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Abstract
The impact of a radially stratified mean flow on the flow field fluctuations in a rocket combustion chamber
is studied using the Linearized Euler Equations. With the Finite Element Method eigenmodes are calcu-
lated for different degrees of stratification. Thereto a simplified diffusion flame structure is imposed via an
analytic ansatz function. The complex eigenfrequencies are evaluated and the mode shapes are analyzed.
Both eigenfrequencies and damping rates are found to decrease with increasing stratification. The mode
shapes show a significant dependence on the stratification regarding vorticity and entropy fluctuations,
whereas the pressure amplitudes are not influenced.

1. Introduction

Combustion instabilities are a critical aspect in the design of rocket combustion chambers. A coupling of heat re-
lease and pressure fluctuations potentially results in increased thermal and mechanical loads up to engine failure.11 To
identify thermoacoustic instabilities in early development stages, cost-efficient procedures are required that allow for
the quick assessment of various designs. For this purpose, a hybrid simulation approach has been developed, which
provided promising results in previous studies.9, 10 It is based on an eigensolution study of the Linearized Euler Equa-
tions (LEE) in frequency space. One simplification that allows for efficient calculations is the assumption of a quasi
one-dimensional mean flow in the chamber, with mostly no gradients in radial direction. In the present study, the
consequences of this simplification are addressed from a numerical point of view. Several mean flows that are equiv-
alent when subjected to the averaging procedure which is used to obtain the quasi one-dimensional case are analyzed.
Thereby, the degree of stratification, i.e. the maximum deviation from the radial mean is systematically varied. The
studied configuration is based on the combustion chamber D (BKD) of the German Aerospace Center (DLR), see e.g.
[5].

The radial stratification in rocket combustion chambers is a result of the presence of multiple diffusion flames.
The fuel and oxidizer injectors are typical arranged coaxially with the combustion zone forming in the shear layer be-
tween the two jets. The induced gradients can impact the system stability in different ways. On the one hand the flame
response is subject to the mixing processes in the shear layer. In this context e.g. the role of density gradients has been
studied experimentally in [4]. On the other hand, the linear perturbation solutions for the chamber’s eigenmodes take
into account the spatial mean flow distribution, which therefore can impact the damping of the eigensolutions aside
from any flame feedback. The current study focuses on the damping rates obtained for the mean flow and does not
explicitly consider any flame dynamics. Besides the general importance of the mode damping related to the mean flow
distribution, in the framework of the aforementioned hybrid approach the simplification of a quasi one-dimensional
flow does not concern the flame response calculations.

Previous studies revealed that for a quasi one-dimensional mean flow a substantial amount of damping was
present in the chamber,9 which has been termed field damping and is related to the axial mean flow gradients. So there
is an indication that dominant damping mechanisms are already captured without accounting for radial stratification.
This contrasts the situation in gas turbine combustors, where shear layer induced vortex shedding has been identified to
be of major importance for the damping rate determination.6 In the current study, shear layers are now introduced via
the radial stratification approach into the rocket engine calculations as well, allowing for a more explicit assessment of
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the role of the different damping mechanisms.

In general, compressible flow is composed of acoustic, vorticity and entropy contributions,1 which occur as
separate modes in a linear eigensolution analysis.3 The acoustic part is closely related to the analytical solution of
uniform cylindrical duct flows. For rocket engine combustion instability, the modes of transverse type (TnT , nT denoting
the tangential mode order) are generally of highest relevance. While a discussion of duct flow acoustics in the context
of rocket combustion chambers can be found e.g. in [9], here only a key property, which is relevant for the interpretation
of the results is recapitulated. The cut-on frequency is calculated as

ωco =
snT nR c

rc

√
1 − Ma2 (1)

with the sound speed c, the chamber radius rc and the Mach number Ma. snT nR denotes the nR
th root of the derivative

of the nT
th Bessel function, where nR is the radial order of the mode. A transverse mode can only persist at frequen-

cies above the cut-on frequency. Below, it exponentially decays in axial direction. This has been previously found
to strongly influence the amplitude distributions for transverse modes and will be of relevance for the discussion in
section 4.

In the following sections, the numerical setup used in this study is described; The procedure to obtain the mean-
flows is outlined, followed by the discussion of the simulation results and the conclusions.

