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Abstract 

The current Air Traffic Management functional approach is changing: ‘time’ is now integrated as an 

additional fourth dimension on trajectories. This concept will impose on aircraft the compliance of 

accurately arrival times over designated checkpoints, called Time Windows (TWs). We characterise 

these TWs with a stochastic approach (Monte Carlo simulations), and manage the uncertainty associated 

to the evolution of 4D-trajectories with a causal and predictability analysis, using a Bayesian Networks 

methodology. Then, we analyse the 4D-trajectory reliability through Multi State Systems and Markov 

Chains models, which may allow stakeholders to establish performance indicators and compliance 

metrics. 

1. Introduction and motivation 

The recent increase in air traffic demand provides a challenging operational situation for the current European Air 

Traffic Management (ATM) system [1]. In this way, SESAR (Single European Sky Air Traffic Management Research) 

and NextGen (Next Generation Air Transportation System) are changing the ATM framework [2], [3]. Achieving 

accurate prediction of trajectories is a fundamental condition for reliable detection and resolution of conflicts. SESAR 

and NextGen support the 4D-trajectory operational concept, in order to improve efficiency, reliability, sustainability 

and cost-effectiveness of aircraft operations [2], [4]. The future ATM system relies on the Trajectory Based Operations 

(TBO) concept. This will require aircraft to follow an assigned 4D-trajectory (time-constrained trajectory) with high 

precision. TBO involves separating aircraft through a definition of a strategic trajectory (long-term), rather than the 

currently practicing tactical (short-term) conflict resolution [5]. The main goal is to increase air traffic capacity by 

reducing the controllers’ workload. Nevertheless, real time measures, (over the trajectory will be required to improve 

reliability and react to unplanned conditions; thereby, maintaining expected capacity [2].This approach will require 

aircraft to follow an assigned 4D trajectory with high precision. 

The 4D trajectory concept is based on the integration of time into the 3D aircraft trajectory. Each point is defined by 

position (latitude, longitude and flight level) and time. Certain restrictions are currently associated with flight levels. 

In the future operational framework, it is foreseeable that there will be restrictions with respect to time [6], [3]. 4D-

trajectories will enable a flight to follow a practically unrestricted, optimum trajectory for as long as possible. In 

exchange, the aircraft will be obliged to meet very accurately an arrival time over a designated point. In the context of 

TBO, airspace users will agree a preferred trajectory with Air Navigation Service Providers (ANSPs) and airport 

operators (AOs). Aircraft and ground systems will exchange information on the trajectory and the expected airspace 

capacity to ensure that flights comply with the assigned Controlled Time of Arrival (CTA) [6], [3]. 

4D trajectory management is expected to improve air traffic operations, in particular to increase the overall 

predictability of traffic, with several benefits to airlines and air traffic management [7]. These benefits [1], [4], [8], [9], 

include: (a) the improvement of air traffic operations and their reliability by increasing the overall predictability; (b) 

an information-rich environment with real-time data, as well as prediction data system trends that allow the 

optimization of services to airspace users; (c) optimal operations for airlines (routes and preferred levels); (d) 

absorption of delay; (e) increased safety; (f) improved flight paths; (g) reducing costs and emissions; (h) easier to 

handle traffic for the controllers. 

However, real measures (over the trajectory) will be required to improve reliability, react to unplanned conditions and 

thus maintain the expect capacity. Trajectories are degraded due to environmental and operational uncertainties [10], 

[11]. Sharing, updating and coordinating changes in trajectory becomes necessary to ensure reliability. Therefore, these 

measurements will ensure that the necessary adjustments are made to correct trajectory degradation, a degradation that 

increases over time if appropriate actions are not taken. 

To exploit these benefits and avoid potential conflicts, aircraft must be kept within very small volumes around their 

agreed reference trajectory [12]. The main objective is to ensure compliance with the stated separation standards. 
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Therefore, it is necessary for 4D-trajectories to be monitored with a high degree of accuracy, precision, data integrity 

and safety [2]. Given the required level of demand, new tools are essential to allow ATM planners, air traffic 

controllers, route developers and airspace users to obtain the TWs in which aircrafts are expected to be found at each 

checkpoint. Accurate TW and trajectory predictions are required for highly efficient Air Traffic Management 

procedures [13]. However, this process is strongly influenced by uncertainties [14], [11], such as actual performance 

of aircraft, operation along the trajectory, and weather/atmospheric conditions affecting the flight. Improved 

predictability and reliability is one of the eleven target KPAs set in ICAO’s Doc 9854 for the Global ATM Operational 

Concept [5]. It is also one of the requirements of SESAR and NextGen to optimise 4D-trajectory synchronisation and 

conflict detection/resolution. 

The purpose of this study is to develop a model to deal with uncertainty and increase predictability, while providing a 

methodology to evaluate the robustness of 4D-trajectories, by quantifying its perturbations. This can be applied in a 

predictive way, thus being able to anticipate the trajectory degradation in order to apply corrective actions. These 

models improve traffic synchronization and potentially ease conflict resolution in 4D-trajectories, which are 

cornerstones in future airspace operational environments. 

The paper is structured as follow: first, we state the problem and review how past studies have approached this issue; 

then, we introduce the methodology (Scenario characterization and 4D-trajectory modelling, identification of influence 

parameters, Time Window (TW) estimation and causal analysis); and finally, we study the predictability and the 

reliability of 4D trajectories with which we will obtain the results and their conclusions. 

2. Background and problem statement 

Some of the different objectives of SESAR for the future ATM operational concept are to improve efficiency, 

reliability, sustainability and cost-effectiveness of aircraft operations [2], [4]. The future trajectory management 

approach is based on a four dimensional framework, composed by the three spatial dimensions and a time constraint 

[15]. This constrains are called time windows (TWs) and require the capability of developing accurate and reliable 

trajectory predictions [16]. These predictions need to consider external disturbances to the aircraft and internal 

uncertainty sources [10], [11], [17]. These disturbances and uncertainties may cause a degradation in the trajectory. 

Therefore, trajectory prediction, degradation, and uncertainty management are key elements in the new operation 

concept of air traffic. 

Multiple studies have dealt with the prediction of trajectories in different phases of flight [18]–[21]. The prediction of 

trajectories is a fundamental tool in conflict detection and resolution [22]–[24], traffic load forecasting and weather 

impact assessment [25]. Several studies have analysed sensitivity in trajectory prediction in ATM [26]. In this article, 

we propose a causal model to understand the relationships between the parameters that influence the prediction of 

trajectories. Most of the methods used to predict trajectories problem can be categorised as either deterministic or 

probabilistic [27]. The traditional approach is deterministic and treats the issue as a mathematical problem that 

describes aircraft motion. This approach is strongly and inherently limited by the accuracy of the models that represent 

actual aircraft behaviour and by the quality of the inputs [28]. Furthermore, the modelling assumptions may introduce 

potential prediction errors; i.e., sources of uncertainty that are usually not explicitly considered by such deterministic 

approaches. If some external forces or parameters, e.g. aircraft performance, weather conditions, accuracy of 

navigation systems, and traffic regulation), are unknown or cannot be precisely evaluated, the probabilistic approach 

transforms the deterministic problem into a stochastic one [11], [14]. 

