the nozzle contour is 
optimized. With the viscous effects, the flow is less expanded thus the pressure force increases with 
respect to the inviscid case. However, the net effect is negative because the skin friction drag 
represents more than 5 % of the nozzle thrust. Finally the wall cooling is responsible for a 2 % nozzle 
thrust loss due to the pressure force reduction and viscous force increase. 
 
Contours optimization for inviscid flow 

This section presents results for a nonequilibrium inviscid flow in the nozzle. A parametric study 
has been conducted for DCB = 0.4 m and both shapes of the upper contour. In the case of nozzle with 
quadratic upper contour, all the four optimization parameters are varied. It is found that the maximum 
thrust is always obtained when xU par = xU end. The effect of the other parameters, xL par, βL att, and βU att, is 
illustrated in Fig. 3 for the normalized nozzle thrust, FN, and its constituents corresponding to the lower 
contour, FL, and the upper contour, FU. FL, is independent of βU att within the considered domain. For a 
constant lower angle, βL att, the greatest FL is found on the boundary corresponding to a straight line. 
The shortest straight contour is the best one to maximize FL. However, this is not the case for FU, for 
which the greatest value is found for the longest possible center body with a straight contour (xL par = 
1.4 m). The nozzle total thrust, FN, exhibits a similar behavior. One can conclude from this analysis that 
the variation of the center body shape makes a stronger effect on FU than on FL. 

In the case of nozzle with cubic upper contour, both contour lengths are fixed: xL par = 1.4 m and 
xU par = 3.4 m. The effect of the contour angles, βL att, βU att, and βU par, on FL, FU, and FN is illustrated in 
Fig. 4. Once again, the variation of βL att acts in opposite ways on FL and FU. As in the previous case, 
the maximum nozzle thrust is obtained for the straight center body contour. One can see an optimum of 
FN in the plain βU att-βU par at βL att = –7.78°. 
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Fig. 3: Normalized pressure forces for DCB = 0.4 m and quadratic upper contour:  
lower contour (a), upper contour (b), and their sum (c). 
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Fig. 4: Normalized pressure forces for DCB = 0.4 m and cubic upper contour:  
lower contour (a), upper contour (b), and their sum (c). 
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Fig. 5: Optimum contour angles (a, b) and normalized nozzle thrust (c)  
versus center body diameter for quadratic and cubic upper contours. 

 
Optimum nozzle shapes have been designed for different diameters of the center body. The best 

shape of the center body contour is always straight with the maximum allowed length, xL par = 1.4 m. In 
Fig. 5, optimum values of βU att and βU par and corresponding normalized thrust, FN/F*N, are plotted 
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versus DCB for quadratic and cubic upper contours. One can note that the cubic contour has always 
lesser angles βU att and βU par than the quadratic one. Within the range DCB = 0.2-0.4 m, optimum angles 
demonstrate decreasing trends for both contour kinds. Thrust obtained with a center body is slightly 
lower with respect to the classical nozzle (DCB = 0) in the case of cubic contour and independent of DCB 
in the case of quadratic contour. The overall thrust difference is 0.15-0.4 %. 

According to the results presented in Fig. 4, the maximum thrust corresponds to the limiting case 
for the center body having a straight contour. This suggests an idea to try ogive forms, for example, a 
fully circular contour or contours with a cylindrical portion, as shown in Fig. 6 for DCB = 0.4 m. The length 
of the cylindrical portion, Lcyl, corresponds to xL inl in Fig. 1. It should be noted that the optimum upper 
contour is sensitive to the center body shape up to xL ≈ 0.6 m. Beyond this length, the center body 
shape is important only for the force applied to the lower contour, FL. 
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Fig. 6: Various ogive forms of the center body for DCB = 0.4 m. 

 
Nozzle optimization has been performed for center bodies with a cylindrical portion and two 

shapes of the converging portion: straight with relatively small RL and circular with maximum possible 
RL. Results obtained for variable Lcyl and different DCB are shown in Fig. 7. Optimum values of βU att are 
practically equal to 38° for all cases except for the straight contour with Lcyl =0 and 0.1 m. One can see 
in Fig. 7b that the fraction represented by FL in the nozzle thrust drastically reduces when Lcyl increases. 
This is because the converging portion of the center body shifts toward the low pressure zone. 
Nevertheless, the nozzle thrust increases due to the rise of FU. Depending on DCB, maximum thrust is 
obtained at Lcyl =0.4-0.5 m. The circular shape is better at lesser Lcyl whereas the straight shape has an 
advantage at greater Lcyl. One can also note that with an ogive center body the maximum thrust 
exceeds the level corresponding to the classical nozzle (see Fig. 7c). 
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Fig. 7: Optimum contour angle at the end point (a), FL fraction in the nozzle thrust (b),  
and normalized nozzle thrust (c) versus length of the center body cylindrical portion.  