2. Numerical Setup

The numerical approach consists of three sequential steps: the simulation of a single flame, the calculation of the mean
flow based on the single flame results and finally the perturbation simulation for the determination of the stability be-
havior. In this section, an overview of the single flame and the perturbation simulation is given. Due to its significance
in the present study, the step of the mean flow calculation is discussed in a subsequent, separate section.

2.1 Perturbation Simulations

The perturbation simulations are based on an eigenvalue analysis using a stabilized Finite Element approach. In the
following, the governing equations are outlined, then the boundary conditions are given and the grid design is discussed
together with the numeric stabilization.

2.1.1 Governing Equations

The perturbation computations are carried out in frequency space. Thereto, the fluctuation φ′ of a quantity φ = φ+φ′ is
expressed as harmonic oscillation in terms of its complex amplitude φ̂, the angular frequency ω = 2π f and the damping
rate α:

φ′ = Re
[
φ̂ exp (iΩt)

]
= Re

[
φ̂ exp ((iω − α)t)

]
(2)

with Ω denoting the complex eigenfrequency. In the following, the term eigenfrequency is used to refer to the real
valued eigenfrequency, if not explicitly stated otherwise. To further reduce the computational effort, the simulation
domain is modeled as two-dimensional. Thereto, a cylindrical coordinate system (r, θ, x) is used with the azimuthal
dependence being described via the analytic solution for circular duct flow acoustics, following [7]:

φ̂ = φ̃ exp (inT θ) . (3)

The transverse order of the studied mode, nT , is thereby defined before the simulation is conducted.

The above modeling approaches are used to simplify the Linearized Euler Equations, which are formulated as
mass

iΩρ̂ + û · ∇ρ + ρ̂∇ · u = 0 , (4)

momentum
iΩû + (û · ∇) u +

(
u · ∇

)
û +

1
ρ
∇ p̂ −

ρ̂

ρ2∇p = 0 (5)
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axis

wall, u′ · n = 0
inlet,
(ρu)′ · n = 0,
ρ′c2 = p′

outlet,
p′ = 0

Figure 1: Boundary conditions

and pressure equation

iΩp̂ + u · ∇ p̂ + û · ∇p + κ
(
p∇ · û + p̂∇ · u

)
−

1
κ − 1

(
ûp + u p̂

)
· ∇κ = 0 . (6)

Here u denotes the velocity, ρ the density, p the pressure and κ the isentropic compressibility. The usage of the anisen-
tropic set of equations despite the lack of flame feedback is necessary since the strong flow gradients potentially induce
entropy fluctuations as can be seen from the source term formulation8 of the LEE.

2.1.2 Mesh and Boundary Conditions

The simulation covers the whole subsonic region of the combustion chamber, including parts of the nozzle. The geom-
etry of the domain is shown in Fig. 1. The nozzle is modeled up to the supersonic region, where it ends shortly behind
the sonic line. That way the acoustic boundary of the subsonic chamber part at Mach 1 is captured while supersonic
processes are mostly excluded from the calculations. The other boundary conditions are summarized in Fig. 1. The
inlet is modeled uniformly in radial direction. It is considered to be neutral in terms of acoustic energy by setting the
mass flow fluctuations to zero. Entropy fluctuations are convectively transported and directly depend on the calculated
pressure and density perturbations. To ensure that the solution only contains entropy fluctuations generated inside the
domain, an isentropic relation between pressure and density is enforced at the inlet. The wall is modeled as acousti-
cally hard. Due to the supersonic outflow, the outlet boundary condition is of minor importance, however, zero pressure
fluctuations have been found to be advantageous for the numeric stability of the solution.