Uncertainty management is a core component of many advanced ATM operational concepts, e.g. in conflict detection 

and resolution algorithms [29], air traffic synchronisation requirements [30] and automation functionalities for 

trajectory planning [31]. The presence of significant uncertainties in the prediction of trajectories may result in 

reductions in capacity, limited fuel efficiency and delays [1], [32]. Therefore, a detailed study of the variations in the 

parameters that influence flight operations is required. The parameters with the greatest influence on the evolution of 

trajectories evolution are meteorological conditions (wind, temperature), aircraft performance (flight phase, weight, 

speed), navigational constraints (holdings) and initial conditions [33]. Nevertheless, the effect of shear wind on 

optimum performance [34] has been recognized as one of the most relevant uncertainties in path deviation [35], [36]. 

These influential parameters may be added to the prediction model as variations in procedures, inaccuracy of 

navigation systems, or ATM interventions to reflect their influence [11], [37]. 

The CATS project introduced the concept of 4D target windows to be respected during flight execution as a way of 

managing uncertainty [12]. These target windows are formally agreed upon by the different actors involved in the 

execution of a flight and are located at the transfer of responsibility areas between them [38]. Han, Wong and 

Gauhrodger (2010) demonstrated that by defining target windows at intermediate locations along a 4D trajectory, and 

not just at sector boundaries, these can assist in managing en-route punctuality and uncertainty. Furthermore, target 

windows provide a useful balance between air traffic predictability and manoeuvrability [14]. Some studies consider 

target windows as circular cross-sections marked with arrival times [39]. Others model them as rectangles with time 

characteristics [37]. With respect to the 4D-trajectory operational framework, and when looking at safety, it is more 
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reasonable to predict time intervals than exact aircraft positions [21]. Therefore, in this study we focus on time windows 

(TWs). 

In the context of TBO and RBTs (Reference Business Trajectories), TWs should be sufficiently large to allow airspace 

users and ANSPs to respond flexibly to a variety of flight conditions but sufficiently small to increase certainty and 

improve capacity. An experiment conducted by EUROCONTROL in 2012, with an Airbus A320 test aircraft that flew 

from Toulouse to Stockholm, established a tolerance window of between -2 minutes and +3 minutes over the route and 

±30 seconds for CTA [15]. In addition, pilots were exposed to situations where the aircraft was deviated from the 

planned path. The results showed that adherence to 4D-trajectories was feasible in cruise phase while the TW for CTA 

was more difficult to achieve and required increased coordination between pilots and controllers [15]. 

We propose to manage uncertainty with respect to time by establishing several intermediate locations (checkpoints) 

along a trajectory, where time uncertainty can be constrained by TWs. The methodology for defining TWs uses an 

aircraft performance model based on EUROCONTROL’s Base of Aircraft Data (BADA) family 4.0 [40], [41] and 

probabilistic approaches to reflect the inherently stochastic nature of air traffic procedures [42]. The analysis focuses 

on the climb phase, the en-route flight phase in different scenarios (stabilised flight level and flight level changes - 

climb and descent) and the descent phase.  

On the other hand, reliability analysis provides theoretical and practical tools to test the behaviour and performance of 

trajectories in a scenario of uncertainties. Traditional reliability models are binary [43], as they consider only two 

functional states (working state or fail). Multi-State System (MSS) reliability analysis introduces distinctive levels of 

efficiency, called performance rates. Hence, MSS reliability provides a more realistic approach to studying the 

behaviour of a system. Since the mid-70s, when the MSS reliability was introduced, this filed has experienced an 

intensive development and it has been applied in several fields [44]. In the field of aeronautics we can found examples 

as a Markovian type simulation model that is used to simulate operational uncertainties arising from aircraft turnaround 

operations [45]. The properties of Markov chains are used to model the interdependent effects between sequential 

procedures of aircraft turnarounds [45]. In Air Traffic Control (ATM), a MSS theory and a Markov model have been 

applied to measure the efficiency and reliability of an Air Traffic Automatic System (ATCAS) [46]. The estimation of 

potential benefits of new ATM tools has also been done using MSS reliability through Markov models [47]. Monte 

Carlo simulations were implemented to estimate the range of uncertainties in model parameters and technology 

performance accuracy. In the last years, with the increases in computer performance, the link between MSS reliability 

analysis and Monte Carlo models was strengthened. Monte Carlo simulation allows, with a simple computation 

procedure, modelling system operating scenarios to assess the reliability systems [48], [49].  

The objectives of this study are to: (a) define the TW in which the aircraft will be located when it arrives at each 

checkpoint; (b) identify the parameters with the greatest influence on the evolution of the trajectory; (c) analyse 

trajectory deviations due to variations in the influential parameters; and (d) study the degree of degradation of the 4D-

trajectories at each Waypoint, the probability that a degraded stat will be reached. 

The main contribution of our study is the development of a causal model which provide key information that can be 

used in synchronising traffic and in strategic planning. It also improves the prediction of trajectories predictability 

which is useful in managing conflict and correcting deviations. Also, the reliability model can be used to evaluate the 

robustness of 4D trajectories and to deal with their perturbation, which is a cornerstone in traffic synchronization and 

conflict resolution. 

3. Methodology 

3.1 Scenario characterization 

In the first part of the study, the aircraft performance and the 4D trajectory were modelled. The aircraft chosen to 

realize the flight was the Boeing 737-900ER, one of the most frequent aircraft in short- medium range flights used in 

Europe [50]. Next, we have created a model for the scenario in which the 4D trajectory will be found. For this, we use 

EUROCONTROL’s BADA 4.0 methodology [40], which is built based on aircraft’s kinetic and kinematic models and 

it allows us to construct a trajectory prediction model to define TWs along the aircraft flight path. 

In order to develop the model, it was necessary to characterize 4D trajectories and identify their influence parameters, 

which are shown in Table 1(aircraft performances and variables related to the scenario). These functional relationships 

between the parameters are obtained directly from the BADA manual. 

The BADA aircraft model is based on a mass-varying, kinetic approach to aircraft performance modelling [51]. It is 

structured in three parts: Aircraft Performance Model (APM), Airline Procedure Model (ARPM) and Aircraft 

Characteristics Model (ACM). The ACM comprehend the APM and the ARPM and these three elements, together 
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with de Atmosphere model (AM) represent the Aircraft Dynamic Model (ADM), as shown in Figure 1. 

These models determine the interdependencies between the modelling parameters. Each aircraft model in BADA 4.0 

is characterized by a set of coefficients, called Aircraft Characteristics, which are used by the APM and ARPM [40]. 

These models allow us to estimate aerodynamic and propulsive variables from mass with functional relationships show 

in Table 1. 
Table 1: Modelling parameters 

Block Parameter Dependencies Description 

Atmosphere 

Model 

Pressure p = f [T(h), ρ(h)] T (temperature), ρ (density) and h (altitude). 

Speed of sound a0 = f [k, R, T, M] 
M (flight Mach), R (universal gas constant) and k 

(adiabatic air coefficient). 

Wind w = f [φ, λ, h] φ (latitude) and λ (longitude). 

Aerodynamic 

Forces Model 

Lift coefficient CL = f [δ, p0, k, S, M, m, φ, g0] 

δ (pressure ratio), p0 (pressure at mean sea level), 

S (wing surface area), m (aircraft mass) and g0 

(acceleration of gravity at mean sea level). 