Horizontal line marks the level corresponding to the classical nozzle. 
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Nozzle thrust with viscous losses 
From the previous analysis of thrust losses, one can see that viscous effects represent a very 

important factor that must be taken into account to choose the best nozzle contour. This subsection 
provides an analysis based on results of Navier-Stokes simulations performed for several optimized 
contours. 

The nozzles with cubic upper contours and straight lower contours, for which optimization results 
are presented in Fig. 5, will be considered first. For these nozzles, Euler and Navier-Stokes results on 
Fp N/F*N, Fv N/F*N, and FN/F*N as functions of DCB are shown in Fig. 8. Fp N and Fv N respectively represent 
total pressure and viscous forces integrated along the lower and upper contours. The nozzle thrust is 
defined as FN = Fp N + Fv N. Navier-Stokes results are given for the cases of adiabatic and cooled walls. 
With respect to the Euler simulations, Fp N is 1 % to 4 % higher because the flow expansion in the 
nozzle is reduced by the growing boundary layers. Accounting for Fv N that represents –5 % to –8 %, net 
losses in FN are 2.6-3 % for adiabatic walls and 4.6-6.2 % for cooled walls (higher losses correspond to 
larger DCB). 
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Fig. 8: Normalized total pressure force (a), total viscous force (b), and nozzle thrust (c)  
versus diameter of the center body from Euler and Navier-Stokes (NS) simulations. 
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Fig. 9: Fraction of the center body viscous force in the total viscous force (a), normalized total viscous 
force (b), and normalized nozzle thrust (c) versus length of the center body cylindrical portion.  

The legends are given in Fig. 7. 
 

Navier-Stokes results, corresponding to ogive forms of the center body (see Figs. 6 and 7), are 
shown in Fig. 9. Fv L /Fv N, Fv N/F*N, and FN/F*N are plotted versus Lcyl for different diameters DCB = 0.2-
0.4 m. Fv L is the viscous force applied to the lower contour. One can note that the center body creates a 
drag, which represents an almost constant fraction of Fv N when Lcyl increases. The net force FL = Fp L + 
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Fv L is negative at Lcyl ≥ 0.3 m. Ogive forms with circular converging portion provide much more 
important drag at Lcyl = 0. As a result, these forms have no advantage at any Lcyl. Ogive forms with 
straight converging portion can give a little better performance at DCB = 0.2 m and are definitely 
disadvantageous at DCB = 0.4 m. Taking into account the weight and wall cooling, the case of straight 
contour with Lcyl = 0 should be finally preferred. 

 
Nozzle flowfield 

To illustrate the nozzle flowfield, Mach number fields are shown in Figs. 10 for two center 
bodies with straight contours: DCB = 0.2 m and 0.4 m. Flowfields above and below the axis respectively 
correspond to the Euler and Navier-Stokes simulations. The boundary layers on the nozzle walls are 
clearly seen. The displacement effect, which reduces flow expansion, is manifested by lower Mach 
numbers toward the nozzle exit. Because of the flow convergence near the center body, a conical shock 
front is formed downstream from its tip. This shock is visible in the Mach fields obtained from the Euler 
simulations. The Navier-Stokes results show that the flow convergence leads to a quick growth of the 
boundary layer on the center body. This results in a wake in the free flow around the axis and 
suppresses the conical shock. 
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Fig. 10: Mach number fields for DCB = 0.2 m (a) and 0.4 m (b) from Euler (above axis) and  
Navier-Stokes (below axis) simulations. 

 
CONCLUSIONS 

A numerical study has been conducted to determine optimum shapes of axisymmetric nozzles 
with a center body. Several optimized contours have been designed based on Euler simulations for 
different diameters and forms of the center body. The highest thrust is obtained for an ogive form 
consisted of a cylindrical part and a straight converging part. 

For the optimized contours, Navier-Stokes simulations have been performed in order to take 
into account viscous losses due to the skin friction and heat exchange. According to the obtained 
results, the viscous effects are responsible for a 3 % to 6 % thrust reduction with respect to the Euler 
results. Among the considered configurations of the center body, the case of straight contour without 
cylindrical part should be finally preferred. 
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