The LEE are discretized on the domain using linear finite elements. A common grid is designed that provides
satisfactory results for all cases. To this end, the case with the maximum gradients and therefore highest sensitivity to
the element size is considered first. As the damping rates are significantly more grid-dependent than the eigenfrequen-
cies, they are selected to judge the grid convergence. The front quarter of the chamber has been found to be of highest
relevance regarding the grid resolution. It is refined by a factor of four compared to the rear chamber section with a
smooth transition in between. Since the discretization induces numerical instabilities in the solution,2 a stabilization
term is added to the weak form.2, 9 The strength of stabilization is controlled via the parameter τs. Fig. 2(a) shows
the damping rate in dependence of the element number nel and the stabilization parameter. The spatial refinement of
the grid is performed equally for both dimensions and two orders of magnitude are covered regarding the number of
cells. After strong fluctuations at low resolutions, convergence of the damping rate is observed for finer grids. The
configuration with about nel = 4.4 · 105 elements is selected for the computations in the present study. For this grid the
higher resolved development of the damping rate via the stabilization parameter is shown for three different stratifica-
tion amplitudes in Fig. 2(b). The region of possible values for the stabilization is bounded above by the occurrence
of numerical artifacts in the solution. These manifest as regions of unreasonably high amplitudes, emanating from the
chamber outlet close to the axis. Here, the limiting value is about τs ≈ 0.2. Based on a comparison of certain amplitude
distributions with characteristic properties to be satisfied by the correct solution, a value of τs = 0.07 is selected for the
stabilization parameter.

2.2 Single Flame Simulations

The single flame simulations provide the axial distributions of heat release, sound speed and isentropic compressibility
that are used for the calculation of the mean flow. As the profiles for the current study are approximations to those
derived from a single flame solution, its setup is outlined briefly. The calculations are carried out as finite volume
simulation with ANSYS® Fluent 18.0. The stationary Reynolds Averaged Navier Stokes Equations are solved on a
two-dimensional axis-symmetric domain with the k-ε model for turbulence closure. Combustion is modeled via a
semi-diabatic flamelet approach, i.e. the flow composition is obtained from adiabatic calculations while the temper-
ature is adapted according to the local enthalpy. To capture the fluid behavior at the low injection temperatures, the
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Figure 2: Grid and stabilization sensitivity

Soave-Redlich-Kwong real gas equation of state is used.

3. Mean Flow Calculation

The mean flow is the linearization state for the LEE. Its calculation procedure is designed to reproduce, on area
weighted radial average, those quantities of the single flame simulation that characterize its acoustics. To ensure
consistency with the assumptions involved in the derivation of the LEE, the mean flow is obtained as solution of the
Euler Equations. Thereby clearly defined source terms combined with the local adaption of the flow properties are used
to model specific flow features. In the following, the basic procedure that is used to obtain the quasi one-dimensional
flow is described, providing the basis for the subsequent introduction of the stratification into the mean flow.

3.1 Quasi One-Dimensional Flow

The methodology presented in this section is an enhanced version of the one used in [9,10] to obtain the mean flow for
the rocket engine stability analysis. It ensures that the Euler Equations are fulfilled by the mean flow to such a degree as
they are represented in the LEE: pressure, density and velocity are calculated as solution of the Euler Equations, with
the gas constant R and the isentropic coefficient κ being determined from the desired axial distributions of sound speed
and isentropic compressibility as described below. These are extracted from the single flame simulations via radial area
weighted averaging (subscript 1D). The heat release due to combustion is represented via a one-dimensional energy
source term, again based on the single flame simulations. The flow is injected uniformly across the domain inlet (cf.
Fig. 1), the wall is of no-slip type and the outflow through the nozzle exit is supersonic. As a result of this approach,
significant two-dimensional structures are only present in the nozzle region, while the flow in the cylindrical chamber
section remains one-dimensional.

When R is given, κ determines the specific isobaric heat capacity cp. However, cp influences the solution only
via a temperature integral. Conclusively, its isolated value at the solution temperature can be adapted arbitrarily during
post-processing without influencing the fact that the fields are consistent with the Euler Equations. This is used to
ensure that the most important quantity for acoustic simulations, the sound speed, is reproduced by the mean flow:

κ =
ρ

p
c2 . (7)

So the remaining parameter to be determined is the gas constant. Unlike the isentropic coefficient it needs to
be adapted during the simulation to ensure the outcome to be a valid solution of the Euler Equations and the ideal
gas equation of state. The gas constant is calculated in such a way that at the correct sound speed, the axial profile of
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isentropic compressibility η is matched. Thereto, a target density

ρ1D =
1

η1Dc2
1D

(8)

is calculated and the gas constant is obtained during the simulation from the ideal gas law

R =
p

ρ1DT
(9)

with T denoting the temperature. That way, the solution possesses the correct density to match the averaged isentropic
compressibility and is consistent with the ideal gas equation of state.