Lift L= f [δ, p0, k, S, M, CL] - 

Drag 

coefficient 

CD = f [CL, δ, d1… d15, Mmax, p0, k, 

S, M, m, φ, g0] 

d1… d15 (characteristic parameters of aircraft). 

Drag D= f [δ, p0, k, S, M, CD] - 

Propulsive 

Forces Model 

Thrust 

coefficient 
CT = f [ti1…ti12, a1…a36, M, δ, δT] 

ti1…ti12 and a1…a36 (characteristic parameters of 

aircraft) and δT (throttle ratio). 

Thrust Th= f [δ, mref, Wmref, CT] mref, Wmref  (aircraft reference mass and weight). 

Fuel 

consumption 

coefficient 

CF= f [δ, θ, M, fi1 …fi9, CT] 

fi1 …fi9 (characteristic parameters of aircraft) and 

θ (temperature ratio). 

Fuel 

consumption 
F= f [δ, θ, mref, Wmref, a0, Lhv, CF] 

fi1 …fi9 (characteristic parameters of aircraft). 

 

With all this, the 4D trajectory model was implemented and generated using the MATLAB software. To check its 

accuracy, it was performed a model validation by comparing the MATLAB simulated trajectory with real data flights 

extracted from the tool NEST of EUROCONTROL, using different intra-European routes (with similar characteristics 

to the scenario of study). The flights chosen for comparison were those that present similar characteristics. The test 

error regarding time and position presents an average value of 7%, reaching less than 5% during the stabilised flight 

level sections. 

The 4D trajectory has been modelled in three phases. First, we generated the en-route flight phase considering level 

changes how it is shown in Figure 2. Then, we have generated the climb and descent phases, considering that these 

phases have 3 distinguished parts (when the aircraft passes the transition altitude and when it is in clean or non-clean 

configuration). The trajectory is viewed as a flight in two dimensions with the following characteristics (Figure 2): (a) 

The climb flight phase, since 400ft until the flight level 360 (1); (b) The cruise flight phase divided in 5 parts. We 

consider three stabilised horizontal flight sections (2, 4, 6), an en-route climb section (3) and a descent section (5), that 

represent a level change between FL360 and FL380. It is not considered any turning in this phase; and (c) The descent 

flight phase, since FL360 until 50ft (1). The total length of the trajectory is 560NM (~ 76 minutes). 

To adjust the generic trajectory model to the characteristics of the chosen scenario, we make the following 

simplifications: 

• The main assumptions are: aircraft is considered as a symmetric rigid solid; variation in mass is due to fuel 

consumption only; limited manoeuvrability; airborne stage only; symmetric and coordinated flight. 

• The atmospheric variables are modelled according to the International Standard Atmosphere (ISA) [52]. 

Figure 1: BADA 4.0 structure – models for generating trajectories 
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Figure 2: Diagram of the modelled flight (divided into sections) 

However, the temperature is estimated as a function of flight altitude and this value is used to calculate 

pressure and density. The temperature is corrected by introducing δT in the motion equations. 

• The aircraft is considered as a point mass with three-degrees-of-freedom (3DoF). The flight is assumed to 

be symmetrical with all forces acting on the centre of mass and contained in the plane of symmetry. The 

rotational equations are decoupled, the angular speeds small, and the lifting surfaces do not affect the 

forces. 

• In the cruise phase we consider a flight at constant Mach (M) since this is the most common way to operate 

the selected aircraft type to save fuel and improve efficiency [53]. The aircraft adjusts its speed (V) along 

the trajectory to achieve the agreed value for M (M=0.78); i.e., we drop the speed equation from the full 

model and use V as a control input. This is a reasonable approximation since the speed does not change 

much when cruising and when it does it responds rather quickly to the thrust commands [37]. We also 

assume that the aircraft moves with constant heading angle in each segment. This assumption is not 

restrictive since aircraft track laterally very well [37]. 

• The aircraft type chosen uses a turbofan engine. Idle rating configuration for descent phase and non-idle 

rating for the rest.  

• Stabilised flight and changes in flight level have been achieved by modifying the position of the gas lever, 

which has a direct effect on thrust 𝑇ℎ = 𝑇ℎ(𝑉𝑇𝐴𝑆, ℎ). 

• It is assumed that the aircraft’s initial mass is 10% lower than the aircraft’s MTOW (Maximum Take-Off 

Weight). This hypothesis reflects the fact that aircraft do not always take-off with MTOW, and also 

considers the fuel consumption during take-off until 400ft (before initial climb).  

• The prediction algorithm uses the aircraft’s ground speed (Vgs), which is the horizontal speed of the aircraft 

relative to the ground. Vgs can be calculated, using vector addition, from wind speed (w), wind direction, 

heading angle 𝜓 and the aircraft’s true airspeed (VTAS). 

• We do not consider correction or deviation control measures along the trajectory. 

• Finally, all variables, both input and output, must be within the operational and/or structural limits of the 

chosen aircraft model. 

3.2 Identification of the influence parameters 

Once the model was developed and validated, the next step was to perform a variation of the influence parameters in 

order to appraise different potential situations. This is achieved through a Monte Carlo simulations approach [54], 

which approximate the model to reality, obtaining data that represent real situations by the sampled of input random 

variables (aircraft mass, temperature, pressure, density and wind). 

All trajectory prediction models have sources of uncertainty. The specific sources of uncertainty depend on the model 

in question , however, in all cases the factors with the greatest influence are [11], [55], [56]: the initial conditions, 

operational uncertainties (commands, guidance modes and control strategies), weather forecast, inherent errors in the 

model, and technical flight errors (inaccuracies in flight control). These sources of uncertainty lead to differences 

between predicted and actual trajectories. These differences can be used to build a stochastic model based on the 

previous deterministic model. 

The Monte Carlo approach is a statistical method used to model the probability of different outcomes in a process that 

cannot be easily predicted due to the intervention of random variables [57]. It establishes a set of runs (simulations) 

which depend on probabilistic inputs. These inputs are randomly generated from a probability distribution which 

characterises the uncertainty associated with the parameters in question. For each set of inputs, the deterministic 

problem is solved, generating a bunch of outputs that are aggregated to obtain the stochastic solution. This technique 

is capable of handling a large number of random variables, several types of statistical distributions and non-linear 

dynamic models. Unlike physical experimentation, Monte Carlo simulation performs a random sampling and facilitates 

the completion of a large number of numerical experiments [54]. The Monte Carlo method has been extensively used 

in air traffic control for conflict resolution [24], safety verification [58], and to estimate the impact of wind uncertainty 
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[59], [60]. 

In our study, the objective is to obtain a set of trajectories from the developed model by varying the input parameters, 

mentioned before, and applying the Monte Carlo method. The statistical characteristics of the experiments (model 

results) enable us to obtain conclusions with respect to potential deviations in trajectories (TW estimation). In each 

experiment, the possible values of the input random variables are sampled according to their distributions. A series of 

experiments performed in this way, provides us with a set of samples of the output variables for statistical analysis. 

This, in turn, allows us to estimate the characteristics of these variables.  

Figure 3 shows the Monte Carlo simulation procedure that enables us to obtain a sample of trajectories to statistically 

characterise the output variables. 