3.2 Stratified Flow

The basic procedure for the calculation of the stratified flow corresponds to the quasi one-dimensional approach. How-
ever, instead of prescribing one-dimensional profiles, two-dimensional reference distributions are used for sound speed
and density. These are obtained by applying a stratification function ψ to the respective one-dimensional profiles. Like
for the one-dimensional case, the inlet is considered as a single boundary, i.e. no injectors are resolved. However, a
radial profile is imposed on the inlet temperature that is consistent with the stratification of the sound speed (cf. Eq.
15). Since the Euler Equations do not include cross-stream transport effects, the homogenization of the flow fields in
the rear part of the chamber needs to be modeled explicitly as well. This is done by defining an axial dependence of the
stratification that goes from maximum at the inlet to zero as the flow passes through the chamber. The energy source is
derived to be consistent with this behavior. With these prerequisites again the Euler Equations are solved to obtain the
mean flow field.

The acoustic key parameter for the mean flow is the distribution of the sound speed. So this quantity is the
starting point for the design of the flow stratification. Its target value is calculated as

cre f = c1Dψ (10)

with the stratification function ψ ensuring the correct reproduction of the radial area weighted mean, i.e.

1
πr2

c

∫ rc

0
cre f 2πrdr = c1D . (11)

The stratification function is specified via the stratification amplitude Aψ, the radial shape function ψx and the radial
stratification function ψr as

ψ = 1 + Aψψxψr . (12)

The profile shall be sufficiently smooth to ensure good numeric solvability. As can be seen from the single flame
solution shown in Fig. 3, the sound speed is higher in the outer flame regions and lower in the cold oxidizer core. Thus,
for the radial stratification a cosine distribution is chosen:

ψr = cos(2π
r
rc

n f l) (13)

with the chamber radius rc and the number of flame structures in radial direction n f l. In the present study a configuration
with two flame structures is considered. As the flow moves downstream, turbulent mixing causes the flame to close at
the axis and leads to a homogenization. This is modeled via the axial shape function

ψx =


1, x ≤ xs

0.5 + 0.5 cos
(
π x−xs

x f−xs

)
, xs < x < x f

0, x ≥ x f

. (14)

with xs the axial starting position of the homogenization process and x f the end point. Note, that this function just
governs the development of stratification, i.e. the underlying axial sound speed profile is still c1D as extracted from the
single flame simulation. From the sound speed distribution, approximate stratification functions for the heat source and
density are derived, based on

T ∝ c2 ∝ ψ2 . (15)
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Figure 3: Single flame temperature distribution; axial
dimension scaled by 0.25
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Figure 4: Mean flow fields at a stratification ampli-
tude of Aψ = 0.3

and

ρ ∝
1
T

. (16)

The radial stratification of temperature and thus density also induces shear layers in the mean velocity fields. To enhance
the axial decrease of the velocity stratification, an additional momentum source term u is applied in the cylindrical part
of the chamber:

u ∝
ṁ
A
− ρu (17)

with the total mass flow ṁ and the cylindrical chamber cross section A.

4. Results

The T1 eigensolutions obtained with the previously described setup are discussed in this section. Beforehand, the ob-
tained mean flow results are covered briefly. Then, the complex eigenfrequencies are considered. The mode shapes,
i.e. the spatial distribution of the complex amplitudes of the solution fields are analyzed, taking into account the con-
tributions of acoustic, vorticity and entropy perturbations.

4.1 Mean Flow

The stratified mean flow is the basis of the current study. Thus its structure as it results from the setup outlined in
the previous section is addressed before continuing with the perturbation analysis. The first step of the mean flow
generation is the single flame simulation. The resulting sound speed and temperature distribution are given in Fig. 3.
While the sound speed distribution increases from the axis towards the outer domain boundary at it has been modeled
in the stratification function, the temperature shows a decrease outside of the combustion zone located in the mixing
layer. The differing behavior between these fields is caused by the varying flow composition, a property that is ne-
glected in the artificial stratification approach. As can be seen in Fig. 4 the shape of the sound speed distribution is
described appropriately by the stratification model of the mean flow. The upper limit is matched quite well, while the
sound speed in the region of cold oxidizer is higher than in the single flame simulation. A detailed view of the sound
speed profile is given in Fig. 5. The one-dimensional distribution that the field is based upon is shown along with the
radial profile at the inlet for different stratification amplitudes. Regarding the density distribution (Fig. 4) the lower
limit is approximated quite well by the stratification while the upper limit is found to lie below that of the single flame
simulation. Again, the oxidizer cores are clearly visible.

4.2 Eigenfrequency and Damping

The real valued eigenfrequencies are shown in Fig. 6. With increasing stratification amplitude, the eigenfrequency
decreases. Starting from the uniform case, initially a close to linear dependence on the stratification amplitude is
observed. At higher stratification, the rate of frequency decrease increases. The overall variation in the considered
stratification range is about 100 Hz, corresponding to a relative change of less than 1 %. A possible reason for the
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Figure 5: Sound speed distribution
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decreasing trend is the strong connection of the cut-on frequency and the T1 frequency. For the cut-on frequency

fco ∝ c
√

1 − Ma2 (18)

holds (cf. Eq. 1). Since in the stratified flow approach under the premise of a constant mass flux u ∝ 1
ρ
∝ T ∝ c2

applies, it follows that Ma = u/c ∝ c. Conclusively, if the last factor in Eq. 18 is considered as weighting factor, the
flow stratification leads to regions of low sound speed to contribute more to the effective cut-on frequency than those of
high sound speeds. With increasing stratification, there are also more distinct regions of lower sound speed, leading to
a decrease of the effective cut-on frequency and thus the T1 eigenfrequency of the chamber. Regarding the procedure
for the mean flow calculation, this indicates that an equal radially averaged sound speed does not exactly ensure equal
eigenfrequencies for transverse modes.

The damping rates as a function of stratification amplitude are given in Fig. 7. The overall level is rather high
with more than 600 rad s−1. This can be attributed to the aforementioned strong field damping found in rocket combus-
tion chambers. Like for the eigenfrequencies, a decrease with increasing stratification amplitude is observed. While the
absolute variation is about one order of magnitude smaller as for the eigenfrequency, the opposite is true for the relative
change of the damping rate, which goes up to 10 % in the considered stratification amplitude range. The damping rate
can be strongly affected by the interplay of the different mode contributions (acoustic, vortical and entropy). So it is in
general not covered by the analytical approach used for the interpretation of the eigenfrequencies.
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Figure 8: Pressure amplitude distribution
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Figure 9: Velocity amplitudes at the inlet

4.3 Mode Shapes

The mode shape refers to the spatial distribution of the complex amplitudes of the different fluctuating fields. These
can be considered to be a superposition of acoustic, entropy and vorticity fluctuations. The acoustic T1 mode shape in
rocket combustion chambers is strongly affected by the sound speed distribution resulting from the combustion. The
high axial gradients of sound speed causes the cut-on frequency to vary accordingly. This leads to the T1 mode to
be cut on in the front region of the chamber first, while being still cut off in the rear part. The principal shape of the
pressure amplitude distribution persists also in the presence of axial gradients. For the case without stratification it is
shown in Fig. 8, in normalized form (subscript n). This mode shape is not affected by the degree of stratification, i.e.
even at the maximum considered stratification amplitude of 0.3, there is no significant deviation from the distribution
shown in Fig. 8.

While the pressure is dominated by the acoustic mode, density and velocity fluctuations are subject to influences
of entropy and vortical perturbations. First, the velocity fluctuations (acoustic as well as vortical) are considered. The
profiles of radial and circumferential velocity fluctuations are shown in Fig. 9. While the pressure fluctuations remain
unchanged by the stratification, the radial mean flow profile manifests in the associated velocity fluctuations. For the
flow stratification, the characteristic specific acoustic impedance

ρc ∝
c
T
∝

1
c

(19)

is obtained, i.e. in regions of higher sound speed the velocity fluctuations increase. For the unstratified case the radial
velocity fluctuations again correspond to the analytical profile whereas for stratified mean flow the two inner peaks
in the sound speed distribution induce peaks in the amplitude profile (cf. Fig. 9(a)). However, since these are still
superimposed with the overall T1 mode shape, i.e. the radial velocity decaying to zero at the wall, the outer sound
speed peak does not lead to a velocity amplitude peak. The circumferential velocity fluctuations are not affected by the
wall boundary conditions. Here, all three sound speed peaks result in local maxima, as can be seen in Fig. 9(b).