Figure 3: Monte Carlo simulation procedure 
 

The first step in the Monte Carlo simulation procedure is to sample the input variables. These variables are the 

parameters with the greatest influence on the aircraft's trajectory. Sensitivity analysis shows that the influential 

parameters with greatest impact on the evolution of the trajectory are: aircraft type, mass, fuel consumption, wind, 

temperature, pressure and navigation systems (positioning uncertainties). These inputs are modelled as the variable 

plus a precision error of the variable. Therefore, each variable follows a statistical distribution with respect to the 

nominal/ideal mean value along with a specific standard deviation for each variable. The errors of the variables 

evaluated are assumed to be statistically independent.  

The stochastic approach used to predict trajectories introduces variability in the deterministic model. After doing 1.500 

simulations of each flight phase, we obtain the results, such as those for the cruise phase shown in Figure 4. It is 

important to mention that the variance estimated by the Monte Carlo procedure converges to the inverse square root of 

the number of runs (N). Therefore, this method has an absolute error for the estimation that decreases like 1
√𝑁

⁄ . 

 

 Figure 4: Results of the trajectory simulations: 3D-view (left) and Ground Speed (right) 
 

Figure 4 (left) shows a 3D-view of the trajectory which relates longitudinal, lateral and vertical position. The aircraft 

begins the cruise at FL360, ascends to FL380 and descends back to FL360. The greatest variability occurs in the 

ascending and descending phases (sections 3 and 5), while in the stabilised phases of the flight (sections 2, 4 and 6) 

there is less fluctuation with respect to the ideal trajectory. This same reasoning could be applicable to the rest of the 

flight phases (climb and descent), where the uncertainty is greater. In the flight level change of the cruise, we define a 

constant climb/descent rate, therefore, the aircraft climbs and descends at a constant angle. Nevertheless, the 

climb/descent angle is different for each simulated trajectory due to the sources of uncertainty, whose parameters have 

been mentioned before and they have a greater impact in non-stabilised sections of the flight. Although the lateral 

deviations are relatively small, less than 0.1 NM, these increase towards the end of the trajectory, due to the impact of 

the sources of uncertainty. Figure 4 (Right) shows the evolution of ground speed over time. The variability in Vgs 

increases along the trajectory due to the cumulative effect of the sources of uncertainty too. 
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3.3 Time-Window estimation 

The aim of the 4D trajectory concept is to ensure flight on a practically unrestricted, optimum trajectory for as long as 

possible in exchange for the aircraft being obliged to meet very accurately an arrival time over a designated point. In 

this section, we evaluate these time constraints by defining TWs. The Monte Carlo method allows us to obtain a large 

number of simulations (potential trajectories) by varying the influential parameters. The results reflect the stochastic 

nature of the evolution of the flight and they make the deterministic model more realistic by including actual 

uncertainties in trajectory prediction. Once the simulations have been performed, we can define the expected TW at 

each checkpoint of the agreed trajectory, thereby, providing airspace users, ANSPs and AOs with a framework for 

traffic synchronization and conflict resolution. The size of a TW on a Reference Business Trajectory (RBT) should at 

least represent the time interval within which any aircraft arriving at the checkpoint can avoid collisions with other 

aircraft [39]. 

To estimate the TWs, we start by setting the position (x) of the checkpoints (CP), as shows Figure 5. Each aircraft must 

hit them within a specified time interval [14].  

We propose a flexible approach in which TWs can be distributed along the entire 4D trajectory of a flight in such a 

way Air Traffic Controllers (ATCOs) can manage the punctuality of aircraft as they transit between sectors and also 

along their entire trajectory, although, this will increase the amount of coordination required between pilots and 

controllers. To illustrate the method for calculating TWs we define five checkpoints along the three flight phases of 

the proposed scenario. 

In Figure 5, we can see the location of every checkpoints. Checkpoint 1 and 5 are located in the middle of climb and 

descent phase, at 75 NM and 530 NM, respectively. In the cruise phase, we have three checkpoints (2, 3 and 4), located 

in the middle of each horizontal stabilised flights, at 200 NM, 303 NM and 421 NM, respectively. It is necessary to 

mention that these CP have been used for all the analysis done and each flight phase has been treated as independent 

when it comes to the calculations. 

After being obtained the arrival times at each CP by the 1500 Monte Carlo simulations, we can represent a histogram 

that can be modelled as a normal distribution for each checkpoint. For example, for Checkpoint 3, we obtained a normal 

distribution centred in μ = 1194 seconds from the start of the segment and a standard deviation of σ = 4.9 seconds. Both 

a K-S test and χ2 goodness-of-fit test were used to ensure the “power” of curve fitting [61]. Fitted probability curves 

for the arrival times at Checkpoints 3 and 4 are shown in Figure 6. These are given by the probability density function: 

𝑓
𝑁𝑂𝑅𝑀𝐴𝐿

 (𝑡, 𝜇, 𝜎) =
1

√2𝜋 · 𝜎
· 𝑒

−(
𝑡−𝜇
2𝜎

)
2

 (1) 

 

By setting the position (x) of the checkpoint and fitting time variation to a normal distribution we can define different 

TWs or time intervals depending on the accuracy required. Figure 9 gives the probability of an aircraft achieving the 

TW constraint as a function of a time interval centred at μ and depending on the multiple of σ chosen. The width of 

Figure 6: Statistical distribution of the aircraft’s arrival time in seconds at CP 3 (left) and 4 (right) 

Figure 5: Defined checkpoints (Not to Scale) 
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the TW is an indication of how predictable a flight is. Setting longer intervals increases predictability and reduces 

uncertainty but leads to less efficient time management. 

Therefore, there is a 95.44% (±2σ) probability that an aircraft will be at Checkpoint 3 (303 NM) within a TW of ±10 

seconds centred at 1194 seconds. Similarly, the arrival times at Checkpoint 4 (421 NM) can be fitted to a normal 

distribution with mean μ=2120 seconds and a standard deviation of σ=12 seconds. There is a 95.44% (±2σ) probability 

that an aircraft will reach CP 4 within a TW of ±24s. The values of σ and the Interquartile Range (IQR) are higher for 

CP 4 than for CP 3. This means that the further the distance the greater the uncertainty and data dispersion. 

Table 2 gives the mean (μ) and the standard deviation (σ) of each TW (measured in seconds). The standard deviation 

is a measure of dispersion about the mean data that enable us to define the different tolerance windows at each point. 

Table 2: TW values for CP 

Checkpoint µ (s) σ (s) Time Window (s) 

1 (75 NM) - Climb 778 9.95 ±20 

2 (200 NM) - Cruise 393.8 0.9 ±2 

3 (303 NM) - Cruise 1194 4.9 ±10 

4 (421 NM) - Cruise 2120 11.9 ±24 

5 (530 NM) - Descent 478.63 2.67 ±6 
 

It is recalled that the three phases have been analysed separately, so the TWs are not cumulative from one flight phase 

to another. 

Analysing the results, we can see that TWs increase along the trajectory, being greater in the climb phase and at the 

end of the cruise phase, after flight level change that comprehends a climb and descent 2000ft. That is, variability of 

the results increases with distance. If a feedback controller is included in the simulation to emulate the actions that 

ATCOs and pilots might take to limit deviations from the planned trajectory, we will obtain a significant reduction in 

variability and TWs sizes [14]. 