Besides the just discussed influence of the acoustics on the velocity fluctuations, vortical perturbations occur. For
different degrees of stratification, the circumferential component of the vorticity fluctuations is shown in Fig. 10. The
fields are normalized with the respective maximum pressure amplitude for better comparability between the cases. For
the uniform case vortical structures are already visible, that arise from the axial mean flow gradients. They are rather
uniform across the chamber radius with only some influence of the wall boundary conditions in the outer region. The
vorticity fluctuations arise from the axial flow gradients and are transported convectively, which leads to the increasing
distance between adjacent peaks in the rear chamber section due to the increasing flow velocity. In the nozzle part,
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the flow is redirected and accelerated, which leads to the production of additional vortical velocity fluctuations. Once
stratification is involved, the shear layers associated with the flame structures exert a strong impact on the vorticity
distribution. While in the front region the structures of the uniform case are still visible, the rear part of the chamber
is dominated by vortices shed from the shear layers. The higher the stratification amplitude, the stronger the vorticity
and the more the region close to the face plate is influenced by the vortical streets. Thereby the increase in strength
is not equal across the chamber radius but some streets’ intensity increases faster than others’. This can be linked
to the cylindrical geometry as well as the transverse nature of the mode which already imposes radially non-uniform
distributions of the fluctuating fields.

Finally, entropy fluctuations contribute to the eigenmodes. The respective amplitude distributions are shown in
Fig. 11. Like the vorticity, entropy fluctuations are convected with the mean flow and produced even in the uniform
case. The stratification imposes a dominant radial pattern across the whole chamber length. As has been observed for
the vorticity, not all entropy streaks are equally sensitive towards the stratification amplitude. For low stratification the
T1 structure of the uniform flow is retained in the intensity of the different streaks. However, the entropy fluctuations
close to the axis increase faster with increasing stratification and become dominant for higher stratification amplitudes.
The structures observed for the entropy fluctuations are found to clearly appear in the distribution of the density ampli-
tudes as well, particularly for cases with high stratification. Conclusively, entropy disturbances are of major importance
for the mode shape.

5. Conclusions

An eigenmode analysis of a rocket combustion chamber has been conducted for different degrees of radial flow strat-
ification. Based on a trigonometric ansatz function with varying amplitude values, mean flows fulfilling the Euler
Equations and equal in radially averaged sound speed and isentropic compressibility have been calculated. For these
mean flows, the first transverse eigensolutions of the LEE have been obtained.

The eigenfrequencies have been found to decrease with increasing stratification amplitude. A possible explana-
tion has been found in the analytical cut-on frequency, which indicates a stronger weighting of regions with low sound
speed for the effective cut-on frequency in the current setup. The relative deviation of the eigenfrequency however is
small, staying below 1 %. The damping rate decrease with increasing stratification as well. Here, the sensitivity is
higher with a maximum deviation of slightly below 10 % for the studied parameter range. Nevertheless, the fact that
a high portion of the damping is already contained in the uniform mean flow indicates, that the stratification is not
necessarily a dominant factor in the damping rate calculations. For the degrees of stratification covered in the present
study, the axial mean flow gradients already capture relevant damping mechanisms. The identification of the reason for
the decrease of the damping rate with increasing stratification needs further research.

The amplitude distributions of the fluctuating fields have been found to react differently to the stratification. The
pressure distribution is uninfluenced by the stratification amplitude and only governed by the axial flow profile. How-
ever, the dependence of the characteristic acoustic impedance on the radial position induces a corresponding profile
in the acoustically dominated parts of the velocity fields. Structures emanating from the shear layers have been found
to dominate the vortical distributions in the rear section of the chamber, where they obscure the distribution resulting
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from the axial flow gradients. Likewise the entropy amplitudes are affected by the stratification with the radial distri-
bution depending on the stratification amplitude. For low stratification, the profile of the uniform case is reflected in
the relative strength of the entropy streaks, whereas for high stratification the regions close to the chamber axis become
dominant. The appearance of the structures observed for the entropy fluctuations in the density amplitude distributions
shows the importance of entropy perturbations for the mode shape.

So while the eigenfrequencies are moderately affected by radial mean flow stratification, the mode shapes show
a more pronounced and complex sensitivity towards the stratification. In continuation of the present study, further
research will also cover the effect of the number of flame structures on the solution.
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