Our results suggest that TWs could be significantly reduced compared to the TWs reached in the CATS project (∼ 7 

minutes [62]) without negatively impacting on the probability of satisfying the agreed tolerances. Nevertheless, the 

results are highly dependent on the sources of uncertainty evaluated. As such, an increase in the variability of the 

influential parameters lead to deviations in the size of TWs. To manage this variability, we carry out a causal analysis 

on the characterisation of the TW. 

 3.4 Causal and predictability analysis 

We perform sensitivity analysis to measure how potential variations in parameter values can affect the results of the 

model [63] and to measure the influence of modelling parameters on flight time. Given uncertainty in the actual values 

of the input variables of the trajectory prediction model (introduced when performing the simulation), a study of the 

functional relationships between parameters enables us to understand the relative influence of each parameter on the 

final results. This causal analysis is performed using a Bayesian Network (BN) technique. A BN is a probabilistic 

graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic 

graph (DAG). Formally, BNs are DAGs whose nodes represent random variables in the Bayesian sense: they may be 

observable quantities, latent variables, unknown parameters or hypotheses [64], [65]. Edges represent conditional 

dependencies; nodes that are not connected (there is no path from one of the variables to the other in the BN) represent 

variables that are conditionally independent of each other. Each node is associated with a probability function that 

takes, as input, a particular set of values for the node's parent variables and gives, as output, the probability (or 

probability distribution, if applicable) of the variable represented by the node [66]. Consequently, a BN is a pair (G, 

P), where G is DAG defined on a set of nodes x (the random variables), and P = {p (x1│π1), …, p (xn│πn)} is a set of 

n conditional probability densities (CPD), one for each variable. πi is the set of parents of node xi in G. The set P defines 

the associated joint probability density of all nodes as (the chain rule for BN): 

𝑝(𝒙) = 𝑝 (𝑥1, … , 𝑥𝑛) =  ∏ 𝑝 (𝑥𝑖|𝜋(𝑥𝑖)

𝑛

𝑖=1

) (2) 

The graph G contains all the qualitative information about the relationships between variables, no matter which 

probability values are assigned to them. Additionally, the probabilities in P contain quantitative information, i.e., they 

complement the qualitative properties revealed by the graphical structure [67], [68]. 

A BN is created for every checkpoint along the trajectory to reflect specific information about the relationships between 

variables at each of these points. The first step in the BN construction process is to generate the correlation matrix for 

the variables, to assess the correlation between pairs (regression analysis). In our case, this matrix provides a large 

number of relationships between parameters; i.e., the influence network is complex, and we can obtain diverse results 

by varying a single parameter. A data-driven process is then used to build the BN, applying a Bayesian Search (BS) 

DOI: 10.13009/EUCASS2019-381



ASSESSMENT OF 4D-TRAJECTORIES PREDICTABILITY AND RELIABILITY 

     

 

 

9 

algorithm [69], [70]. This algorithm essentially follows a hill climbing procedure (guided by a scoring heuristic) with 

random restarts. The BS algorithm uses the BDeu (Bayesian-Dirichlet equivalent uniform) function as the network 

scoring function in its search for the optimal graph. This scoring function is a common tool for choosing between 

different statistical models and it represents the goodness of fit of the model to observed data [71]. The BN structure 

is then refined to represent the functional relationships of the trajectory model (equations) and the empirical knowledge 

of the problem. Therefore, our model is built through a combination of a data-driven process and practical adjustments, 

to reflect reality. 

The BN for the trajectory prediction model consists of ten interrelated nodes (Figure 7 left). Each node corresponds to 

a parameter or influence factor in the evolution of the trajectory. The sample values for each parameter are distributed 

in different discrete states. The number of states at each node is adjusted to reflect the value of the specific parameter 

and its variability. Each state is assigned a probability whose value is defined by the number of times that the variable 

can be found in this state over the simulation experiments. We then obtain a different probability distribution for each 

variable. 

The BNs for the different trajectory checkpoints have the same structure (Figure 7 left), but each of them has different 

probabilities and states distributions for the nodes, due to the increase in variability of parameters along the trajectory.  

Figure 7 (left) shows a generic BN for evaluating the TW at each checkpoint. Figure 7 (right) gives the specific design 

of the node states of the BN for CP 3 (checkpoint in the middle of the trajectory). A sub-sample of 90% of observations 

is selected to train/build and validate the model structure, i.e. establish the model’s ability to explain variations in 

parameters. The remaining 10% of the data is used to test the accuracy of the predictions made by the model, i.e. test 

the model’s predictive capacity. The training and test sub-samples are randomly selected from the complete dataset. 

The test error is 5% - 12% for the different variables. BN has been done for every Checkpoints defined before as show 

Figure 7 using the modelling tool GeNIe. 

Another BN obtained by GeNIe is the intensity network. Figure 8 shows the causal relationships between the influential 

parameters. The head of the arrow indicates the variable or parameter which “receives” the influence (the child node): 

e.g. as the "mass of the aircraft" directly influences the "lift", there is an arrow goes from the "mass" (parent node) to 

the "lift" node. At the end of the BN, we have the target node. In this case our target is to estimate the aircraft’s time 

of arrival at each checkpoint (time constraints), so “time” node is placed at the “final” outcome of the BN. The dynamic 

forces (lift, thrust, drag) and fuel consumption are situated on the left-hand side of the network. The atmospheric 

variables (pressure and temperature) are located on the right-hand side of the structure. In this BN, due to the 

atmosphere modelling proposed by BADA 4.0, temperature determines pressure, since this relationship was set in the 

formulation. In addition, both parameters will vary depending on the altitude. The speed depends on the thrust, since 

both variables are related through the differential equation of motion. Finally, aircraft speed will determine the flight 

time needed to reach the defined checkpoint. We set out a statistical significance test on pairs of nodes connected by 

an arc in the BN: associations between the nodes are statistically significant at level 0.05 (p-value). 

Figure 8 illustrates the intensity of the relationships between parameters and enables us to perform a sensitivity 

analysis. The greater the intensity of the red colour for each node, the higher the interdependence between this node 

and the target node. Moreover, the thickness of an arc represents the strength of influence between two directly 

connected nodes. We use two measures of distance between distributions to validate results: Euclidean and Hellinger 

[72]. As can be seen, the most influential parameters are speed, aircraft mass, temperature and thrust. These parameters 

Figure 7: Generic BN structure for TWs (left) and Specific BN structure for CP3 (right) 
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will be used in the reliability model. The aerodynamic forces (L and D) are shown in grey, what indicates that the 

dependence ratio is lower than whit other nodes. 

The sensitivity analysis enables us to: (a) test the robustness of the results of the prediction model in the presence of 

uncertainty; (b) increase our understanding of the relationships between input and output variables in the causal model; 

and (c) Manage uncertainty by identifying inputs that cause significant variations in the output.  

The analysis should, therefore, focus on these inputs to make the model more robust. 

This methodology for constructing BN can be applied to different checkpoints, i.e. different distances, to analyse 

potential TWs along the trajectory. If we consider the information of the trajectory as a whole, we can define a holistic 

BN that connects successive checkpoints. In line with this idea, we evaluated the five checkpoints defined, as depicted 

in Figure 5. The result is a global BN that interconnects five partial BNs (one for each checkpoint). This structure 

allows us to understand the relationships between successive TWs. In other words, it enables us to generalise the 

analysis to the entire trajectory by setting different parameters at different checkpoints, we can reduce uncertainty and 

gather information about successive TWs (direct analysis) or by setting target TWs along the trajectory, the model 

gives us the most probable states of the influential parameters (backward analysis). Therefore, the BN allows us to 

individuate the relevant factors and also to understand how different combinations may affect the probability of 

avoiding deviations from the planned trajectory. 

The BN approach allows us to graphically and quantitatively express the causal relationships between the parameters 

involved in the trajectory prediction model. This can be used to identify those variables with a significant, or negligible, 

influence on the global evolution of the trajectory. The BN can also manage uncertainty using forward/inter-causal 

analysis. In such cases, the model estimates an interval (TW) for the arrival time by setting the probability of having 

certain configuration, i.e. by setting one or more parent-input nodes at different checkpoints. Alternatively, knowing 

the causal relationships also allows us to do a backward analysis, i.e. by setting a target TW at a specific checkpoint, 

we can discover at which values (or states) it is most possible to find the input variables. The BN model evaluates the 

impact of uncertainty on the outputs and analyses the propagation of uncertainty along the trajectory. 

3.5 Reliability analysis 

Reliability is defined as the probability that a goods function properly during a determined period under specific 

operational conditions. In this case, we define the 4D trajectory as the goods or system to be studied The period will 

be the flight phase (ascent, cruise or descent) and the specific operational conditions are the uncertainties of the 

proposed scenario (aircraft mass, wind (speed), temperature, etc.). 4D trajectories can be understood as complex Multi-

State Systems (MSS) that depend on environmental conditions and internal parameters.  

In this system, its global performance will be given by the performance of the system elements, which in this case will 

be the different parameters that define the trajectory. Therefore, it is necessary to define states or rates of system 

performance and states or rates of performance for the elements, considering the interrelationships and cross-

Figure 8: Causal relationships and sensitivity between influential parameters 
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influences. In this phase, the system is considered (4D trajectory) as a system with a state vector, composed of three 

states: optimal, acceptable and degraded, with their performance rates associated: 

[

𝑂𝑝𝑡𝑖𝑚𝑎𝑙
𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒
𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑

] ⟹ [

𝐺1

𝐺2

𝐺3

] = [
100%
50%
0%

] (3) 

The study of Markov's chains can be reduced to the algebraic study of the properties of transition matrices. These 

transition matrices or probabilities of being and/or going from one state to another of the system, are calculated from 

the data obtained from the simulations. 

Therefore, the proposed model is a methodology based on MSS and Markov Chains, two new concepts that will be 

explain next. The combined application of these concepts is very useful because it allows to divide the system in 

different sub-operations where each state will have its own rate of performance so that will be easier to study the 

uncertainty. 

3.5.1 Multi-State Systems 

Every system is designed to accomplish a determined task in a determined environment. Traditionally, systems have 

been modelled in a binary way, thus each element has only two possible states: perfect functioning or complete failure 

[73]–[75]. However, the majority of real systems can be in more than two states. The so-called multi-state systems are 

the systems that present a finite number of states. Usually, a multi-state system is composed of elements that can also 

be in different states [75]. 

In practice, any system consisting of different binary states units that have a cumulative effect on the entire system 

performance should be consider a MSS. In addition, when the performance rate of elements composing the system can 

vary because of their deterioration (fatigue, partial failure) or because of variable ambient conditions, the entire system 

may be considered a MSS [74]. 

Before studying a complete multi-state system, it is necessary to characterize the elements that constitute it. Any 

element 𝑗 of the system can have different 𝑘𝑗 states corresponding to the performance levels of the element: 

𝑔𝑗 = {𝑔𝑗1, 𝑔𝑗2, … , 𝑔𝑗𝑘𝑗
} (4) 

Where gji is the level of performance of the element j at state 𝑖 (i ∈ {1,2, … k_j}. 

The level of performance Gj (t)of the element 𝑗 for any instant t ≥ 0 is a random variable, which takes values from gj. 

Therefore, for the time interval [0, T] in which 𝑇 is the moment of operation, the level of performance of the element 

𝑗 can be defined as a stochastic process. The probabilities associated with each state of the system element 𝑗 for any 

instant t can be represented with the following set of equations: 

𝑷𝑗(𝑡) = {𝑝𝑗1(𝑡), 𝑝𝑗2(𝑡), … , 𝑝𝑗𝑘𝑗(𝑡)} 

𝑷𝑗(𝑡) = {𝑝𝑗1(𝑡), 𝑝𝑗2(𝑡), … , 𝑝𝑗𝑘𝑗(𝑡)} 
(5) 

Where 

𝑝𝑗𝑖(𝑡) = Pr {𝐺𝑗(𝑡) =  𝑔𝑗𝑖} (6) 
Since the element states are a mutually exclusive group (which means that the element 𝑗 can be in one of the states and 

only one), the following condition must be fulfilled: 

∑ 𝑔𝑗𝑖(𝑡) = 1, ∀  0 ≤ 𝑡 ≤ 𝑇

𝑘𝑗

𝑖=1

 (7) 

Eq. (5) defines the probability function of a discrete random variable Gj(t) at any instant 𝑡. The pairs gji, pji (with i =

1,2, … kj) completely determine the probability distribution of element 𝑗 at any instant 𝑡. 

If a multi-state system is composed of n elements, its performance level is determined in an unambiguous way by the 

performance levels of the elements that compose it. At each moment, the system elements have a level of performance 

that corresponds to their current state. The status of the entire system is determined from the states of its elements. 

Therefore, the definition of a multi-state model must include the stochastic process performance for each element of 

the system 𝑖: Gi(t)(𝑖 = 1, … 𝑛) and the structure of system operation that causes the stochastic process corresponding 

to the output of the entire multi-state system: 𝐺(𝑡) = 𝜑(𝐺𝑖 (𝑡), … , 𝐺𝑛 (𝑡)). 

3.5.1 Markov Chains 

Markov chains are a special type of discrete stochastic process in which the probability of an event only depends on 

the previous state of the system. This type of systems are memoryless thus satisfy the Markov property [74]: 

𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛, 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋2 = 𝑥2, 𝑋1 = 𝑥1) 

= 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) 
(8) 
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The probability of transition between state 𝑋𝑛−1 = 𝑖 and 𝑋𝑛 = 𝑗 is given by 𝛾𝑖,𝑗, where 𝑛 is the number of transitions. 

The matrix 𝑷 collectively represents these transition probabilities [76]: 

𝑷 = ( 

𝛾1,1 𝛾1,2 ⋯ 𝛾1,𝑘

𝛾2,1 𝛾2,2 ⋯ 𝛾2,𝑘

⋮ ⋮ ⋯ ⋮
𝛾𝑘,1 𝛾𝑘,2 ⋯ 𝛾𝑘,𝑘

) (9) 

The vector 𝜋𝑛
𝑇 defines the probability of finding the system in a particular state on the 𝑛-th transition: 

𝜋𝑛
𝑇 = [𝜋1,𝑛   𝜋2,𝑛    ⋯    𝜋𝑘,𝑛] (10) 

Where 𝜋𝑘,𝑛 is the probability that the system is in state 𝑘 on the 𝑛-th transition. The probabilities of the state for each 

transition are determined iteratively as follows: 

𝜋𝑛
𝑇 = 𝜋𝑛−1

𝑇 𝑷 (11) 
The random evolution of a Markov chain is completely determined by its transition matrix P and its initial density 

distribution 𝜋0
𝑇. Therefore, with the transition matrix obtained, the study of Markov chains is reducible to the linear 

algebra study of its transition matrix and state vector (Eq. (11)). 

Carrying on the reliability model, the choice of states is based on confidence intervals defined by Normal distributions 

of the parameters evaluated in Monte Carlo simulations. We used MATLAB software to develop Markov’s model. 

This software allows to create and determine Markov chains and computes confidence bouds for P using a normal 

approximation to the distribution of the estimate: 

�̂� + �̂�𝑞 (12) 
Where q is the P-th quantile from a normal distribution with mean zero and standard deviation 1. The computed bounds 

provide the desired confidence level when 𝜇 and 𝜎 are estimated from large samples. Nevertheless, in smaller samples 

other methods of computing the confidence bounds may be more accurate [77]. 

The normal inverse function is defined in terms of the normal cumulative density function (cdf) as: 

𝑥 = 𝐹−1(𝑝|𝜇, 𝜎) = {𝑥: 𝐹(𝑥|𝜇, 𝜎) = 𝑝} (13) 
Where 

𝑝 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎 √2𝜋 
∫ 𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞

 (14) 

The result, 𝑥, is the solution of the integral equation (14), where the desired probability, 𝒑 is introduced as an input. 

Simulated 4D trajectories have been used to estimate 𝜇 and 𝜎. 𝜇 arises from the deterministic model of the trajectory, 

obtaining a 𝜇 value for each instant of time and for each study parameter. As for the 𝜎 value, the standard deviation is 

considered at the initial instant. Therefore, the initial instant is taken as a reference point to study the degradation of 

the trajectory over time. Once we have calculated 𝜇 and 𝜎, we define the intervals corresponding to each of the states 

into which the trajectory has been divided in Figure 9. 
 

State Interval 

Optimal 68.3 % 

Acceptable 27.3 % 

Degraded 4.4 % 

 

3.5.4 Transition matrix 

Once the states are established at defined intervals, the next step is to obtain the transition matrix of the model. Firstly, 

we obtain the transition matrix of the partial parameters and the transition matrix of the global model. Transition 

matrices are calculated for all parameters included in the Monte Carlo simulation (mass, speed, temperature, thrust and 

range). The transition matrices for five of the variables are shown in Figure 10. 

 
 

Figure 9: Intervals defining system states and the probability associated with each interval (centred 
at μ and indicating multiples of σ) 
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 Optimal Acceptable Degraded 

Optimal 0.9740 0.0260 0 

Acceptable 0.0319 0.9447 0.0234 

Degraded 0 0.0147 0.9853 

(a) 

 Optimal Acceptable Degraded 

Optimal 0.9738 0.0262 0 

Acceptable 0.0324 0.9437 0.0239 

Degraded 0 0.0152 0.9848 

(b) 

 Optimal Acceptable Degraded 

Optimal 0.9891 0.0099 9.5871e-04 

Acceptable 0.0376 0.9355 0.0269 

Degraded 0 0.0161 0.9816 

(c) 

 Optimal Acceptable Degraded 

Optimal 0.9651 0.0049 0 

Acceptable 0.0021 0.9916 0.0062 

Degraded 0 1.4620e-04 0.9999 

(d) 

 Optimal Acceptable 

Optimal 0.9853 0.0147 

Acceptable 0.0015 0.9985 
(e) 

  

The global transition matrix (Figure 11) is generated with the five mentioned parameters. In addition, two parameter 

blocks are defined, fundamental and non-fundamental. With these two blocks we add a priority in the calculation of 

the global transition matrix. We chose speed and range as fundamental parameters because of their sensitivity and 

intensity of the relationship in the trajectory state. In non-fundamental parameters we put temperature, thrust and mass. 

If one of these two fundamental parameters are degraded, the trajectory is degraded. If not, the state is calculated taking 

into account the other parameters’ state. 
 

 Optimal Acceptable Degraded 

Optimal 0.9822 0.0174 4.0418e-04 

Acceptable 0.0182 0.9687 0.0131 

Degraded 2.9920e-04 0.0086 0.9911 

Figure 11: Trajectory global transition matrix 

4. Results 

A Markov chain is said to be irreducible if it is possible to get to any state from any state. A state i has period k if any 

return to state i must occur in multiples of k time steps. If k = 1, then the state is said to be aperiodic. Otherwise (k > 

1), the state is said to be periodic with period k. A Markov chain is aperiodic if every state is aperiodic. An irreducible 

Markov chain only needs one aperiodic state to imply all states are aperiodic. 

Furthermore, a Markov chain is called an ergodic chain if it is possible to go from every state to any other state (not 

necessarily in one move) so if it is both irreducible and aperiodic. This condition is equivalent to all nodes of the chain 

being ergodic (recurrent, aperiodic and positive) [76], [78], [79] That is the case of the transition matrix studied. 

The stationary distribution π (steady-state or long-term, 𝑛 → ∞), does not change over time or: 

𝜋 = 𝜋𝑇  (15) 

𝑇∞ = 𝑙𝑖𝑚
𝑛→∞

𝑇𝑛 (16) 

 

By the Perron-Frobenius Theorem [80], ergodic Markov chains have unique limiting distributions; i.e., they have 

unique stationary distributions to which every initial distribution converges. The result for the system is: 
 

𝑋 =  [0.2935 ,   0.2800 ,   0.4265] 
 

If we define optimal and acceptable states as correct operating states (with an expected level of demand (w) of at least 

50%), the trajectory is correct in 57.35% of cases. On the other hand, the trajectory is degraded or in an incorrect state 

in 42.65% of cases. In addition, the time it takes the system to achieve the stationary distribution is 698 seconds (with 

an error of the estimation of 0.0255%). It should be noted that simulations have been developed without considering 

any correcting measures for the variables throughout the flight, so the parameters tend to degrade with flight time. 

We use three indicators to describe the system performance: mean instantaneous performance, mean instantaneous 

deficiency and mean instantaneous reliability. that are described below. 

Mean instantaneous performance (Et) 

In order to obtain indicators that characterize the average MSS output performance, we can use the performance 

Figure 10: (a) Speed transition matrix; (b) Temperature transition matrix; (c) Thrust transition 
matrix; (d) Range transition matrix; (e) Mass transition matrix. 
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expectation. The mean value of MSS instantaneous output performance at time 𝑡 is determined as [75]: 

𝐸𝑡 = ∑ 𝑔
𝑘
𝑝

𝑘
(𝑡)

𝑡

𝑘=1

  (17) 

Being 𝑁 the total number of states, 𝑔
𝑘
 is the performance rate associated with state 𝑘 and 𝑝

𝑘
(𝑡) is the probability that 

the system is at state 𝑘 at time 𝑡. The steady-state expected performance can also be obtained substituting in Equation 

(4) the stationary distribution values. Indeed, the value of the steady-state mean performance is the asymptotic value 

of the mean instantaneous performance (Figure 12 left). This graph shows the mean instantaneous performance 

evolution. The system is initially functioning perfectly (the initial state is selected as a reference with a 100% 

performance rate), and then evolves towards the mean instantaneous performance value for stationary distribution 

(43.35 %). 

Mean instantaneous deficiency (Dt) 

The mean instantaneous deficiency or deviation is defined as a weighted average between the system probability to be 

found in each state and the service levels associated to these states. A weighted average of the value of a random 

variable where the probability function provides weights can be understood as the expected value [75]. In case the 

difference is negative the average is weighted with a zero. That is because in those cases the system is meeting the 

expected demand and the aim of the index is to assess the cases when the system is not fulfilling the demand. 

Dt = ∑ p
i
(t) max(w − g

i
; 0)

N

i=1

  (18) 

Where 𝑝𝑖 (𝑡) is the probability that the system is in state i at t-th time, w is the expected demand and 𝑔𝑖 is the level of 

performance associated to state i. 

The value of mean deficiency for stationary distribution is 21.33% (Figure 12 (right). This indicator shows the 

evolution of degradation of the trajectory. Starting from a state defined as optimal or ideal that satisfies the expected 

demand, it evolves to a degraded and unacceptable state. This confirms the outputs obtained from the mean 

instantaneous performance indicator. 

Mean instantaneous reliability (R) 

The reliability of a system (R) is defined as the system’s ability to remain in acceptable states during the operation 

period. Therefore, the reliability function can be defined as the probability that the system is not in its unacceptable 

states [75]. 

Dt = ∑ p
i
(t) max(w − g

i
; 0)

N

i=1

  (19) 

Where 𝑖 is the number of unacceptable states.  

Figure 13 shows the evolution of the probability that the 4D trajectory is in the correct states (optimal and acceptable). 

Reliability first decreases rapidly with time and later reaches a stable value, stationary distribution, 57.35%. The result 

coincides with the results obtained in the calculation of the stationary distributions. 

  

Figure 12: Mean instantaneous performance (left) and Mean instantaneous deficiency (right) 
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Figure 13: Mean instantaneous reliability 

5. Conclusions 

4D trajectories and their associated Trajectory Based Operations (TBO) concept require high accuracy and reliability 

in trajectory monitoring and forecasting. In the first stage of the study, we defined a 4D trajectory prediction model 

and studied the influences of different parameters in the estimation of checkpoints. This model and a Monte Carlo 

technique allow us to perform 1500 simulations and evaluate, through the information obtained from the simulations, 

the evolution of trajectories through a stochastic approach. So, the primary conclusion of this work is that we have 

modelled and characterised TWs for 4D trajectories and we realise that the function of the evolution of TWs is not 

lineal and it depends largely on the flight phase. The results show that, with 95% probability, the aircraft reaches 75NM 

(middle of climb phase) within a range of ±20 seconds, whereas it reaches 303NM (middle of cruise phase) within a 

range of ±10 seconds and 530NM (middle of descent phase) within a range of ±6 seconds. The climb phase entails 

more degradation than descent phase and this, at the same time, more than the cruise stabilised phase. This is because 

when aircraft is climbing or descending, the uncertainties of the parameters are greater. The application of these TW 

is promising because it could serve for different strategical analysis as conflict detection or pre-flight sequencing. 

With the Bayesian Networks we have determined and quantified the impact of the different influence factors, being 

the most important the speed, the thrust, the temperature and the aircraft mass. BNs have proven to be an excellent 

method for analysing causality in trajectory prediction because they are “white boxes in the sense that the components 

of the model (variables, links, probability and utility parameters) are open to interpretation. This means that it is 

possible to perform a wide range of analyses of the network, e.g., causal interactions, conflict analysis, (in)dependence 

analyses, sensitivity analysis, and value of information analysis. Furthermore, they have the following advantages: (a) 

They allow data to be used in conjunction with expert knowledge/judgment; (b) They enable inference to be performed 

efficiently in models with a large number of variables; (c) They employ a probabilistic approach in decision making 

and in managing uncertainty which is consistent with the treatment of stochastic processes; and (d) They make cross-

inference (several control variables) possible so that conclusions may be derived when multiple sources of information 

and complex interaction patterns are involved. 

Then, we developed a reliability analysis using multi-state systems theory and Markov Chain model. For this, first of 

all, we defined the trajectory as a MSS, composed of the most influential parameters that were identified in the 4D-

trajectory model. These parameters (mass, speed, thrust, range and temperature) were identified with the help of the 

causal analysis performed in the first part of the study. In addition, the causal analysis allowed us to define different 

blocks or elements of study. The performance rates were defined as: optimal, acceptable and degraded. Subsequently, 

a Markov Chain approach was used to define the transition between the different states (instant times) of the system. 

Transition matrices showed that the probability of remaining in the current state is about 97%, but with a clear tendency 

to the degraded state as time grows. This result coincides with the outcomes obtained in the simulations: a degradation 

arises as the distance flown by the aircraft grows. For the global model, in order to define the global transition matrix, 

we introduced two blocks of parameters: fundamental and non-fundamental. The fundamental block is the most 

restrictive: if it is degraded, the trajectory state is considered degraded. In case the fundamental block is not degraded, 

the other parameters are taken into account for the calculation of the global transition matrix. We defined as the correct 

state the one that is imposed by the optimal and acceptable state, and the degraded state being the incorrect one. Next, 

other results are also obtained from the global transition matrix. The reliability analysis showed the system evolution 

in time. With this analysis, we found a huge degradation towards an incorrect state. The probability of being in a correct 

state is 57.35%. Another output of the reliability model is the mean performance ratio in the stationary distribution, 
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which is 43.35%, below acceptable status. Finally, time to achieve this stationary state is 698 seconds. In conclusion, 

during the flight the aircraft suffers disturbances that cause a great degradation of the trajectory. Hence, it is necessary 

to take appropriate actions to meet the agreed targets within the TBO concept. 

The main contribution of this paper is the development of a tool for assessing 4D-trajectories reliability, which is 

associated with trajectory degradation. This model can be useful for the flight operators or the ANSPs to predict and 

manage 4D-trajectories, as the model makes it possible to assess, through different flight parameters, the evolution of 

trajectory degradation. With this information, it is possible to make trajectory updates at the appropriate time, to help 

deviation management and predictability of 4D-trajectory. 

6. Future Works 

A possible deviation of the trajectory means greater future deviations, which implies a non-fulfilment of the trajectory 

requirements. Furthermore, the impact of sources of uncertainty is cumulative along the trajectory. To avoid this 

circumstance, it is necessary to propose corrective measures. So, in future works we will analyse trajectory degradation 

to define and introduce the necessary corrective measures. Moreover, we will study the conditions and requisites to 

implement 4D-trajectories and we will propose a tolerance windows that mark when will it be necessary to apply the 

corrective measures for the trajectory. Future work will also include a feedback controller to emulate the actions that 

ATCOs and pilots may take to satisfy the constraints imposed on TWs. 

Research lines for the future are focused on determining when the Air Traffic Control (ATC) should intervene tactically 

on the 4D-trajectory to ensure adherence to subsequent TWs and not to degrade neither trajectories nor the ATM 

system. 
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